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ABSTRACT : The use of discrete piezoelectric patches in Smart structures for controlling the shape has been of
considerable interest in recent years. Such systems of one or more dimensions can nowadays be fully modeled
with the help of finite element codes. The shape control of a smart structure using surface bonded piezoelectric
patches acting as sensors and actuators is examined in this work. The finite element model based on Reddy's
third order laminate theory has been developed for a beam having both ends fixed. The simulation results show
that both the number and location of piezoelectric patches play an important role in shape control of the
structure. The shape control of the beam improves as the number of sensor/actuator pairs. The location of the
sensors/actuators on the control system is more critical than their number. The sensors/actuators pairs are much
more effective in shape control when placed near the regions of highest strains.
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I. INTRODUCTION
A smart structure can be defined as a structure with

bonded or embedded sensors and actuators with an
associated control system, which enables the structure to
respond simultaneously to external stimuli exerted on it and
then suppress undesired effects. Smart structures have
found application in monitoring and controlling the
deformation of structures in a variety of engineering systems,
such as aerospace, automobiles, bridges and precision
machining etc. Advances in smart materials technology have
produced much smaller actuators and sensors with high
integrity in structures and an increase in the application of
smart materials for passive and active structural damping.
Some typical applications are aero-elastic control of aircraft
lifting components, health monitoring of bridges and shape
control of large space trusses.

Several investigators have developed analytical and
numerical, linear and non-linear models for the response of
integrated piezoelectric structures. These models provide
platform for exploring the shape and active vibration control
in smart structures. The experimental work of Bailey and
Hubbard, 1985 [1] is usually cited as the first application of
piezoelectric materials as actuators. They successfully used
piezoelectric sensors and actuators in the vibration control
of isotropic cantilever beams. Crawley and de Luis, 1987 [2]
formulated static and dynamic analytical models for extension
and bending in beams with attached and embedded
piezoelectric actuators. Heyliger and Reddy, 1988 [3]
developed a finite element model for bending and vibration
problems using third order shear deformation theory. Ha,
Keilers and Chang, 1992 [4] developed a model based on
the classical laminated plate theory for the dynamic and
static response of laminated composites with distributed
piezoelectrics. Chandrashekhara and Varadarajan, 1997 [5]
gave a finite element model based on higher order shear
deformation theory for laminated composite beams with
integrated piezoelectric actuators. Valoor et al., 2000 [6] used
neural network-based control system for vibration control
of laminated plates with piezoelectrics. Lee and Reddy, 2004
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[7] used the third-order shear deformation theory to control
static and dynamic deflections of laminated composite plates.
Prasad et al., 2005 [8] developed a criterion for the evaluation
and selection of piezoelectric materials and actuator
configurations.

The Euler-Bernoulli classical theory used to model the
beam/plate deformation neglects the transverse shear
deformation effects. The shear deformation theory has a
disadvantage as it needs a shear correction factor, which is
very difficult to determine especially for arbitrarily laminated
composite structures with piezoelectric layers.  To overcome
the above mentioned drawbacks, Reddy, 1984 [9] developed
a third order laminate theory, which takes into account the
quadratic variation of transverse shear strains, eliminates
the transverse shear stresses on the top and bottom of a
laminated composite structure and requires no shear
correction factor. Since the accuracy of the models developed
depends on the perfection of the mechanical interaction
between the piezoelectrics and the underlying structure,
Reddy's third order theory has been used to develop the
model.

II. PIEZOELECTRIC EQUATIONS
Assuming that a beam consists of a number of layers

(including the piezoelectric layers) and each layer possesses
a plane of material symmetrically parallel to the x-y plane
and a linear piezoelectric coupling between the elastic field
and the electric field the constitutive equations for the   layer
can be written as,
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The thermal effects are not considered in the analysis.

The piezoelectric constant matrix [e] can be expressed
in terms of the piezoelectric strain constant matrix [d] as
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[e] = [d][Q}                            ... (3)

where,
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III. DISPLACEMENT FIELD OF THE THIRD
ORDER THEORY

The displacement field based on the third order beam
theory of Reddy [9] is given by
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w(x, z, t) = w0(x, t)                    ... (6)

where 2
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α = and t is the total thickness of the beam.

The displacement functions are approximated over each
finite element by
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Using finite element formulation equations (5) and (6)
can be expressed as,
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NOMENCLATURE

[d] Piezoelectric strain constant matrix

D Electric Displacement field

[e] Piezoelectric constant matrix

e Piezo electric constant

E Electric field; Young's Modulus of elasticity

{Fv} Global electrical force vector

{F} Global external mechanical force

Gc Gain of the current amplifier vector

[G] Control gain matrix

Gi Gain to provide feedback control

[K] Global Stiffness matrix

[Ke] Elemental Stiffness matrix

[M] Global mass matrix

[Me] Elemental mass matrix

Ni Shape function the  ith element

Q General Stiffness of the material

Si Strain energy of the jth  element

t Total thickness of the beam

u, v, w Displacements of a point along x, y and z directions
respectively

V Applied voltage to Piezo actuator

VS Open circuit sensor voltage

u0, w0 Displacement of a point on the mid-plane along
the x and z direction respectively

{ }u Nodal displacement vector

{ }u�� Nodal acceleration vector

{x} Generalized displacements

x, y, z Cartesian coordinates

xφ Bending rotation of x-axis

iε Strain of ith element in strain tensor

ε Absolute permittivity of the dielectric

{ }σ stress vector

{ }ε strain vector

φ Rotation of the transverse normal about y-axis

ϕ Cubic Hermit interpolation polynomial

1 3,∆ ∆ Nodal values of ω0

2 4,∆ ∆ Nodal values of 0

x

∂ω
∂

ψ Linear Lagrangian interpolation polynomial

The strain-displacement relations are given by
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where,
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IV. EQUATIONS OF MOTION

The dynamic equations of the piezoelectric structure
are derived using Hamilton's principle. To develop the
equation of motion of the system, we consider the dynamic
behavior of the system and drive the associated dynamic
equations using Hamilton's principle. These equations also
provide coupling between electrical and mechanical terms.
The electric force due to the applied charge of the actuator
is not considered in the analysis. The equation of motion in
the matrix form can be written as,
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Assembling all the elemental equations gives the global
dynamic equation,
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where,

{F} = [Kuv]{V}                        ... (18)

V. SENSOR EQUATIONS

Since no external electric field is applied to the sensor
layer and as charge is collected only in the thickness
direction, only the electric displacement   is of interest and
can be written as

3 31 1D e= ε                             ... (19)

Assuming that the sensor patch covers several elements,
the total charge the total charge developed on the sensor
surface is
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where [B1] is the first row of [B]

The distributed sensor generates a voltage when the
structure is oscillating; and this signal is fed back into the
distributed actuator using a control algorithm, as shown in
Fig. 1. The actuating voltage under a constant gain control
algorithm can be expressed as,

e
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Fig. 1. Block Diagram of Feedback Control System.

The system actuating voltages can be written as

{ } [ ][ ]{ }vV G K u= �                     ... (22)

where [G] is the control gain matrix and G = GiGc.

In the feedback control, the electrical force vector {Fv}
can be regarded as a feedback force.  Substituting equation
(22) into equation (18) gives

[ ] [ ][ ][ ]{ }v uv vF K G K u= �              ... (23)

VI. BEAM WITH SURFACE BONDED
PIEZOELECTRICS

A beam having both ends fixed with both the upper
and lower surfaces bonded by piezoelectric ceramics is
shown in Fig. 2. The beam is made of T300/976 Graphite/
Epoxy composites and the Piezoceramic is PZT G1195N. The
adhesive layers are considered to be of Isotac. The material
properties are given in Table 1.  The total thickness of the
beam is 10 mm and the thickness of each Piezoceramic and
adhesive layers are 0.2 mm and 0.1 mm respectively. The
lower Piezoceramics serve as sensors and the upper ones
as actuators. The relative sensors and actuators form sensor/
actuator (S/A) pairs through closed control loops.



Sami and Rafi 133

Fig. 2. Fixed ends beam with ten pairs of surface bonded
piezoelectric sensors and actuators.

The beam as shown in Fig. 2, is subjected to a steady
concentrated force of 4N at the middle. In the analysis, the
beam is divided evenly into 40 elements.  In the case of
shape control, all the Piezoceramics on the upper and lower
surfaces of the beam are used as actuators.  Equal-amplitude
voltages with an opposite sign are applied to the upper and
lower piezoelectric layers respectively to control the
deformation of the composite beam. Due to the converse
piezoelectric effect, the distributed piezoelectric actuators
contract or expand depending on negative or positive active
voltage.  In general, for an upward displacement, the upper
actuators need a negative voltage and the lower actuators
need a positive one.

The calculated centerline deflections of the beam with
different arrangements of actuator pairs and different active
voltages are shown in Figs. 3-5. From the figures it can be
seen that a lower voltage is needed to eliminate the
deflection caused by the external load when more actuators
are used.  It is shown in Fig. 3, that the beam cannot be
smoothly flattened when it is fully covered actuators.  When
two pairs of actuators at each end are used, as shown in
Fig. 4, a very high active voltage is needed to quell the
deformation and the beam is also not smoothly flattened.
In Fig. 5, it is shown that, under a certain active voltage,
the beam can be flattened quite smoothly by two pairs of
actuators located at the middle of the beam.  This fact
indicates that, under some conditions, it is not appropriate
to cover structures entirely with piezoelectric materials from
the view of efficiency and economy.

Fig. 3. The centerline deflection of the beam with ten pairs of
actuators evenly distributed.

Fig. 4. The centerline deflection of the beam with two pairs of
actuators located at the fixed ends.

Fig. 5. The centerline deflection of the beam with two pairs of

actuators located at the middle span.

VII. CONCLUSION

A finite element model and computer codes (in Matlab),
based on the third order laminate theory, are developed for
a beam having both ends fixed with distributed piezoelectric
ceramics. The shape control of the beam is investigated by
using the model. The investigation shows that the number
and location of the sensor/actuator play a very important
role in the shape control of the beam. The positions of
sensor/actuator have a critical influence on the shape control
of smart structures.  For maximum effectiveness, the sensor/
actuator pairs must be placed in high strain regions and
away from areas of low strains. The number of sensor/
actuator has a great effect on the performance of smart
structures. An increase in the number of sensor/actuator
gives a better performance in shape control. However the
effect of number of sensor/actuator is not as critical as their
location.



134 Sami and Rafi

Table 1.    Material properties PZT G1195N
Piezoceramic and T300/976 Graphite/Epoxy composites

and Adhesive layer.

P Z T T30/976 Isotac

Young's moduli (GPa) 1.1

E11 63.0 150.0

E22 = E33 63.0 9.0

Shear moduli (GPa)

G12 = G13 24.2 7.10

G23 24.2 2.50

Density, ρ (kg/m3) 7600 1600 890

Piezoelectric constants
(m/V)

d11 = d22 254 × 10–12

Electrical permittivity
(F/m)

ε11 = ε22 15.3 × 10–9

ε33 15.0 × 10–9

First mode damping

coefficient, ξ --- 0.009
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