
World of Computer Science and Information Technology Journal (WCSIT)

ISSN: 2221-0741

Vol. 4, No. 3, 31-37, 2014

31

Dynamic Solutions for Leader Failure in 3D Torus

Networks

Mohammed Refai

Al Zarqa University, College of Science and Information Technology

Abstract— Leader election is a very important algorithm in wired and wireless networks. It is used to solve the single point failure

in distributed systems when one process which called leader is responsible to coordinate and manage the whole network. The leader

election algorithms (LEA's) solve the instability problem in the network, which caused by leader failure. The research work

reported here is concerned with building and designing a dynamic leader election algorithm, to contribute in solving leader crash

problem in three dimensional torus networks. The algorithm solves leader failure despite the existing of intermittent links failure.

Algorithm performance was evaluated by calculating the number of messages and time steps overall the algorithm. In a network of

N nodes connected by a three dimensional torus network, the performance is evaluated, when leader failure is detected by a (N-1)

node and algorithm faces F link failure. The number of messages is O(N+F) in)(3 FNO  time steps.

Keywords- Dynamic Leader Election; Intermittent Links Failure; Time Complexity; 3D Torus Networks.

I. INTRODUCTION

After publishing leader election algorithm in 3d torus with
the presence of one link failure in [19], this paper comes with
more dynamic algorithm which can solve the leader failure
with many links failure. Leader election, the task of nodes
agreeing on the election of a single node in a network, is one of
the most fundamental solutions for leader failure problems in
distributed computing. It is the ultimate way to break
symmetries in an initially unknown system [14].

The LEA aims to find a new leader identified by some
characteristics from all other nodes. When the algorithm is
terminated, the network is returned to a stable state with one
node as leader, and all the other nodes aware of this leader [26]

Distributed systems are used to increase the computational
speed of problem solving. These systems use a number of
computers which cooperate with each other to execute tasks.
The control of distributed algorithms requires one node to act as
a controller (leader) in centralized control [25]. If the leader
fails for any reason, a new leader should be automatically
elected to keep the network working. The LEA's solves this
problem by substituting the failed leader by a new deserved
leader.

Election process is a program distributed over all nodes. It
starts when one or more nodes discover that the leader has
failed.

This research is funded by the Deanship of Research and

Graduate Studies in Zarqa University /Jordan

It terminates when the remaining nodes know who the new
leader is.

LEAs are widely used in centralized systems to solve single
point failure problem [3]. For example, in Client-Server, the
LEAs are used when the server fails, and the system needs to
transfer the leadership to another station. The LEAs are also
used in token ring. When the node that has the token fails, the
system should select a new node to have the token [1].

In a dynamic network, communication channels go up and
down frequently. Causes for such communication volatility
range from the changing position of nodes in mobile networks
to failure and repair of point-to-point links in wired networks
[6].

In distributed systems, there are many network topologies
like hypercube, meshes, torus, ring, bus…etc. These topologies
may be either hardware processors, or software processes
embedded over other hardware topology ([4], [12]). This study
will focus on the 3D torus topology where one node works as a
leader. This paper proposes a dynamic new LEA to solve leader
failure in 3D torus network automatically. Also it guarantees to
solve the leader failure problem despite of existing of links
failure.

The election algorithms start when the leader failure is
detected by one node at simple case, or subset of nodes reached
to (N-1) at the worst case. It terminates when the new leader is
elected and all other nodes become aware of the new leader [5].

This paper is organized as follows. Section 2 presents
related work. Section 3 describes the 3D torus model structure
and properties. Section 4 presents the new algorithm in

WCSIT 4 (3), 31 -37, 2014

32

Z

Y

X

Figure. 1: (3 X 3X 3) Torus Networks

different ways. Mathematical proof for the time steps and
message complexity is presented in section 5. Section 6 will
conclude the results and suggest future works.

II. RELATED WORKS

Leader election algorithms have been studied by a number
of researchers ([1], [2], [3], [5], [6], [9], [10], [11], [12], [13],
[16], [17], [19], [21], [22], [24], [25], [26], and [27]). In these
studies, the researchers presented different methods to deal with
the leader election algorithms. In distributed systems, a major
problem is the leader failure and the relevant leader election
algorithm. The leader election problem has been studied
extensively in various models in distributed computing,
including

- Static and dynamic networks. In this research we focus on

LE algorithms for dynamic networks where communication

channels go up and down frequently. Causes for intermittent

communication failure in point-to-point links in wired

networks [26].

- Node Identity (ID) (unique identity vs. anonymous ID)

(Distinguished vs not distinguished) [27].

- Topology Type (ring, tree, complete graph, meshes, torus,

hypercube …etc) ([7], [8], and [20]).

- Communication mechanism used (synchronous vs.

asynchronous). [17]

- Transmission media (wired vs. wireless or radio) ([10],[23],

[24])

- Some of the previous work dealt with the link failure ([21],

[22]).
The leader election solution was first thought of at the end

of the seventies and eighties in previous century, it was started
by the ring and complete networks ([2], [15]). In the nineties
meshes, hypercube and tree were studied. To date, these
topologies and wireless networks are still being studied.

This section will look over some previous work in election
algorithms and focus on the most relevant researches.

In ([19-21]) refai and etl proposed leader election
algorithms in torus and hypercube. The presence of one link
failure was solved in these papers.

In [25], Singh G. proposed a protocol for leader election
tolerant to intermittent link failure in the complete graph
network. He assumes that up to N/2 – 1 links incident on each
node may fail. So, up to N2/4 – N/2 links overall the system
may fail.

In [16] Molina-G. Presented an algorithm to solve the
leader failure for a complete network. It was one of the first
five leader election algorithm and it is called Bully algorithm.
This algorithm was improved in [2] with new method.

In [23] paper presents a comparative analysis of various
leader election algorithms and a new leader election algorithm
in MANET in analytical way which considers factors such as
node’s position, time complexity, message complexity, battery
life and security.

In ([14] ,[15]) they present two algorithms that solve
deterministic and probabilistic leader election in strong
collision detection systems with time costs of O(log u) and

O(min(log u; log log n + log(1/€))), respectively, where € is
the error probability.

Most of the previous researchers depended on mathematical
proof to verify their algorithms. They used the big O notation to
obtain the complexity of the number of messages and time
steps, which represent the domain factors of the algorithm
complexity. Other researchers used simulation to validate their
algorithms.

III. MODEL PROPERTIES RESEARCH ASSUMPTIONS

The 3D torus network is similar to 3D mesh, except in the
connection between the first and the last nodes (boundaries) in
each dimension. These connections make all nodes connected
with six neighbors (Left, Right, Front, Back, Up and Down) to
present more flexible topology. Figure-1 shows three
dimensional torus networks (3, 3, and 3). For research analysis,
we use this model with the following properties:

1. 3D torus is a multicomputers consist of N nodes that can be

labeled as 0, 1, 2… N-1.

2. The nodes physically form an X * Y * Z, (rows) *

(columns) * (Depth), Three-Dimensional torus.

3. A node can send or receive simultaneously to and from the

same or different nodes.

4. The network uses XYZ-routing: a message is routed

within a row to the column that contains the destination

node and subsequently routed within the column then in

depth.

5. Leader failure can occurs any time. This failure may be

discovered by one node in simple case, or concurrently

by more than one node reached at worst case to N-1

nodes.

6. The proposed algorithm solves leader failure even when

there are neighbor's links failures.

7. Each node is connected neighbors by six links as in

Figure-2, which Shows node links.

3D torus is one of the most common networks for
multicomputers due to their desirable properties, such as ease of
implementation and ability to reduce message latency (Jehad et
al., 2003). Three-dimensional torus interconnection networks
have been used in recent research and commercial distributed
memory parallel computers. Examples of such multicomputers
are the IBM BlueGene/L (IBM Blue Gene Team, 2008) the

WCSIT 4 (3), 31 -37, 2014

33

Cray T3D (Kessler and Schwarzmeier, 1993) the Cray XT3. An
important advantages of the 3D torus are its lower diameter and
higher bisection width, symmetry and regularity (William et al.,
2007.

TABLE 1: LINK FAILURE SOLUTION BY DETOURS

 Figure 2. Node Links

This Research assumes the following:

1. Routers should work all the time even with fault node

because the fault is in leader properties.

2. All communication links are bidirectional.

3. Leader node could fail due to different reasons which lead to

lose of the leadership property. Other nodes can detect this

failure, when the time out exceed without acknowledgement.

Nodes detect this failure start the election algorithm.

4. Wid: For a given process on processor node i there is set of

attributes such as storage capacity, CPU speed, battery age, ram

speed. Wid is the weight value which will be computed from

these attributes. To every node in the network, we will use this

value to compare Wid for every node with others to elect the

leader to be the one with the highest value.

5. Many intermittent links failure are recoverable.

6. Each node has the following variables:

- Wid: A unique value for the election process.

- Position: The label indicates its position.

- Leader ID, Leader position.

- Phase and step.

- State: leader or normal or candidate.

IV. DYNAMIC LEA

This section presents the proposed algorithm in phases.
Each phase composed of many steps. Before describing the

algorithm, the definition of the following variables will assist in
understand:

Node State: during the execution of the algorithm the node
state will be in one of the following states:

- Normal: the network is normal and no leader failure is

detected by this node.

- Candidate: there is a failure and the election process is

in progress inside this node.

- Leader: only one node must have this state in a stable

network, while this state is absence after leader failure.
The new algorithm is also composed of five phases as in

the in [19]. It is proposed to deal with the presence of many
intermittent links failure during its execution so it is called
dynamic. The main idea to solve this problem is by using more
detours in all directions to pass the messages over the links
failure. Algorithm phases are as follow:

Phase-1: The algorithm starts by a node(s) that detects
leader failures in any location. This node changes its state to
candidate. It sends (failure messages) through X axes right
(+X) and through Y axes forward (+Y), to inform all neighbors
in the same 2D torus about the leader failure.

Any node receives leader failure message makes the
following:

- Node state changes to candidate.

- Passes the failure message to the opposite direction

through the opposite links depending on the direction

from which it has received the message.

- Start phase two: selects its Wid as greater Wid , and

send election message through links (z axis up

direction). The election message is composed of

(message type, Phase, Step, Greater Wid, and Position

of the Greater Wid, Message initiator). If the state is

candidate, the received message is ignored.

The main contribution in this research is to solve the

probability of links failure in all phases. The idea to achieve
this goal is to make sender wait for acknowledgement message
from receiver, then after time out it uses the detour way to
bypass the message to the target node. To choose the suitable
detour algorithm uses table 1. Detour routing depends on the
direction of the missed message as it shown in table 1. Phase
one guarantees that all nodes in the 2D level which have the
node(s), that detects the failure, are informed about the leader
failure. Each node from this level starts phase 2 by sending an
election message in the column Z.

Phase -2: Nodes in candidate state continue election process
by sending election message to the neighbor up on the +Z axes.
If the message is received successfully, receiver sends
acknowledgment messages to the sender and continues to send
leader election messages up to the next neighbor. Any node
which receives the election message compares its Wid with the
receiving Wid, and continues with the greater Wid. When the
election message reaches the node that it starts the process, it
sends the result of election to the first node in the column.
Eventually this phase puts the results of phase two in the first

Det # Direction Detour Routing

1 + Z +X(RIGHT),+Z(UP),-X(LEFT)

2 +y +X(RIGHT),+y(FORWORD),-X(LEFT)

3 +x +Y(FORWORD), +X (RIGHT),-
Y(BACKWORD)

4 - Z +X(RIGHT),-Z(UP),-X(LEFT)

5 -y +X(RIGHT),-y(FORWORD),-X(LEFT)

6 -x +Y(FORWORD), -X (RIGHT),-
Y(BACKWORD)

WCSIT 4 (3), 31 -37, 2014

34

Figure 6: phase-3 two link failure

Figure 7 phase 4 election

Figure 4: with links failure +x, +x

node of each column with (Z=0) or (x, y, 0). To solve the
probability of links failure in phase two, as in phase one, this
algorithm uses detours way, to bypass the message to the target
node. This way is applied even if the second link failure in the
detour itself. Detour routing depends on the direction of the
missed message as it shown in table 1. The links failure in the
second phase is explained as follow:

1- if the node that detected link failure in the link (up)(+z),
it sends link failure message using detour number 1 from table
1 which use the following path +X(RIGHT),+Z(UP),-X(LEFT).
If the node detect a link failure for the second time in link +X
it sends link failure message using detour 3 +Y (FORWORD),
+X (RIGHT),-Y (BACKWORD) and so on for any
consequence links failure. By this way the algorithm continue
until the message reach its target figure-3.

Figure 3: phase two with links failure

Phase-3: Nodes in the 2D torus Z = 0 and Y = 0, or (x, 0, 0)
start the election in the Y axes, to obtain the result in one row,
Y = 0, Z=0 row, which is (x, 0, 0). If the message is received
successfully, the receiver will send acknowledgment message
to the sender and continues to send leader election messages to
the next neighbor in the direction +Y. This process continues
until the message return to the initiator candidate node. The role
of these nodes is to wait for phase 4 except node (0, 0, 0) it
starts phase 4.

To solve the probability of Links failure in +Y, there will be
an alternative path +X (RIGHT), +Y
(FORWORD), -X (LEFT). The node that detect a link failure
will send a link failure message to node in direction +X, if
sender node receive acknowledgment message, it will continue
in the alternative path (+X, +Y,-X) in the direction of +Y, else,
it detects that there is a link failure in the direction of +Y. To
solve this problem in this phase, it sends a link-failure message
through link to the right on the X-axis, and continue the new
alternative path (+X, +Y,-X) to inform the node in the +Y
direction as in figure- 4.

If the second Link failure is in the direction -X, there will be

alternate path (+X, +Y,-X). The general idea is by using table 1
to select the detour depends on the direction of the message
figure 5 and 6 explain other two cases.

Phase-4: Node (0, 0, 0) start phase 4 by sending election

message to its neighbor in X-axis, to do the election in one row
to obtain the result in one node X=0, Y=0, Z=0.figure 7 show
the steps in phase 4.

Note: to avoid the probability of links failure in phase four
the algorithm uses detours way as in table 1 for any link failure.

Phase-5: At the end of phase four, only one node is aware of

the new leader information node (0, 0, 0). This node broadcasts
leader message in three steps: the first step is to send the leader
message in two directions (+,-) X to inform all nodes in the X
axis of the new leader information. In the second step each
node finish the first step send the leader message in Y axes in
two direction (+, -) Y to inform the firs 2D torus about the new
leader. Each node in this 2D torus send leader message in Z

Figure 5: two Links failure in directions +X and -Y

WCSIT 4 (3), 31 -37, 2014

35

axes to complete the leader message broadcast. Any node
aware of the new leader in phase five ignores any new message
about election algorithm. To deal with links failure our
algorithm uses detour way as in table 1 to bypass the links
failure as discussed in previous phases.

V. Performance Evaluation

 Performance evaluation is carried out by computing the
number of messages and time steps. The analyses process is
carried out for two cases. The first case is the simple case, when
the failure is detected by one node. While the second case, is
when the leader failure is detected by subset of nodes which
can reach all nodes in the worst case.

Simple Case

Number of Messages: Theorem (1): assume that we have N
number of nodes in three dimensional torus networks, and F
number of intermittent link failures. Then, leader election
algorithm needs O (N+F) messages to complete.

Proof: Number of messages is computed for each phase.
Then, add the results to get the total number overall the
algorithm, proof is for all cases, as follow:

Simple Case: Phase One: Each node in the 2D torus
receives one message and sent one acknowledgement. So, the
number of messages needed to complete phase one is

 2(X Y) (1)

Phase Two: all nodes in this phase receive election
messages and send acknowledgement messages. So, the
number of messages needed to complete phase one is

 2XY 2XYZ Y)*X(2)]*(2[
1

0






Z

i

YX (2)

Phase Three: Nodes (X, y, 0) needs Y election messages

through link 4 to start the phase, and waits for

acknowledgement. Eventually, the result reaches to nodes in

row labeled (0, y, 0) after this number of messages:






1

0

2
X

i

Y = 2 XY. (3)

Phase Four: Node (0, 0, Z) starts leader election in Z axes,
each node, along Z axes, sends election message and receives
acknowledgement. The result reaches to node (0, 0, 0) after this
number of messages:

 




1

0

2
Z

i

= 2 Z (4)

Phase Five: Each node in the 3D torus receives one
message and sent one acknowledgement to complete leader
message broadcast. So, the number of messages needed to
complete phase five is:

 2(X YZ) (5)
To cover the link failure in all phases algorithm propose

that F represent the number of links failed during the execution
of the algorithm, and each link failure need 6 messages to
bypass the message (3 information and three acknowledgement
messages). So, the total number of messages overall the

algorithm is computed by add messages (6 * F) messages to
equations (1 to 6) as in Equation 6:

 2 XY +2 XYZ+ 2 XY + 2 XY +2 Z + 2(X YZ) +6 F (6)

When X=Y =Z = 3 N then XYZ =N, so the total messages by

using N is expressed in Formula 8:

4N+6
3 2N +2

3 N +6F= O(N+F) messages (7)

Worst Case:

Phase One: all nodes detect the leader failure
simultaneously. To start the algorithm each node receives one
message and send acknowledgement message. Phase one is
finished after one step because all nodes state transform to
candidate. The number of messages is equal:

2(XYZ) messages (8)

Phase Two: All nodes start phase three simultaneously by
sending election messages through link 2. All nodes also send
acknowledgement messages. There for step1 needs 2XYZ
messages. Algorithm needs 2XY for each step from 2 to Z. To
send the result to the first 2D algorithm needs 2XY. The
number of messages needed in this phase is in formula 11:

2XYZ+


Z

I

XY
2

2 +2XY= 4XYZ +2XY (9)

Phases (3, 4 and 5) are the same as in the simple case so, ,
the total number of messages overall the algorithm in the worst
case is computed by add messages in formulas (9,8,7, 3, 4, 5)
besides 6*F messages to cover the link failure as in formula
12:

2XYZ + 4XYZ +2XY + 2 XY +2 Z + 2X YZ +6 F =
8XYZ + 4XY + 2Z + 6F (10)

When X= Y = Z = 3 N the previous equation equals:

8XYZ + 4XY + 2Z + 6F

8N + 4 3 2N + 2 3 N + 6F = O (N + F) messages (11)

Time Steps: Theorem (2): Assume that we have N number
of nodes in three dimensional torus network. Then, leader

election algorithm needs
3 NO time steps to complete

Proof: Number of time steps is computed for each phase.
Then add these numbers to get the total number of time steps
overall the algorithm. We apply the computations at the simple
case and then at the worst case as follow:

Simple Case:

Phase One

Step 1: One node detects leader failure and sends Leader-
failure message through X and Y axis.

 Number of time steps is equal to X + Y (12)

Phase Two: In step one all candidate nodes send election
messages to the upper neighbors through links labeled 2 (Up).

Step 2 to step Z: nodes receive the election messages make
the comparison and pass election messages up with the greater

WCSIT 4 (3), 31 -37, 2014

36

ID. After Z -1 steps the result of the column leader is found in
phase three initiator node. These nodes need another step to
send column results to nodes with coordinators (x, y, 0). So the
algorithm needs (Z+1) steps to complete phase 2 as in Equation
6:

 1+Z-1+1 = Z+1 (13)
Phase Three: Nodes with coordinators (x, Y, 0) start

election process in step one by sending the greater ID through
link 6 (back). This process continues as follow:

Step 2 to step Y: Any node receive the election message,
makes the comparison and sends election message with greater
ID to the back neighbor. Phase four is terminated when nodes
(x, 0, 0) receive the election message from link 3 (front). This
phase needs:

 Y steps (14)

Phase Four: Node (X, 0, 0) starts election process in step
one by sending the greater ID through link 4 (left). This process
continues as follow:

Step 2 to step X: Any node receive the election message,
makes the comparison and sends election message with greater
ID to the left neighbor. Phase four is terminated when node (0,
0, 0) receive the election message from link 1 (right). This
process needs X steps.

To tolerate the probability of the presence of one link
failure in phase 3, 4 and 5 the algorithm needs 3 steps as
explained in the algorithm description. So the total steps for this
phase: X+ 3 steps (15)

Phase Five: Since node (0, 0, 0) it broadcast

 X+ Y+ Z steps (16)

The total time steps overall the algorithm in simple case is
the summation of time steps in (12 to 16) is:

X + Y+ Z+1+ Y +X+ 3+ X+ Y+ Z +3*F (17)

When X= Y = Z =
3 N , the number of time steps can be

expressed as in Equation 21:

)(648 33 FNOFN  (18)
In the worst case when all nodes detect the leader failure

simultaneously, the time steps will be as follow.

 Phase one: all nodes start the algorithm by sending leader-
failure message. All nodes state become candidate after one
time step. Therefore, phase one needs one time step to
complete.

Phase Two: in step one, all nodes start phase two. In step
two, one node in each column continues the election, while all
other nodes in the same column stop the process. So, number of
time steps in this phase is equal Z, and need one step for
column result message. Thus the total for phases 1, 2 is:

 Z+2 steps (19)
Phases (3, 4 and 5) are the same as in the simple case. The

total time steps overall the algorithm in worst case

Z+2 +Y+X+3+X+ Y+ Z +3*F Time steps (20)

When X= Y = Z =
3 N , the number of time steps can be

expressed as

 FN 3563  = FNO 3

steps (21)

VI. CONCLUSION

In this work, a leader election algorithm in 3D torus
network is proposed and analyzed.

 Our proposed algorithm consists of five phases. Phase one
is initiated when one or more nodes detects leader failure. This
node(s) informs other nodes in the same 2D about leader failure
to change its state to candidate. In phase two, nodes aware of
leader failure start election process throughout their columns. In
phase three, another election is applied on the 2D torus to
obtain the new leader information in one row. In Phase four
leader election is applied to this row to get new leader
information in one node. Last phase, broadcasts one to all is
applied to disseminate the new leader information to all nodes.
Proposed algorithm considered the probability of links failure
in all phases.

Algorithm performance was evaluated by calculating the
number of messages and time steps overall the algorithm. In a
network of N nodes connected by a three dimensional torus
network (X, Y, Z), the performance is evaluated in simple case,
when leader failure is detected by one node and in the worst
case, when leader failure is detected by (N-1) nodes. For all
cases the number of messages is O (N + F) in

)(3 FNO  steps.

REFERENCES

1. Abu-Amara, H. and Lokre, J.(1994) Election in Asynchronous Complete
Networks with Intermittent Link Failures, IEEE Transactions on
Computers, Vol. 34 No. 7, July 1994, pp. 778-788.

2. Akbar B., and Effatparvar Mohammed., and Effatparvar Mahdi, (2006),
Bully Election Algorithm Improvement with New Methods and Fault
Tolerant Mechanism, Symposium Proceedings Volume II Computer
Science & Engineering and Electrical & Electronics Engineering,
European University of Lefke, North Cyprus, PP 501-506.

3. Antonoiu, G. and Srimani, K.(1996)A Self-Stabilizing Leader Election
Algorithm for Tree Graphs, Journal of Parallel and Distributed
Computing, 34, Article No. 0059, 1996, pp. 227-232.

4. Coulouris G., Dollimore J., and Kindberg T. , (2005), Distributed
Systems Concept and Design, Fourth Edition, Addison-Wesley, USA.

5. Devillers M., Griffioen D., Romijn J. and Vaandrager F., (2004) ,
Verification of Leader Election Protocol, Formal Method Applied to
IEEE 1394, Springer International journal on Software Tools for
Tecknology Transfer(STTT), December 2004.

6. Dolev S., Israeli A. and Moran S., (1997), Uniform Dynamic Self-
Stabilizing Leader Election, IEEE Transaction on Parallel and
Distributed Systems, VOL 8,NO.4, April .PP 424-440.

7. Flocchini, P. and Mans, B. (1996).Optimal Elections in Labeled
Hypercube, Journal of Parallel and Distributed Computing 33, Article
No. 0026, pp. 76-83.

8. Fredrickson, N., and Lynch , N.(1987).Election a Leader in
Asynchronous Ring, Journal of the ACM, Vol.34, PP. 98-115.

9. IBM Blue Gene Team. Overview of the IBM Blue Gene/P project. IBM
Journal of Research and Development, 52(1/2), 2008.

10. Jean-Franqois Marckert (2005), Quasi-Optimal Leader Election
Algorithms in Radio Network with Log-Logarithmic Awake Time Slots,
F.chyzak(ed.),INRIA,pp.97-100.

WCSIT 4 (3), 31 -37, 2014

37

11. Junguk L. and Geneva G., (1996), A Distributed Election Protocol for
Unreliable Networks, Journal of Parallel and Distributed Computing, 35,
PP 35-42.

12. Kumar V. , Grama A. , Gupta A. and Karypis G. (2003).Introduction to
Parallel Computing, The Benjamin/Cumminy Publishing Company,
Inc,Redwood City, California.

13. Levitin A., (2003), Introduction to The Design and Analysis of
Algorithms, Addison Wesley Company, USA.

14. Mohsen Ghaffari and Bernhard Haeupler. Near Optimal Leader Election
in Multi-Hop Radio Networks. Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA'13), New Orleans,
Louisiana, January, 2013.

15. Mohsen Ghaffari, Nancy Lynch, and Srikanth Sastry. Leader Election
Using Loneliness Detection. Distributed Computing, 25(6): 427-450,
2012. Special issue for DISC 2011.

16. Molina G, H., (1982).Elections in A Distributed Computing systems,
IEEE Transactions on Computers, Vol. 31 Jan 1982, pp. 48-59.

17. Nancy Lynch, Tsvetomira Radeva, and Srikanth Sastry. Asynchronous
Leader Election and MIS Using Abstract MAC Layer. Proceedings of
FOMC 2012 (8th ACM International Workshop on the Foundations of
Mobile Computing), Madeira, Portugal, July 2012.

18. Rebecca Ingram, Tsvetomira Radeva, Patrick Shields, Saira Viqar,
Jennifer. E. Walter, and Jennifer L. Welch. A Leader Election Algorithm
for Dynamic Networks with Causal Clocks. Distributed Computing,
26(2):75-97, 2013.

19. Refai M. , Oqily I. , Alhamori A. , Leader Election Algorithm in 3D
Torus Networks with the Presence of One Link Failure, World of
Computer Science and Information Technology Journal (WCSIT), ISSN:
2221-0741, Vol. 2, No. 3, 90-97, 2012.

20. Refai, M. and Ajlouni, N., A new leader Election Algorithm in
Hypercube Networks, Symposium Proceedings Volume II Computer
Science & Engineering and Electrical & Electronics Engineering,
European University of Lefke, North Cyprus, PP 497-501, 2006.

21. Refai, M., Shari’ah, A., Alshammari, F. (2010), Leader Election
Algorithm in 2D Torus with the Presence of One Link Failure, IAJIT,
Vol. 7, No. 2, April 2010 .

22. Singh G., (1996). Leader Election in the Presence of Link Failures, IEEE
Transactions on Parallel and Distributed Systems, VOL 7,No 3,March.

23. Smita Bhoir and Amarsinh Vidhate, A Modified Leader Election
Algorithm for MANET, International Journal on Computer Science and
Engineering (IJCSE), Vol. 5 No. 02 Feb 2013.

24. Sudarshan V., DeCleene B., Immerman N., Kurose J. and Towsley D.
Leader Election Algorithms for Wireless Ad Hoc Networks. In Proc. Of
IEEE DISCEX III, 2003.

25. Tanenbaum, A., (2002). Distributed Systems, Prentice-Hall
International, Inc, New Jersey.

26. Tsvetomira Radeva. Properties of Link Reversal Algorithms for Routing
and Leader Election. Masters thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, June 2013.

27. Yamshita M. and Kammeda T.,(1999), Leader Election Problem on
Networks in which Processor Identity Numbers are not Distinct, IEEE
Transactions on Parallel and Distributed Systems, VOL 10,No
9,September

AUTHORS PROFILE

Dr. Mohammed Al Refai received his PHD in
computer science(CS) from Amman Arab University

for Graduated studies, Jordan, 2/2007, M.S degree

in CS from Alalbayet university, Jordan, 3/2002. He
received his undergraduate studies in CS from mutah

university, Jordan, 6/1992. He is currently work as

chairman of the Software Engineering Department
in Zarqa university in Jordan. His main research interests include many aspects

in parallel and distributed systems, Simulation and Data Mining.

