An $O(n)$ Time Algorithm For Maximum Induced Matching In Bipartite Star ${ }_{123}$-free Graphs

Ruzayn Quaddoura
Department of Computer Science, Faculty of Science and Information Technology
Zarqa University
Zarqa-Jordan

Abstract

A matching in a graph is a set of edges no two of which share a common vertex. A matching M is an induced matching if no edge connects two edges of M. The problem of finding a maximum induced matching is known to be NP-hard in general and specifically for bipartite graphs. Lozin has been proposed an $O\left(n^{3}\right)$ time algorithm for this problem on the class of bipartite Star $_{123}$, Sun $_{4}$-free graphs. In this paper we improve and generalize this result in presenting a simple $O(n)$ time algorithm for maximum induced matching problem in bipartite Star $_{123}$-free graphs.

Keywords-Bipartite graph; Decomposition of graphs; Design and analysis of algorithms; Matching; Induced Matching.

I. InTRODUCTION

A matching M of a graph $G=(V, E)$ is a subset of edges with the property that no two edges of M share a common vertex. A matching is called induced if no two edges in the matching have a third edge connecting them. Equivalently, the subgraph of G induced by M consists of exactly M itself. We study the problem of finding in G an induced matching of maximum cardinality, denoted $i \mu(G)$. This problem has been introduced by Cameron [3], where he has proved its NPhardness in the class of bipartite graphs. The maximum induced matching problem was shown to be polynomial for several classes of graphs: for chordal graphs and for interval graphs by Cameron [3], for circular-arc graphs by Golumbic and Laskar [5], and for trapezoid graphs, k-interval-dimension graphs and cocomparability graphs by Golombic and Lewenstein [4]. Fricke and Laskar give a linear algorithm for trees [1]. Lozin in [8] describes an $O\left(n^{3}\right)$ time algorithm for the problem on bipartite Star $_{123}$, Sun $_{4}$-free graphs where n is the number of vertices. In addition, he studied in [7] the class of bipartite Star $_{123}$-free graphs and conjectured that his result in [8] can be extended to this class of bipartite graphs. In this paper we improve and generalize Lozin's algorithm in presenting a simple $O(n)$ time algorithm for this problem on bipartite Star $_{123}$-free graphs. Our algorithm is based on the recognition algorithm of the class Star ${ }_{123}$-free bipartite graphs introduced by Quaddoura in [6].

Star $_{123}$

Sun $_{4}$

Figure. 1. Star ${ }_{123}$ and Sun $_{4}$ configurations

II. DEFINITION AND PROPERITIES

A bipartite graph $G=(B \cup W, E)$ is defined by two disjoint vertex subsets B - the black vertices and W - the whites ones, and a set of edges $E \subseteq B \times W$. The bicomplement of a bipartite graph $G=(B \cup W, E)$ is the bipartite graph defined by $\bar{G}^{b i p}=(B \cup W, B \times W-E)$. If the color classes B and W are both non empty the graph will be called bichromatic, monochromatic otherwise. A vertex x will be called isolated (resp. universal) if x has no neighbors in G (resp. in $\bar{G}^{\text {bip }}$). A complete bipartite graph is a graph having only universal white vertices and universal black vertices. A stable set is a set of isolated vertices. A chordless path on k vertices is denoted by P_{k} and a chordless cycle on k vertices is denoted by C_{k}. Given a subset X of the vertex set $V(G)$, the subgraph induced by X will be denoted by $G[X]$ or simply by X if there is no confusion. A K_{2} is a complete bipartite graph with two vertices. A $2 K_{2}$ is a two copies of a K_{2}.

Definition 1 [2] Given a bipartite graph $G=(B \cup W, E)$ of order at least $2, G$ is $K+S$ graph if and only if G contains an isolated vertex or its vertex set can be decomposed into two sets K and S such that K induces a complete bipartite graph while S is a stable set.

Property 1 [2] Let $G=(B \cup W, E)$ be a bipartite graph of order at least 2. G is $K+S$ graph if and only if there exists a partition of its vertex set into two non empty classes V_{1} and V_{2} such that all possible edges exists between the black vertices of V_{1} and the white vertices of V_{2} while there is no edge connecting a white vertex of V_{1} with a black vertex of V_{2}.

Such partition is referred as associated partition of G and is denoted by the ordered pair $\left(V_{1}, V_{2}\right)$.

Property 2 [2] A bipartite graph G is a $K+S$ graph if and only if G admit a unique (up to isomorphism) partition of its vertex set $\left(V_{1} \cup V_{2} \ldots \cup V_{k}\right)$ satisfying the following conditions:
a) $\forall i=1, \ldots, k-1,\left(V_{1} \cup \ldots \cup V_{i}, V_{i+1} \cup \ldots \cup V_{k}\right)$ is an associated partition to the graph G
b) $\forall i=1, \ldots, k, G\left[V_{i}\right]$ is not a $K+S$ graph.

The partition $\left(V_{1}, \ldots, V_{k}\right)$ of the above property is called $K+S$ decomposition while a set V_{i} said to be $K+S$ component of the graph.

From $K+S$ decomposition together with the decomposition of bipartite graph G into its connected components (parallel decomposition) or those of $\bar{G}^{\text {bip }}$ (series decomposition) yield a new decomposition scheme for G called canonical decomposition. It is show in [2] that whatever the order in which the decomposition operators are applied ($K+S$ decomposition, series decomposition or parallel decomposition), a unique set of indecomposable graphs with respect to canonical decomposition is obtained. Obviously, a unique tree is associated to this decomposition. The internal nodes are labeled according to the type of decomposition applied, while every leaf correspond to a vertex of G. Hence there are four types of internal nodes, parallel node (labeled P), series node (labeled S), $K+S$ node (labeled $K+S$), and indecomposable node (labeled N). By convention, the set of vertices corresponding to the set of leaves having an internal node α as their least common ancestor as well as the subgraph induced by this set of leaves will be denoted simply by α.

Observation 1 let G be a bipartite graph and T be its canonical decomposition tree. According to the order in which the decomposition operations are applied, every child of a P node or a S-node cannot be a vertex. Such node would have either an isolated or a universal vertex and thus would induce a $K+S$ graph.

Following the recognition algorithm given in [6], bipartite Star $_{123}$-free graphs are bipartite graphs whose indecomposable graphs within canonical decomposition are reduced to signal vertices or to an extended path $E P_{k}$ or the bicomplement of an extended path $E P_{k}$ or an extended cycle $E C_{k}$ or the bi-complement of an extended cycle $E C_{k}$. In all cases $k \geq 7$. More precisely

Definition 2 [6] A graph G is said to be an extended path $E P_{k}$ if there is a partition of the vertex set of G into a monochromatic sets $\left\{V_{1}, \ldots, V_{k}\right\}$ such that $E=\bigcup_{i=1}^{k-1} V_{i} \times V_{i+1}$ and $k \geq 7$.

Definition 3 [6] A graph G is said to be an extended cycle $E C_{k}$ if there is a partition of the vertex set of G into a
monochromatic sets $\left\{V_{1}, \ldots, V_{k}\right\}$ such that $E=\bigcup_{i=1}^{k-1} V_{i} \times$ $V_{i+1} \cup V_{1} \times V_{k}$ and $k \geq 7$.

The construction of the canonical decomposition tree of a bipartite Star $_{123}$-free graph tree can be obtained in linear time from the algorithm given by Quaddoura in [6]. According to this algorithm, every child of a N-node is a node marked by P^{\prime} corresponding to a set $V_{i}, i=1 \ldots k$, if $\left|V_{i}\right|>1$, or to a vertex of G otherwise. Figure 2 illustrate a bipartite $S_{t a r}^{123}$-free graph and its canonical decomposition tree.

Figure. 2. A bipartite Star $_{123}$-free graph and its canonical decomposition tree

III. MAXIMUM INDUCED MATCHING IN BIPARTITE Star $_{123}{ }^{-}$ FREE GRAPHS

Let G be a bipartite Star $_{123}$-free graph and $T(G)$ be its canonical decomposition tree. Our algorithm uses post order traversal to visit all the nodes of $T(G)$. Whenever an internal node α is visited, we compute a maximum induced matching of the subgraph induced by α from the maximum induced matching's of its children say $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$. For this purpose we distinguish several cases according to the type of α.

Obviously, If α is a P-node then $i \mu(\alpha)=\mathrm{U}_{i=1}^{k} i \mu\left(\alpha_{i}\right)$. Also, if α is a P^{\prime}-node then $i \mu(\alpha)=\emptyset$.

A set of vertices A is called module if every vertex in A has the same neighborhood outside of A. A bipartite graph whose every module is of size 1 will be called prime. It is not hard to see that any bipartite graph G has a unique (up to isomorphism) maximal prime induced subgraph that can be obtained by choosing exactly one vertex in each module of G. Lozin in [8] proved the following Lemma.

Lemma 1 If H is a maximal prime induced subgraph of a graph G, then $i \mu(G)=i \mu(H)$.

Suppose now α is a N-node. As motioned above, α induces an extended path $E P_{k}$ or its bi-complement or an extended cycle $E C_{k}$ or its bi-complement. Clearly, in this case, the maximal prime induced subgraph of α is a path P_{k} or its bi-complement (if α induces an extended path $E P_{k}$ or its bicomplement) or a cycle C_{k} or its bi-complement (if α induces an extended cycle $E C_{k}$ or its bi-complement). The following simple Lemma is proved in [8].

Lemma $2\left|i \mu\left(P_{k}\right)\right|=\lfloor(k+1) / 3\rfloor,\left|i \mu\left(C_{k}\right)\right|=\lfloor k / 3\rfloor$. Let $k \geq 7$ then $\left|i \mu\left(\bar{P}_{k}^{\text {bip }}\right)\right|=\left|i \mu\left(\bar{C}_{k}^{\text {bip }}\right)\right|=2$.

By Lemma 2, the set $\left\{v_{3 i-2} v_{3 i-1}: 1 \leq i \leq\{(k+1) / 3\rfloor\right\}$ is a maximum induced matching of the path $P_{k}=v_{1} v_{2} \ldots v_{k}$, the set $\left\{v_{3 i-2} v_{3 i-1}: 1 \leq i \leq\lfloor k / 3\rfloor\right\}$ is a maximum induced matching of the cycle $C_{k}=v_{1} v_{2} \ldots v_{k}$, and the set $\left\{v_{1} v_{4}, v_{2} v_{5}\right\}$ is a maximum induced matching of $\bar{P}_{k}^{b i p}$ or $\bar{C}_{k}^{b i p}$.

Let's discus the cases when α is a S-node or a $K+S$-node.
Lemma 3 Let α be a $K+S$ node. Then
a) If every child of α is a vertex then $|i \mu(\alpha)| \leq 1$
b) Else $i \mu(\alpha)=i \mu\left(\alpha_{j}\right)$ where α_{j} is the child of α which satisfies $\left|i \mu\left(\alpha_{j}\right)\right|=$ $\max \left\{\left|i \mu\left(\alpha_{i}\right)\right|: \alpha_{i}\right.$ is not a vertex $\}$

Proof By Observation 1 the father of a leaf is either a N node, a P^{\prime}-node or a $K+S$-node. The validity of Lemma deduces directly from Property 3 by remarking that there is no $2 K_{2}$ of α can share vertices with two different children.

Lemma 4 Assume that α is a S-node.
a) If any child α_{i} of α satisfies that $\left|i \mu\left(\alpha_{i}\right)\right| \leq 1$ then $|i \mu(\alpha)|=2$
b) Else $i \mu(\alpha)=i \mu\left(\alpha_{j}\right)$ where α_{j} is the child of α which satisfies $\left|i \mu\left(\alpha_{j}\right)\right|=\max \left\{\left|i \mu\left(\alpha_{i}\right)\right|: 1 \leq i \leq k\right\}$.

Proof The Lemma can be deduced from the following Claim :

Claim the cardinality of maximum induced matching of α which shares vertices between different children is 2

Proof Let X denotes to such induced matching. Every child of α contains two nonadjacent vertices of different color, otherwise α would contain a universal vertex and hence, by Observation $1, \alpha$ is a $K+S$-node, a contradiction. Let v_{1}, v_{2} be two nonadjacent vertices of a child say α_{1} of α such that v_{1}, v_{2} are of different color, and v_{3}, v_{4} be two non adjacent vertices of a child say α_{2} distinct of α_{1} and v_{3}, v_{4} are of different color, then the set $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ induces a $2 K_{2}$.

Therefore, $X \geq 2$. Since α is a S-node, any vertex v of a child distinct of α_{1} and α_{2} is adjacent to the two vertices of $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ whose have the same color, so $X=2$.

The proof of Lemma 4 shows that any child of a S-node contains two nonadjacent vertices of different color. The following Lemma allow us to find easily these two vertices when any child α_{i} of α satisfies that $\left|i \mu\left(\alpha_{i}\right)\right| \leq 1$.

Lemma 4 if $|i \mu(\alpha)| \leq 1$ then one of the following is hold:
a) α is a vertex.
b) α is a P^{\prime} node.
c) α is a $K+S$-node and every child of α is a vertex.

Proof If α is a N-node or a S-node then by Lemma 2 and Lemma $4,|i \mu(\alpha)| \geq 2$. So it is enough to prove that α cannot be a P-node. Suppose that α is a P-node. Then every child of α contains at least one edge, otherwise α would contain an isolated vertex and hence α would be a $K+S$-node. Therefore $|i \mu(\alpha)| \geq 2$, a contradiction.

The above discussion leads us to the following algorithm

Algorithm Maximum Induced Matching

Input : A bipartite Star $_{123}$-free graph G and its canonical decomposition tree $T(G)$.
Output: A maximum induced matching $i \mu(G)$.
Let α be a node on a post order traversal of $T(G)$
if α is a vertex or a P^{\prime}-node then $i \mu(G)=\emptyset$
else let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ be the children of α
if α is a N-node then for every child α_{i} of α, pick a vertex $v_{i}, 1 \leq i \leq k$
if α induces an $E P_{k}$ then $i \mu(G)=\left\{v_{3 i-2} v_{3 i-1}: 1 \leq i \leq\right.$ $\lfloor(k+1) / 3\rfloor\}$
if α induces an $E C_{k}$ then $i \mu(G)=\left\{v_{3 i-2} v_{3 i-1}: 1 \leq i \leq\right.$ [$k / 3\rfloor\}$
if α induces an $\overline{E P}_{k}^{\text {bip }}$ or an $\overline{E C}_{k}^{\text {bip }}$ then $i \mu(G)=$ $\left\{v_{1} v_{4}, v_{2} v_{5}\right\}$
else if α is a $K+S$-node then
if every child of α is a vertex then
if there is two adjacent vertices v_{1}, v_{2} of α then $i \mu(G)=\left\{v_{1} v_{2}\right\}$
else $i \mu(G)=\emptyset$
if α contains two nonadjacent vertices v_{1}, v_{2} of different color then $I_{\alpha}=\left\{v_{1}, v_{2}\right\}$
else $i \mu(G)=i \mu\left(\alpha_{j}\right)$ where α_{j} is the child of α satisfying $\left|i \mu\left(\alpha_{j}\right)\right|=\max \left\{\left|i \mu\left(\alpha_{i}\right)\right|: \alpha_{i}\right.$ is not a vertex $\}$
else if α is a S-node then
if for every $1 \leq i \leq k,\left|i \mu\left(\alpha_{i}\right)\right| \leq 1$ then
let $I_{\alpha_{1}}=\left\{v_{1}, v_{2}\right\}$ and $I_{\alpha_{2}}=\left\{v_{3}, v_{4}\right\}$ such that v_{1}, v_{3} are black vertices and v_{2}, v_{4} are white, $i \mu(G)=$ $\left\{v_{1} v_{4}, v_{2} v_{3}\right\}$
else $i \mu(G)=i \mu\left(\alpha_{j}\right)$ where α_{j} is the child of α satisfying $\left|i \mu\left(\alpha_{j}\right)\right|=\max \left\{\left|i \mu\left(\alpha_{i}\right)\right|: 1 \leq i \leq k\right\}$
else $/ / \alpha$ is a P-node $/ / i \mu(G)=\cup_{i=1}^{k} i \mu\left(\alpha_{i}\right)$

Complexity The number of operation performed in every node is proportional with the number of children of that node. Since the number of visited node is $O(n)$, this algorithm runs with $O(n)$ time complexity.

Figure 3 illustrates the computation of the maximum induced matching for the graph in Figure 2 using our algorithm. The set above every node represents the maximum induced matching of that node and the set under a node represents two nonadjacent vertices in this node.
[6] R. Quaddoura, Linear Time Recognition Algorithm of Bipartite Star $_{123}$-free Graphs, International Arab Journal of Information Technology (2006), Vol. 3, No. 3, 193- 202.
[7] V.V. Lozin, Bipartite graphs without a skew star, Discrete Mathematics, 257 (2002) 83-100.
[8] V.V. Lozin, On maximum induced matching in bipartite graphs, Information Processing Letters, 81 (2002) 7-11.

Figure. 3. The computation of the maximum induced matching for the graph in Figure 2.

IV. CONCLUSION

The maximum induced matching algorithm is computed in $O(n)$ time, given a canonical decomposition tree of a bipartite Star $_{123}$-free graph. The canonical decomposition of a bipartite Star $_{123}$-free graph can be done in $O(n+m)$ time where m is the number of edges [6]. Thus, the whole process is in $O(n+$ m) time.

ACKNOWLEDGMENT

This research is funded by the Deanship of Research and Graduate Studies in Zarqa University /Jordan.

REFERENCES

[1] G. Fricke, R. Laskar, Strong matchings on trees, Congr. Numer. 89 (1992) 239-243.
[2] J.L. Fouquet, V. Giakoumakis, J.M. Vanherpe, Bipartite graphs totally decomposable by canonical decomposition, International. Journal of Foundation of Computer Science, Vol. 10 No. 4 (1999) 513-533.
[3] K. Cameron, Induced matchings, Discrete Appl. Math. 24 (1989) 97\{102.
[4] M.C. Golumbic, M. Lewenstein, New results on induced matchings, Discrete Appl. Math. 101 (2000) 157-165.
[5] M.C. Golumbic, R.C. Laskar, Irredundancy in circular arc graphs, Discrete Appl. Math. 44 (1993) $79\{89$.

