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ABSTRACT 

 The paper evaluates the potentials for conjunctive use of surface water and groundwater resources to meet the 

present and future water demand of the University of Benin, Benin City, Edo state, Nigeria. A discrete dynamic model was 

developed and applied to predict the demand, consumption and net benefit of the conjunctive use of the two sources. 

 In the model, allocations each user was assumed to represent a stage in the sequence of decisions.                  

Three decision variables (x1, x2 and x3), were used to maximize the Net Benefits achieved from assumed discrete quantities 

S1, S2 and S3. Results from the study show that about 52,000m
3
 of water could be supplied per day by conjunctive use of 

surface and groundwater sources. This quantity is 32,500m
3
/day higher than the present daily demand and can satisfy the 

demand up to the year 2023. The Net Benefit for using the multi-stage approach was found to be approximately 1.7 times                   

greater than using both sources as a single unit. 

KEYWORDS: Discrete Dynamic Programming, Surface Water Resources, Groundwater Resources, Net Benefit 

1. INTRODUCTION 

The role of water in both plant and animal life cannot be overemphasized. It is well reported that about 65% of the 

human bodyweight consist of water. Surface water may be defined as rainfall/water on the ground surface.                               

Some texts refer to it as surface runoff. Groundwater on the other hand, is referred to as rainfall/water that infiltrates the 

soil and penetrates to the underlying soil strata [1]. 

Surface water and groundwater resources sustain all human and ecological water uses. Globally, surface water 

resources provide less than 1% of total water supply [2], while the rest is provided by groundwater.                                    

Surface water resources are regulated by storage facilities (reservoirs) that support various water uses including water 

supply to urban, agricultural, and industrial areas, recreation, environmental and ecological sustainability,                        

energy generation, flood protection and navigation. Groundwater resources are associated with groundwater aquifers                           

(i.e. water bearing soil layers) that are exploited by pumping to supply water for use.  

Groundwater and surface water are not isolated phenomena occurring apart and distinct from each other.                 

In nature, groundwater and surface water can intermix or interconnect. A water management strategy that recognizes the 

interconnection between groundwater and surface water is called coordinated or conjunctive water management. 
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The management of surface water and/or groundwater is aimed at developing and implementing strategies for 

water resources utilization with due consideration of spatial and temporal interdependencies among natural processes and 

water uses. Management may include supply decisions and demand decision. Supply decision may include reservoir and 

aquifer regulation whereas the demand decisions include water conservation and recycling.  

Surface and groundwater management is a challenging undertaking. Complicating factors such as uncertain river 

flows and water demands, nonlinear dynamics, multiple water uses and management objectives,                                                     

and complex interdependences of natural processes and water uses be-devil surface water systems. Groundwater systems 

likewise, are characterized by nonlinear response, large dimensionality due to their spatial extent and various uncertainty 

sources (such as recharge rates, boundary conditions, and parameter heterogeneity). 

Conjunctive surface water and groundwater management becomes imperatives when there is strong affinity 

between the two subsystems. The relationship may be due to interaction of management objectives, interaction of natural 

processes, or both. An example of the latter occurs when aquifers and streams are hydraulically connected.                                    

In such cases, water is transferred to the streams from the aquifers when aquifer levels are high and streamflows are low. 

Water transfer is reversed when aquifer levels experience drawdowns and streams experience normal or high flows.                   

The coupling of management objectives occurs when either surface water or groundwater may meet certain water uses.                  

In such cases, substantial transfers of water can occur between the two subsystems by preferentially using one or the other 

to meet the water uses. Conjunctive management compounds the challenges of managing either surface water or 

groundwater separately. The difficulty increases as one must represent the response of both systems and their interactions, 

and develop management strategies that simultaneously address reservoir and aquifer control [3]. 

The University of Benin as at 2004 was being supplied with water from ground water only from the University of 

Benin water board (an arm of the Institution responsible for the management of the water supply system within the school 

environment). Water is pumped from this facility to all the communities within the school premises. It also supplied water 

to a neighbouring community (Ekosodin), to assist, especially, the students living within it. The water is pumped through a 

network of pipes (with necessary appurtenances located at strategic points) into elevated and underground reservoirs. 

Anyata B. U., et al [4] in their study found out that only one out of the four pumps was fully functional. It was proposed 

that, in order to meet future demand, surface water should be channelled from the Ikpoba River into three tanks which 

would serve as the water source. 

2. METHODOLOGY 

 A mathematical model of a discrete dynamic programming problem would be used. 

Formulation of Problem 

Considering the University of Benin, Ugbowo Campus as a single community divided into three users:                       

User 1 (comprising UDSS, SSQ, Staff School, Faculty of Engineering, Faculty of Social Sciences and Block of flats),     

User 2 (comprising the Administrative Office, Main Auditorium, Sports Complex, Faculty of Science,                                     

Faculty of Pharmacy, Main Café, Medical Hostel and the Library), User 3 (comprising the Hostels – Halls 1 – 5, 

Intercontinental Hostel, Faculty of Education, Faculty of Law, Faculty of Agricultural Science, the Health Centre,                

Medical Complex and Dentistry). 
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From Anyata B. U., et al [4], estimated water requirement in 2023 would be 32,500m
3
/day.                                  

The estimated a pumping output of 2,000m
3
/hr/pump for the pumps (of which only one was functional) with an estimated 

12hrs/day pumping hours, giving the pump output of 24,000m
3
/day. For the proposed surface channel, a proposed flow rate 

of 0.376m
3
/s and pumping hours of 22hrs were given. This would amount to a volume of about 29,000m

3
/day from the 

surface water supply. Therefore the total volume of water to be supplied from both schemes would be about 53,000m
3
/day. 

Problem 

 Taking the quantity of water for supply to be Qi, that could be allocated to the three water users denoted by index  

i = 1, 2 and 3. The problem is to determine the allocation xi to each user i, that maximizes the total Net Benefit. 

Therefore, 

i = 1 = User 1 

i = 2 = User 2 

i = 3 = User 3 

x1 = allocation to User 1 

x2 = allocation to commercial users 

x3 = allocation to industrial users 

Assuming the Gross Benefits is defined by the function: ai[1 – exp (-bixi)] for each user i and the cost of supplying 

the water is defined by the concave function cixi
di

 where ci & di are known positive constants and di < 1. Also, ai and bi are 

known positive constant. 

Assume also, that the cost function for each user exhibits economics of scale i.e. has decreasing marginal or 

average cost as the quantity allocated xi increases and the objective be to maximise the total net benefits;                                     

the planning model would be: 

 Max Σ {ai [1 – exp (-bixi)] – cixi
di

}                                                                                                                       (2. 1) 

 Subject to Σ xi ≤ Q                                                                                                                                              (2. 2) 

 xi ≥ 0 for each use i                                                                                                                                              (2. 3) 

 where, 

ai = Revenue generated for use i(N) 

bi = Maintenance cost for use i(N) 

ci = Pumping cost for use i (N) 

di = (1 - µ i); µ i = Frictional force in pipes for use i (di < 1) 

Q = Quantity of water to be allocated to all users 

xi = Quantity of water allocated to user i 

3 

i = 1 
3 

i = 1 
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 Restructuring the problem as a sequential allocation process or a multistage decision-making procedure, the 

problem could be seen as shown in the figure below. 

 

Figure 1: Sequential Allocation Process 

Let the allocation to each user be considered as a decision stage in the sequence of decisions. 

When a part, xi, of the total water supply Q is allocated to stage i, the Net benefit resulting is given as: 

Ri(xi) = ai [1 – exp (-bixi)] - cixi
di

 

Let Si be a state variable which may be defined as the amount of water available to the remaining (4 – i) users or 

stages. 

Let the state transformation Si + 1 = Si – xi define the state in the next stage as a function of the current state and the 

current allocation or decision. 

Generating the recursive equation for the three users, we can re-write equations (2. 1) – (2. 3) thus: 

f1 (Q) = Maximum [R1 (x1) + R2 (x2) + R3 (x3)]                                                                                                     (2. 4) 

 

where f1 (Q) = Maximum Net Benefit obtained from the allocation of a quantity of water Q to the three users. 

Each allocation cannot be negative and their sum cannot exceed the quantity of water available, Q. 

Equation 2. 4 represents a problem having three decision variables. We shall now try to transform equation 3. 4 

into three problems having only are decision variable each. Thus: 

f1 (Q) = maximum {R1 (x1) + maximum [R2 (x2) + maximum R3 (x3)]}                                                          (2. 5) 

 

Let the function f3 (S3) be equal to the maximum net benefit achieved from use 3 given a quantity of water S3 

available for allocation that use. Therefore, with various discrete values of S3 from 0 to Q, the value of f3 (S3) can be 

determined thus: 

f3 (S3) = maximum [R3 (x3)]           (2. 6) 

       x1 

0 ≤ x1 ≤ Q 

x2 

0 ≤ x2 ≤ Q – x1 = S2 

            x3 

0 ≤ x3 ≤ S2 – x2 = S3 

x3 

0 ≤ x3 ≤ S3 

x1 + x2 + x3 ≤ Q 

x1, x2, x3 ≥ 0 
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 Similarly, if f2 (S2) equals the maximum net benefit obtained from users 2 and 3 with a quantity S2 to allocate to 

them, with various discrete values of S2 between 0 and Q, the value of f2 (S2) can be determined thus: 

f2 (S2) = maximum [R2 (x2) + f3 (S3)]           (2. 7) 

 

 Since the water available for use 3 (S3), is equal to the water available for user 2 and 3 (S2) minus the quantity 

used at stage 2 (x3), mathematically, we have: 

S3 = S2 – x2             (3. 8) 

 This equation 5 can be re-written as: 

 f1 (Q) = maximum {R1 (x1) + maximum [R2 (x2) + f3 (S3)] }        (3. 9) 

 

 f1(Q) = maximum {R1(x1) + maximum [R2(x3) + f3(S2 – x2)]}                    (3. 10) 

 

 with equation 3. 7, equation 3. 10 can be written thus: 

 f1(Q) = Maximum [R1(x1) + f2(S2)]                      (3. 11) 

 

 Also, water available to user 2 and 3 (i.e. S2) is equal to the total water available to use1 minus the quantity of 

water x1 used in that stage. 

 Thus, mathematically, 

 S2 = Q – x1                         (3. 12) 

 Substituting equation 3. 12 into 3. 11, we have an equation that is written in terms of x1 and Q only. Thus: 

 f1(Q) = maximum {R1(x1) + f2(Q – x1)}                     (3. 13) 

 

 Where f1 (Q) = maximum net benefits achievable with a quantity of water Q to allocate to users 1, 2, and 3. 

 Now, equation 3. 13 cannot be solved without a knowledge of f2(S2). Equation 3. 7, which gives f2(S2) cannot also 

be solved without a knowledge of f3(S3). However equation 3. 6 can be used to obtain the value of f3(S3) without further 

reference to any other equation or net benefit function fi(Si). Therefore, with a knowledge of the value of f3(S3),                           

we can find the value of f2(S2) and subsequently the value of f1 (Q). 

 Equations 3. 6, 3. 7 and 3. 13 are called recursive equations since they must be sequentially solved. 

 

 

x2 

0 ≤ x2 ≤ S2 

x1 

0 ≤ x1 ≤ Q 

x2 

0 ≤ x2 ≤ S2 

x1 

0 ≤ x1 ≤ Q 

x2 

0 ≤ x2 ≤ S2 

x1 

0 ≤ x1 ≤ Q 

x1 

0 ≤ x1 ≤ Q 
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3. RESULTS AND DISCUSSIONS 

 Assuming: 

ai = 2000; 1000; 3000 (in millions of Naira) 

bi = 0.3; 0.2; 0.4 (in millions of Naira) 

ci = 160; 180; 240 (in millions of Naira) 

di = 0.9; 0.4; 0.6 

Quantity of Groundwater (Qg) ~ 24,000m
3
 = 24 units and 

Quantity of Surface water (Qs) ~ 28,000m
3
 = 28 units 

The following tables show the Maximum Net Benefit of supplying Qg and Qs as individual or separate units and 

as a single unit, Qgs. 

Table 1: Values of RiXi = {ai[1 – exp (-bixi)] – cixi
di

} for xi = 0, 4, 8, ........, 24 

xi R1 (x1) R2 (x2) R3 (x3) 

0 0 0 0 

4 1341.9 519.33 2339.17 

8 1714.6 756.75 2794.14 

12 1795.6 860.65 2686.72 

16 1789.53 904.67 2868.34 

20 1757.88 922.02 2854.17 

24 1719.05 927.6 2838.24 

 

Table 2: Values of f3 (S3) = Maximum [R3 (x3)] for values of x = 0, 4, 8, ......, 24 

 

State R3 (x3) F3 (S3) x3* 
S3 x3:0 4 8 12 16 20 24 

0 0 
      

0 0 

4 0 2339.17 
     

2339.17 4 

8 0 2339.17 2794.14 
    

2794.14 8 

12 0 2339.17 2794.14 2868.72 
   

2868.72 12 

16 0 2339.17 2794.14 2868.72 2868.34 
  

2868.72 12 

20 0 2339.17 2794.14 2868.72 2868.34 2854.17 
 

2854.72 12 

24 0 2339.17 2794.14 2868.72 2868.34 2854.17 2838.24 2838.72 12 

 

Table 3: Values of f2 (S2) = Maximum [R2 (x2) + f3 (S3)] for values of x = 0, 4, 8, ......, 24 

 

State R2x2+f3 (S2-x2) F2 (S2) x2* 
S2 x2:0 4 8 12 16 20 24 

0 0 
      

0 0 

4 2339.17 519.33 
     

2339.17 0 

8 2794.14 2858.5 756.75 
    

2858.5 4 

12 2868.72 3313.47 3095.92 860.65 
   

3313.47 4 

16 2868.72 3388.05 3550.89 3199.82 904.67 
  

3550.89 8 

20 2868.72 3388.05 3625.47 3654.79 3243.84 922.02 
 

3654.79 12 

24 2868.72 3388.05 3625.47 3729.37 3698.81 3261.19 927.6 3729.37 12 

 

x3 

0 ≤ x3 ≤ S3 

x2 

0 ≤ x2 ≤ S2 
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Table 4: Values of f1 (Q) = Maximum [R1 (x1) + f2 (S2)] for values of x = 0, 4, 8, ......, 24 

 

State R1x1+f2 (S1-x1) F1 (S1) x1* 
S1 x1:0 4 8 12 16 20 24 

0 3729.37 4996.69 5265.07 5109.07 4646.03 4097.05 1719.05 5265.49 8 

 

Table 5: Values of RiXi = {ai[1 – exp (-bixi)] – cixi
di

} for xi = 0, 4, 8, ........, 28 

xi R1 (x1) R2 (x2) R3 (x3) 

0 0 0 0 

4 1341.9 519.33 2339.17 

8 1714.6 756.75 2794.14 

12 1795.6 860.65 2686.72 

16 1789.53 904.67 2868.34 

20 1757.88 922.02 2854.17 

24 1719.05 927.6 2838.24 

28 1678.51 928.05 2822.74 

 

Table 6: Values of f3 (S3) = Maximum [R3 (x3)] for values of x = 0, 4, 8, ......, 28 

 

State R3 (X3) F3 (S3) x3* 
S3 x3:0 4 8 12 16 20 24 28 

0 0 
       

0 0 

4 0 2339.17 
      

2339.17 4 

8 0 2339.17 2794.14 
     

2794.14 8 

12 0 2339.17 2794.14 2868.72 
    

2868.72 12 

16 0 2339.17 2794.14 2868.72 2868.34 
   

2868.72 12 

20 0 2339.17 2794.14 2868.72 2868.34 2854.17 
  

2868.72 12 

24 0 2339.17 2794.14 2868.72 2868.34 2854.17 2838.24 
 

2868.72 12 

28 0 2339.17 2794.14 2868.72 2868.34 2854.17 2838.24 2822.74 2868.72 12 

 

Table 7: Values of f2 (S2) = Maximum [R2 (x2) + f3 (S3)] for values of x = 0, 4, 8, ......, 28 

 

State R2x2+f3 (S2-x2) F2 (S2) x2* 
S2 x2: 0 4 8 12 16 20 24 28 

0 0 
       

0 0 

4 2339.17 519.33 
      

2339.17 0 

8 2794.14 2858.5 756.75 
     

2858.5 4 

12 2868.72 3313.47 3095.92 860.65 
    

3313.47 4 

16 2868.72 3388.05 3550.89 3199.82 904.67 
   

3550.89 8 

20 2868.72 3388.05 3625.47 3654.79 3243.84 922.02 
  

3654.79 12 

24 2868.72 3388.05 3625.47 3729.37 3698.81 3261.19 927.6 
 

3729.37 12 

28 2868.72 3388.05 3625.47 3729.37 3772.81 3716.16 3266.77 928.05 3772.81 16 

 

Table 8: Values of f1 (Q) = Maximum [R1 (x1) + f2 (S2)] for values of x = 0, 4, 8, ......, 28 

 

State R1x1+f3 (S1-x1) F1 (S1) x1* 
S1 x1: 0 4 8 12 16 20 24 28 

0 3790.74 5114.71 5443.97 5450.39 5340.42 5071.55 4577.55 4009.68 5450.39 12 

 

x1 

0 ≤ x1 ≤ Q 

x3 

0 ≤ x3 ≤ S3 

x2 

0 ≤ x2 ≤ S2 

x1 

0 ≤ x1 ≤ Q 
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Table 9: Values of RiXi = {ai[1 – exp (-bixi)] – cixi
di

} for xi = 0, 4, 8, ........, 52 

xi R1 (x1) R2 (x2) R3 (x3) 

0 0 0 0 

4 1341.9 519.33 2339.17 

8 1714.6 756.75 2794.14 

12 1795.6 860.65 2686.72 

16 1789.53 904.67 2868.34 

20 1757.88 922.02 2854.17 

24 1719.05 927.6 2838.24 

28 1678.51 928.05 2822.74 

32 1637.83 926.34 2807.99 

36 1597.43 923.78 2793.94 

40 1557.43 920.94 2780.49 

44 1517.80 918.07 2767.57 

48 1478.52 915.25 2755.12 

52 1439.57 912.54 2743.07 

 

Table 10: Values of f3 (S3) = Maximum [R3 (x3)] for values of x = 0, 4, 8, ......, 52 

 

 

 

Table 11: Values of f2 (S2) = Maximum [R2 (x2) + f3 (S3)] for values of x = 0, 4, 8, ......, 52 

 

 

Table 12: Values of f1 (Q) = Maximum [R1 (x1) + f2 (S2)] for values of x = 0, 4, 8, ......, 52 

 

 

 

x3 

0 ≤ x3 ≤ S3 

x2 

0 ≤ x2 ≤ S2 

x1 

0 ≤ x1 ≤ Q 
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Table 1 shows the values of the Net Benefit of each of the uses R1(x1), R2 (x2), R3 (x3) varying the quantity of 

groundwater available from 0 – 24 units. 

Table 2 shows the values of R3 (x3) and max R3 (x3) represented by the function F3 (S3) for values of                          

x = 0 – 24 units. x3
*
 represents the quantity of groundwater used where the F3 (x3) occurs for each state S3.  

Table 3 shows the values of R2 (x2) + f3 (S2 – x2) and max R2 (x2) + f3 (S2 – x2) represented by the function F2 (S2) 

for values of x = 0 – 24 units. x2
*
 represents the quantity of groundwater used where the F2 (x2) occurs for each state S2. 

Table 4 shows the values of f1 (Q) = Maximum [R1 (x1) + f2 (S2)] and max f1 (Q) represented by the function F1 

(S1) for values of x = 0 – 24 units. x1
*
 represents the quantity of groundwater used where the F1 (x1) occurs for each state 

S1. 

Table 5 shows the values of the Net Benefit of each of the uses R1 (x1), R2 (x2), R3 (x3) varying the quantity of 

surface water available from 0 – 28 units. 

Table 6 shows the values of R3 (x3) and max R3 (x3) represented by the function F3 (S3) for values of                                

x = 0 – 28 units. x3
*
 represents the quantity of surface water used where the F3 (x3) occurs for each state S3. 

Table 7 shows the values of R2 (x2) + f3 (S2 – x2) and max R2(x2) + f3 (S2 – x2) represented by the function F2 (S2) 

for values of x = 0 – 28 units. x2
*
 represents the quantity of surface water used where the F2(x2) occurs for each state S2. 

Table 8 shows the values of f1 (Q) = Maximum [R1 (x1) + f2 (S2)] and max f1 (Q) represented by the function F1 

(S1) for values of x = 0 – 28 units. x1
*
 represents the quantity of surface water used where the F1(x1) occurs for each state 

S1. 

Table 9 shows the values of the Net Benefit of each of the uses R1(x1), R2(x2), R3(x3) varying the quantity of water 

available from 0 – 52 units. 

Table 10 shows the values of R3 (x3) and max R3 (x3) represented by the function F3 (S3) for values of                       

x = 0 – 52 units. x3
*
 represents the quantity of water used where the F3(x3) occurs for each state S3. 

Table 11 shows the values of R2 (x2) + f3 (S2 – x2) and max R2 (x2) + f3 (S2 – x2) represented by the function F2(S2) 

for values of x = 0 – 52 units. x2
*
 represents the quantity of water used where the F2(x2) occurs for each state S2. 

Table 12 shows the values of f1 (Q) = Maximum [R1(x1) + f2 (S2)] and max f1 (Q) represented by the function 

F1(S1) for values of x = 0 – 52 units. x1
*
 represents the quantity of water used where the F1(x1) occurs for each state S1. 

A comparison of the maximum Net Benefits is represented in the figures below. 
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Figure 2: Surface water Distribution as a Single Unit 

 

Figure 3: Groundwater Distribution as a Single Unit 

 

Figure 4: Groundwater and Surface Water Distribution Conjunctively as a Single Unit 

 

 

Figure 5: Groundwater and Surface Water Distribution Conjunctively Managed Using the Multi-Stage Approach 



Application of Dynamic Programming in Water Resources Management: A Case Study of                                                                         133 

University of Benin Water Supply System, Ugbowo, Edo State Nigeria 

 

 

Impact Factor(JCC): 1.5548 - This article can be downloaded from www.impactjournals.us  

 

4. CONCLUSIONS 

 It can therefore be concluded that the conjunctive management of surface water and groundwater resources is 

better than the separate management of these resources. 

5. RECOMMENDATIONS 

 From the above findings, it is recommended that: 

• The University Management should adopt the method of conjunctive management in addressing the problem of 

water supply affecting the Ugbowo Campus presently. 

• There is the need for proper planning of communities, towns, cities etc to serve as a proactive approach in 

handling the problem of effective and efficient water supply in the future. 

• The Federal and State Water Boards should adopt this method in order to enhance the effective and efficient use, 

supply and distribution of water. 
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