
Effects of Radiation, Free Convection and Mass Transfer on an
Unsteady Flow of a Micropolar Fluid Over a Vertical Moving Porous

Plate Immersed in a Porous Medium With Time Varying Suction

Navin Kumar*, Tanu Jain** and Sandeep Gupta**
*Department of Mathematics, National Defence Academy, Pune, (MS) India

**Department of Mathematics, University of Rajasthan, Jaipur, (RJ) India

(Recieved 15 April, 2012 Accepted 25 April 2012)

ABSTRACT : In the present paper, an analysis is carried out to study the free convection, thermal radiation and
mass transfer effects on an unsteady flow of a viscous incompressible micropolar fluid over a vertical moving
porous plate immersed in a porous medium with time varying suction velocity. The plate moves with the constant
velocity in the longitudinal direction, and the free stream velocity follows an exponentially small perturbation
law. The velocity and temperature distributions are derived, discussed and their profiles shown through graphs.
Also, the results of coefficient of skin-friction, the rate of the heat transfer in terms of Nusselt number and the
ratio of convective to diffusive mass transport in terms of Sherwood number at the plate are prepared with
various values of fluid properties and flow conditions.
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I. INTRODUCTION

The micropolar fluids are the fluids with microstructure
belonging to a class of fluids with nonsymmetrical stress
tensor referred to as polar fluids. Physically, they represent
fluids consisting of randomly oriented particles suspended
in a viscous medium (Lukaszewicz, [1]), and they are
important to Engineers and Scientists working with
hydrodynamic–fluid problems. Synovial fluid is a good
example of micropolar fluid. The earliest formulation of a
general theory of micropolar fluids was given by Eringen
[2]. His theory has opened up new ideas in the physics of
fluid flow. According to him, a simple micropolar fluid is a
fluent medium whose properties and behavior are affected
by the local motions of the material particles contains in
each of its volume elements; such a fluid possesses local
inertia.

Raptis et.al [3] discussed the free convection flow
through a porous medium bounded by a vertical surface.
Heat and mass transfer by natural convection in a porous
medium was investigated by Bejan and Khair [4]. Agarwal
and Dhanapal [5] studied the numerical solution of free
convection micropolar fluid flow between two parallel porous
vertical plates. Free convection effects on the flow past a
porous medium bounded by a vertical infinite surface with
constant suction and constant heat flux was discussed by
Sharma [6]. Hooper et.al. [7] studied the mixed convection
along an isothermal vertical plate in a porous medium.
Unsteady free–convection and mass transfer effects on the
flow past an infinite, vertical, moving porous plate in the
presence of heat source/sink with constant suction and
constant heat flux was investigated by Sharma and Kumar

[8]. Al–Nimr and Masoud [9] analysed the unsteady free
convection flow over a vertical flat plate immersed in a
porous medium. Unsteady free convection flow of a
micropolar fluids past a vertical porous plate embedded in a
porous medium was investigated by Kim [10]. Chamkha et.al.
[11] analyzed the fully developed free convection flow of a
micropolar fluid in a vertical channel. Transient mixed
radiative convection flow of a micropolar fluid past a moving,
semi–infinite vertical porous plate was studied by Kim and
Fedorov [12]. Kim [13] investigated the heat and mass
transfer in MHD micrpoloar flow over a vertical moving
porous plate in a porous medium. The problem of
electromagnetic free convection flow of a micropolar fluid
with relaxation time through a porous medium was discussed
by Zakaria [14]. Saeid [15] presented an analysis of mixed
convection in a vertical porous layer using non–equilibrium
model. Periodic free convection from a vertical plate in a
saturated porous medium, non–equilibrium model was given
by Saeid and Abdulmajeed [16]. Badruddin et.al. [17]
investigated the free convection and radiation for a vertical
wall with varying temperature embedded in a porous medium.
Magnetohydrodynamics and radiative effects on free
convection flow of fluid with variable viscosity from a vertical
plate through a porous medium was studied by Abdou
et. al. [18]. Dash et. al. [19] considered the effects of heat
and mass transfer of an electrically conducting and heat
generating/absorbing fluid on a uniformly moving vertical
permeable surface in the presence of a magnetic field
considering the first order homogeneous chemical reaction
and energy loss due to the viscous joule heat dissipations.
Sharma et. al. [20] investigated the radiation effects on
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unsteady MHD free convective flow with Hall current and
mass transfer through viscous incompressible fluid past a
vertical porous plate embedded in porous medium with heat
source/sink. Heat and mass transfer in MHD unsteady free
convective flow of a micropolar fluid over a vertical moving
porous plate embedded in porous medium in the presence
of thermal radiation was studied by Kumar et. al. [21]. Kumar
and Gupta [22] investigated the fully–developed MHD free–
convective flow of micropolar and viscous fluids through
porous medium in a vertical channel.

The aim of the present paper is to investigate the effects
of thermal radiation, free convection and mass transfer on
an unsteady flow of a viscous incompressible micropolar
fluid over a vertical moving porous plate immersed in a
porous medium with time varying suction velocity. It is also
considered that the free stream consists of a mean velocity
over which is superimposed an exponentially varying time.

II. FORMULATION OF THE PROBLEM

Consider the two–dimensional free convective unsteady
flow of a viscous incompressible micropolar fluid past a
semi–infinite vertical moving porous plate embedded in a
porous medium in the presence of thermal radiation.

Fig. 1. Geometrical configuration.

The x*–axis is taken along the porous plate in the
upward direction and y*–axis normal to it. The fluid velocity
far away from the plate along y*–axis follows as exponential
small perturbation law. It is assumed that the hole size of
the porous plate is significantly larger than a characteristic
microscopic length scale of the porous medium. Due to semi–
infinite plane surface assumption, the flow variables are
functions of y* and t* only. The model of porous medium
is based on Darcy's law so the porous material is simply
define by one parameter; the intrinsic permeability.

The free–convective flow through porous medium is
governed by Navier–Stokes equation for viscous
incompressible fluid along with Buoyancy force term and
Darcy's law. The mass buoyancy effect is also taken into

account which can be given by Navier–stokes equations
along with diffusion equation. The temperature flowing in
the fluid is governed by energy conservation equation
involving the heat generated by the radiation in the fluid.

Under these conditions, the governing equations of flow
can be written in a Cartesian frame of reference, as:
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The third term on the RHS of the momentum Equation
(2) denotes buoyancy effects; fourth term due mass
buoyancy effects and the fifth term is the bulk matrix linear
resistance i.e. Darcy term. The heat due to viscous
dissipation is neglected for small velocities in Equation (4)
and the second term on the RHS of the energy Equation (4)
denotes the radiation effects. Also, Darcy dissipation term
is neglected because it is the same order–of– magnitude as
the plate velocity.

The vertical plate is moving with velocity u*p along its
own plane. Suppose plate is kept at constant temperature
T*w. Under these assumptions, the appropriate boundary
conditions for the velocity and temperature fields are

u* = u*p, T* = T*w,
u

n
y

∗∂∗ = − ∗∂


C* = C*w at y* = 0,

u* → U*∞ = U0(1 + εeδ*t*), T* → T*∞,

ω* → 0, C* → C*∞ as y* → ∞,  … (6)
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where ε and δ* are the small quantities less than unity,
U*∞ is the free stream velocity follows an exponentially small
perturbation law and U0 is a scale of free stream velocity.

The boundary condition for micro–rotation variable ω*
describes its relationship with the surface stress. The
parameter n is a number between 0 and 1. The value n = 0
corresponds to the case where the particle density is
sufficiently large so that microelements close to the wall are
unable to rotate. The value n = 0.5 is indicative of weak
concentrations, and when n = 1 flows are believed to
represent turbulent boundary layers (Rees and Bassom, [23]).

From the continuity equation (1), the suction velocity
normal to the plate can be written as the following form:

  - (1  )0
tv V Ae

∗ ∗∗ δ= + ε  …(7)
where A is a real positive constant and A small less

than unity and δ*t* << 1. Outside the boundary layer,
Equation (2) gives.
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The local radiant for the case of an optically thin gray
gas is expressed by
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Expending T*4 in a Taylor's Series about T*∞ and
neglecting the higher order terms, we have
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Furthermore, the spin–gradient viscosity γ which gives
some relationship between the coefficients of micro–inertia,
is defined as
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into the equations (2) to (5) and using the equations
(8) to (12), we have
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 and the corresponding boundary

conditions are

u = Up, θ = 1, ω = –n
u
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 , C = 1 at y = 0;

u → U∞ =(1 + εδt), θ → 0, ω → 0, C → 0 as y → ∞  ...(18)

III. METHOD OF SOLUTION

In order to reduce the above nonlinear partial differential
equations into ordinary differential equations, we may
represent the translational velocity, micro–rotation,
temperature and concentration as:

u(y, t) = u0(y) + εeδtu1(y) + O (ε2),

ω(y, t) = ω0(y) + εeδtω1(y) + O (ε2),

θ(y, t) = θ0(y) + εeδtθ1(y) + O (ε2),

C(y, t) = C0(y) + εeδtC1(y) + O (ε2)  ...(19)

Substituting (19) into Equations (14) to (17), equating
the coefficients of like powers of ε, and neglecting the
coefficient of O(ε2), we obtain the following sets of
differential equations
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and the corresponding boundary conditions are

u0 = Up, u1 = 0, ω0 = –n 0du

dy
 = –nh1, ω1 = –n 1du

dy

= –nh2, θ0 = 1, θ1 = 0, C0 = 1, C1 = 0 at y = 0,

u0 → 1, u1 → 1, ω0 → 0, ω → 0, θ0 → 0, θ1 → 0,

C0 → 0, C1 → 0 as y → ∞. … (28)
Now, the equations from (20) to (27) are ordinary linear

differential equations with constant coefficients. Through
straight forward algebra their solutions are known under
boundary conditions (28), and given by
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where b1, b2, h1, h2, R4, R6, R8, R10, R12 and L1 to L11
are constants, not included here for the sake of brevity.

IV. COEFFICIENT OF SKIN–FRICTION
The coefficient of skin–friction at the vertical porous

plate is given by
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V. NUSSELT NUMBER

The rate of heat transfer in terms of Nusselt number at
the porous plate is given by
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VI. SHERWOOD NUMBER

 The ratio of convective to diffusive mass transport at
the plate in terms of Sherwood number is given by
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VII. RESULTS AND DISCUSSIONS

In order to show the effects of various flow parameters
on the fluid flow characteristic, the following discussion is
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set out. The values of Pr (Prandtl number) are taken as 0.71
and 7.0 that represent air and water at 20°C temperature and
one atmosphere pressure respectively.

It is observed from figure 2 that the magnitude of fluid
velocity in case of unsteady flow is less than that of mean
flow. In case of unsteady flow, the fluid velocity amplifies
with an increment of permeability parameter, mass or thermal
buoyancy effect (modified Grashof number or Grashof
number); while it diminishes due to increase in Radiative
heat or the ratio of momentum of diffusivity (viscosity) over
mass diffusivity (Schmidt number). In addition to it, fluid
velocity for air is more than that of water. Physically it is
possible because fluids with high Prandtl number have high
viscosity and hence move slowly.
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Fig. 2. Velocity distribution versus y, when A = 1, Up = 1, =
δ = 0.5, β = 0.5, n = 0.5 and t = 1.

Fig. 3. depicts that the magnitude of angular velocity
of fluid of unsteady flow is greater than that of mean flow;
while repeal effect is observed near the plate. Further, in
case of unsteady flow, the fluid angular velocity increases
with an increase of Radiative heat or the ratio of momentum
of diffusivity over mass diffusivity; while it reduces due to
increase in permeability parameter, mass or thermal buoyancy
effects. Moreover, the angular velocity for water is greater
than that of air.

It is noticed from Fig. 4. that the magnitude of fluid
temperature in case of unsteady flow is more than that of
mean flow. Further, in case of unsteady flow, the fluid
temperature decreases due to increase in Radiative heat. In
addition, the fluid temperature for air is more than that of
water; this is due to the fact that the thermal conductivity
of the fluid decreases with increasing of Prandtl number.

 Fig. 3. Angular Velocity distribution versus y, when A = 1, Up =
1, δ = 0.5, β = 0.5, n = 0.5 and t = 1.

Fig. 4. Temperature distribution versus y, when A = 1, δ = 0.5
and t = 1.

Figu. 5. shows that the magnitude of fluid concentration
in case of unsteady flow is less than that of mean flow. In
unsteady flow, fluid concentration decreases with an increase
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of the ratio of momentum of diffusivity over mass diffusivity.

Fig. 5. Concentration distribution versus y, when
A = 1, t = 1 and δ = 0.5.

An increase of shearing stress (parameter n) supports
the magnitude of fluid velocity, as noticed from figure 6.
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Fig. 6. Velocity distribution versus y, when A = 1, Up = 1,
δ = 0.5, β = 0.5, Pr = 0.71, Sc = 0.78, N = 3, Gr = 5,

Gc = 5 and K = 3.

Fig. 7. Angular Velocity distribution versus y, when A = 1,
δ = 0.5, β = 0.5, Pr = 0.71, Sc = 0.78, N = 3, Gr = 5, Gc = 5

and K = 3.

Fig. 7. depicts that the angular fluid velocity decreases
with an increase of shearing stress.

Table 1 shows that coefficient of skin–friction at the
vertical surface in case of unsteady flow is less than that of
steady flow. Further in case of unsteady flow, the coefficient
of skin–friction at the vertical surface increases with the
increase of the shearing stress, the permeability parameter,
thermal or mass buoyancy effects; while it decreases due to
the increase of the Prandtl number, ratio of momentum of
diffusivity over mass diffusivity or Radiative heat.

Also the Nusselt number at the vertical plate in case of
unsteady flow is less than that of mean flow. In case of
unsteady flow, Nusselt number at the vertical plate increases
due to increase of the Radiative heat or Prandtl number.

It is also observed from the table that Sherwood number
at the vertical plate for unsteady flow is larger than that of
mean flow. Further in the case of unsteady flow, Sherwood
number increases with an increase of the ratio of momentum
of diffusivity over mass diffusivity.
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Table1: Values of the coefficient of skin–friction, Nusselt number and Sherwood number at the plate for various
values of physical parameters, where Up =1, β = 0.5, δ = 0.5, t = 1 and Re = 1.
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