ON INVERSES AND GENERALIZED INVERSES OF BIMATRICES

RAMESH G $\mathbf{~}^{\mathbf{1}} \boldsymbol{\&}$ ANBARASI $\mathbf{N}^{\mathbf{2}}$
${ }^{1}$ Associate Professor of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamilnadu, India
${ }^{2}$ Assistant Professor in Mathematics, Arasu Engineering College, Kumbakonam, Tamilnadu, India

Abstract

The concept of singular, Semi-singular and non-singular bimatrices are introduced. The concept of inverse bimatrices, reverse order law and some properties of inverses bimatrices are studied. Also the notion of generalized inverses and some properties of generalized inverse of bimatrices are discussed. The solution of homogeneous and non-homogeneous system of equations are studied.

KEYWORDS: Bimatrix, Inverse Bimatrix, Generalized Inverse of Bimatrix, Singular, Semi- Singular, Non-Singular Bimatrices

AMS Classification: 15A09, 15A15, 15A57.

INTRODUCTION

Let $C_{n \times n}$ be the space of nxn complex matrices of order n . For $A \epsilon C_{n \times n}$, let $A^{-1}, A^{T}, A^{*}, A^{\dagger}, r(A), \mathcal{R}(A)$ denote the inverse, transpose, conjugate transpose, Moore-penrose inverse, rank and range space of A respectively. A matrix has its inverse if $|A| \neq 0$ that is, A is non singular. Generalized inverse is a great tool in solving linearly dependent and unbalanced system of linear equations. It has the ability to find the solution of square matrix when it is singular and non-square. A solution X of the equation $A X A=\mathrm{A}$ is denoted by A^{-}and is called generalized inverse of A . For $A \epsilon C_{n X n}$, the Moore-penrose inverse A^{\dagger} of A is the unique solution of the four equation (i) $A X A=A,(i i) X A X=A,(i i i)(A X)^{*}=$ $A X,(i v)(X A)^{*}=X A$. The concept of a generalized inverse was first introduced by Fredholm (1903), he called a particular generalized inverse as pseudo inverse which serve as integral operator. However, the concept of an inverse of a singular matrix seems to have been first introduced by Moore [4,5] in 1920. If A_{1} and A_{2} are any two matrices then the matrix $A_{B}=A_{1} \cup A_{2}$ is said to be bimatrix [7]. A bimatrix A_{B} is said to be EP if $N\left(A_{B}\right)=N\left(A_{B}^{*}\right)[8]$.

In this paper the concept of singular, semi-singular, non-singular bimatrices are introduced. The concept of inverse bimatrices, reverse order law and some properties of inverse bimatrices are studied. Also, the notion of generalized inverses and some properties of generalized inverses of bimatrices are discussed. The solution of homogeneous and non-homogeneous system of equations are analysed.

INVERSES OF BIMATRICES

Definition 2.1

Let A_{B} be a square bimatrix of order n . Then, A_{B} is said to be invertible if there exists a square bimarix B_{B} of order n such that
$A_{B} B_{B}=B_{B} A_{B}=I_{B}$,
and B_{B} is called the inverse of A_{B} and is denoted by A_{B}^{-1}.

Example 2.2

Let $A_{B}=\left(\begin{array}{lll}2 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 3 & 5\end{array}\right) \cup\left(\begin{array}{ccc}2 & 1 & -1 \\ 0 & 2 & 1 \\ 5 & 2 & -3\end{array}\right)$
Now, $A_{B}^{-1}=\left(\begin{array}{ccc}2 & -1 & -1 \\ -9 & 7 & 4 \\ 5 & -4 & -2\end{array}\right) \cup\left(\begin{array}{ccc}8 & -1 & -3 \\ -5 & 1 & 2 \\ 10 & -1 & -4\end{array}\right)$
It is verified that,

$$
\begin{aligned}
& A_{B} A_{B}^{-1}=\left(\begin{array}{lll}
2 & 2 & 3 \\
2 & 1 & 1 \\
1 & 3 & 5
\end{array}\right)\left(\begin{array}{ccc}
2 & -1 & -1 \\
-9 & 7 & 4 \\
5 & -4 & -2
\end{array}\right) \cup\left(\begin{array}{ccc}
2 & 1 & -1 \\
0 & 2 & 1 \\
5 & 2 & -3
\end{array}\right)\left(\begin{array}{ccc}
8 & -1 & -3 \\
-5 & 1 & 2 \\
10 & -1 & -4
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cup\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =I_{B} .
\end{aligned}
$$

Definition 2.3

A square bimatrix A_{B} is said to be singular if the determinant value of both the components are zero. (That is, $\left|A_{1}\right|=0$ and $\left|A_{2}\right|=0$).

Definition 2.4

A square bimatrix $A_{B}=A_{1} \cup A_{2}$ is said to be non-singular if the determinant value of both the components are non zero.

Definition 2.5

A square bimatrix $A_{B}=A_{1} \cup A_{2}$ is said to be semi-singular if the determinant value of either one of the component is zero.

Properties of the Conjugate Transpose of Bimatrices 2.6

- $A_{B}^{* *}=A_{B}$
- $\quad\left(A_{B}+B_{B}\right)^{*}=A_{B}^{*}+B_{B}^{*}$
- $\left(\lambda A_{B}\right)^{*}=\bar{\lambda} A_{B}^{*}$
- $\left(A_{B} B_{B}\right)^{*}=B_{B}^{*} A_{B}^{*}$
- $A_{B} A_{B}^{*}=0$ implies $A_{B}=0$
- $B_{B} A_{B} A_{B}^{*}=C_{B} A_{B} A_{B}^{*}$ implies $B_{B} A_{B}=C_{B} A_{B}$
- $B_{B} A_{B}^{*} A_{B}=C_{B} A_{B}^{*} A_{B}$ implies $B_{B} A_{B}^{*}=C_{B} A_{B}^{*}$

Properties of Inverse of Bimatrices 2.7

Let A_{B} and B_{B} be the two bimatrices, then the following holds:

- $\left(A_{B} B_{B}\right)^{-1}=B_{B}^{-1} A_{B}^{-1}$
- $\left(A_{B}^{-1}\right)^{-1}=A_{B}$
- $\left(k A_{B}\right)^{-1}=k^{-1} A_{B}^{-1}$
- $\left(A_{B}^{t}\right)^{-1}=\left(A_{B}^{-1}\right)^{t}$

Proof of (i)

$$
\begin{aligned}
& \text { Given } A_{B} B_{B}=\left(A_{1} \cup A_{2}\right)\left(B_{1} \cup B_{2}\right) \\
& =A_{1} B_{1} \cup A_{2} B_{2} \\
& \left(A_{B} B_{B}\right)^{-1}=\left(A_{1} B_{1} \cup A_{2} B_{2}\right)^{-1} \\
& =\left(A_{1} B_{1}\right)^{-1} \cup\left(A_{2} B_{2}\right)^{-1} \\
& =B_{1}^{-1} A_{1}^{-1} \cup B_{2}^{-1} A_{2}^{-1}\left(\text { since }(A B)^{-1}=B^{-1} A^{-1}\right) \\
& =\left(B_{1}^{-1} \cup B_{2}^{-1}\right)\left(A_{1}^{-1} \cup A_{2}^{-1}\right) \\
& \left(A_{B} B_{B}\right)^{-1}=B_{B}^{-1} A_{B}^{-1}
\end{aligned}
$$

Proof of (ii)

$$
\begin{aligned}
& A_{B}^{-1}=\left(A_{1} \cup A_{2}\right)^{-1} \\
& =A_{1}^{-1} \cup A_{2}^{-1} \\
& \left(A_{B}^{-1}\right)^{-1}=\left(A_{1}^{-1} \cup A_{2}^{-1}\right)^{-1} \\
& =\left(A_{1}^{-1}\right)^{-1} \cup\left(A_{2}^{-1}\right)^{-1} \\
& =A_{1} \cup A_{2}\left(\operatorname{since}\left(A^{-1}\right)^{-1}=A\right) \\
& \left(A_{B}^{-1}\right)^{-1}=A_{B}
\end{aligned}
$$

Proof of (iii)

$$
\begin{aligned}
& \left(k A_{B}\right)^{-1}=\left[k\left(A_{1} \cup A_{2}\right)\right]^{-1} \\
= & \left(k A_{1} \cup k A_{2}\right)^{-1} \\
= & \left(k A_{1}\right)^{-1} \cup\left(k A_{2}\right)^{-1} \\
= & k^{-1} A_{1}^{-1} \cup k^{-1} A_{2}^{-1} \\
= & k^{-1}\left(A_{1}^{-1} \cup A_{2}^{-1}\right) \\
& \left(k A_{B}\right)^{-1}=k^{-1} A_{B}^{-1}
\end{aligned}
$$

Proof of (iv)

$$
\begin{aligned}
& A_{B}^{t}=\left(A_{1} \cup A_{2}\right)^{t} \\
= & A_{1}^{t} \cup A_{2}^{t} \\
& \left(A_{B}^{t}\right)^{-1}=\left(A_{1}^{t} \cup A_{2}^{t}\right)^{-1} \\
= & \left(A_{1}^{t}\right)^{-1} \cup\left(A_{2}^{t}\right)^{-1} \\
= & \left(A_{1}^{-1}\right)^{t} \cup\left(A_{2}^{-1}\right)^{t}\left(\text { since }\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}\right) \\
= & \left(A_{1}^{-1} \cup A_{2}^{-1}\right)^{t} \\
& \left(A_{B}^{t}\right)^{-1}=\left(A_{B}^{-1}\right)^{t}
\end{aligned}
$$

GENERALIZED INVERSES OF BIMATRICES

Definition 3.1

Moore - Penrose inverse of a bimatrix A_{B} is the unique solution of the following equations:

- $A_{B} X_{B} A_{B}=A_{B}$
- $X_{B} A_{B} X_{B}=X_{B}$
- $\left(A_{B} X_{B}\right)^{*}=A_{B} X_{B}$
- $\left(X_{B} A_{B}\right)^{*}=X_{B} A_{B}$

Definition 3.2

Group inverse of A_{B}, denoted as $A_{B}{ }^{\#}$ satisfying the equations,

- $A_{B} X_{B} A_{B}=A_{B}$.
- $X_{B} A_{B} X_{B}=X_{B}$.
- $A_{B} X_{B}=X_{B} A_{B}$.
- If $A_{B}^{\#}$ exists, then it is unique.

Example 3.3

Let $\quad A_{B}=\left(\begin{array}{lll}4 & 1 & 2 \\ 1 & 1 & 5 \\ 3 & 1 & 3\end{array}\right) \cup\left(\begin{array}{lll}1 & 3 & 2 \\ 5 & 2 & 6 \\ 2 & 6 & 4\end{array}\right)$
Generalized inverse of A_{B} is,
$X_{B}=\left(\begin{array}{ccc}1 / 3 & -1 / 3 & 0 \\ -1 / 3 & 4 / 3 & 0 \\ 0 & 0 & 0\end{array}\right) \cup\left(\begin{array}{ccc}-2 / 13 & 3 / 13 & 0 \\ 5 / 13 & -1 / 13 & 0 \\ 0 & 0 & 0\end{array}\right)$
such that $A_{B} X_{B} A_{B}=A_{B}$

Lemma 3.4

Let A_{B} be an $n \times n$ complex bimatrix. Then the following holds :

- $A_{B}^{\dagger \dagger}=A_{B}$
- $A_{B}^{* \dagger}=A_{B}^{\dagger *}$
- If A_{B} is non singular, then $A_{B}^{\dagger}=A_{B}^{-1}$
- $\left(\lambda A_{B}\right)^{\dagger}=\lambda^{\dagger} A_{B}^{\dagger}$
- $\left(A_{B}^{*} A_{B}\right)^{\dagger}=A_{B}^{\dagger} A_{B}^{\dagger *}$

Proof of (i)

$$
\begin{aligned}
& A_{B}^{\dagger}=\left(A_{1} \cup A_{2}\right)^{\dagger} \\
= & A_{1}^{\dagger} \cup A_{2}^{\dagger} \\
& \left(A_{B}^{\dagger}\right)^{\dagger}=\left(A_{1}^{\dagger} \cup A_{2}^{\dagger}\right)^{\dagger} \\
= & \left(A_{1}^{\dagger}\right)^{\dagger} \cup\left(A_{2}^{\dagger}\right)^{\dagger} \\
= & A_{1} \cup A_{2}\left(\text { since } A^{\dagger \dagger}=\mathrm{A}\right) \\
& \left(A_{B}^{\dagger}\right)^{\dagger}=A_{B}
\end{aligned}
$$

Proof of (ii)

$$
\begin{aligned}
& A_{B}^{*}=\left(A_{1} \cup A_{2}\right)^{*} \\
&= A_{1}^{*} \cup A_{2}^{*} \\
&\left(A_{B}^{*}\right)^{\dagger}=\left(A_{1}^{*} \cup A_{2}^{*}\right)^{\dagger} \\
&=\left(A_{1}^{*}\right)^{\dagger} \cup\left(A_{2}^{*}\right)^{\dagger} \\
&=\left(A_{1}^{\dagger}\right)^{*} \cup\left(A_{2}^{\dagger}\right)^{*}\left(\text { Since } A^{* \dagger}=\left(A^{\dagger}\right)^{*}\right) \\
&=\left(A_{1}^{\dagger} \cup A_{2}^{\dagger}\right)^{*} \\
&=\left(\left(A_{1} \cup A_{2}\right)^{\dagger}\right)^{*} \\
&=\left(A_{B}^{\dagger}\right)^{*} \\
&\left(A_{B}^{*}\right)^{\dagger}=\left(A_{B}^{\dagger}\right)^{*}
\end{aligned}
$$

Proof of (iii)

Given A_{B} is non singular bimatrix \Rightarrow both A_{1} and A_{2} are non singular matrices.
$A_{B}^{\dagger}=\left(A_{1} \cup A_{2}\right)^{\dagger}$
$=A_{1}^{\dagger} \cup A_{2}^{\dagger}$

By lemma (1.3) of [8],

$$
\begin{aligned}
& A_{1}^{\dagger}=A_{1}^{-1} \text { and } A_{2}^{\dagger}=A_{2}^{-1} \\
& \Rightarrow A_{B}^{\dagger}=A_{1}^{-1} \cup A_{2}^{-1} \\
& =\left(A_{1} \cup A_{2}\right)^{-1} \\
& A_{B}^{\dagger}=A_{B}^{-1}
\end{aligned}
$$

Proof of (iv)

$$
\begin{aligned}
& \left(\lambda A_{B}\right)^{\dagger}=\left[\lambda\left(A_{1} \cup A_{2}\right)\right]^{\dagger} \\
& =\left(\lambda A_{1} \cup \lambda A_{2}\right)^{\dagger} \\
& =\left(\lambda A_{1}\right)^{\dagger} \cup\left(\lambda A_{2}\right)^{\dagger} \\
& =\lambda^{\dagger} A_{1}^{\dagger} \cup \lambda^{\dagger} A_{2}^{\dagger}\left(\text { since }(\lambda A)^{\dagger}=\lambda^{\dagger} A^{\dagger}\right) \\
& =\lambda^{\dagger}\left(A_{1}^{\dagger} \cup A_{2}^{\dagger}\right) \\
& \left(\lambda A_{B}\right)^{\dagger}=\lambda^{\dagger} A_{B}^{\dagger}
\end{aligned}
$$

Proof of (v)

$$
\begin{aligned}
& A_{B}^{*} A_{B}=\left(A_{1}^{*} \cup A_{2}^{*}\right)\left(A_{1} \cup A_{2}\right) \\
& =A_{1}^{*} A_{1} \cup A_{2}^{*} A_{2} \\
& \left(A_{B}^{*} A_{B}\right)^{\dagger}=\left(A_{1}^{*} A_{1} \cup A_{2}^{*} A_{2}\right)^{\dagger} \\
& =\left(A_{1}^{*} A_{1}\right)^{\dagger} \cup\left(A_{2}^{*} A_{2}\right)^{\dagger} \\
& =A_{1}^{\dagger} A_{1}^{\dagger *} \cup A_{2}^{\dagger} A_{2}^{\dagger *}\left(\text { since }\left(A^{*} A\right)^{\dagger}=A^{\dagger} A^{\dagger *}\right) \\
& =\left(A_{1}^{\dagger} \cup A_{2}^{\dagger}\right)\left(A_{1}^{\dagger *} \cup A_{2}^{\dagger *}\right) \\
& =\left(A_{1}^{\dagger} \cup A_{2}^{\dagger}\right)\left(A_{1}^{\dagger} \cup A_{2}^{\dagger}\right)^{*} \\
& \left(A_{B}^{*} A_{B}\right)^{\dagger}=A_{B}^{\dagger} A_{B}^{\dagger *}
\end{aligned}
$$

Lemma 3.5 [10]

Let A be an $n \times n$ complex matrix. Then the following statements are equivalent:

- A is $E P$.
- $\quad A^{*}$ is EP.
- $\quad r\left[A, A^{*}\right]=r[A]$.
- $\quad A^{\dagger}$ is EP .
- $\quad A A^{\dagger}=A^{\dagger} A$.
- $\quad A^{\dagger}=A^{\#}$.

Theorem 3.6

Let A_{B} be an $n \times n$ complex bimatrix. Then the following are equivalent:

- A_{B} is EP bimatrix
- $\left(A_{B} A_{B}^{\dagger}\right)^{2}=A_{B}^{2}\left(A_{B}^{\dagger}\right)^{2}$
- $\left(A_{B}^{\dagger} A_{B}\right)^{2}=\left(A_{B}^{\dagger}\right)^{2} A_{B}^{2}$

Proof

Let $A_{B}=A_{1} \cup A_{2}$ be an $n \times n$ complex bimatrix.
To Prove (i) \Rightarrow (ii)
If A is EP then $A A^{\dagger}=A^{\dagger} A($ By lemma 3.5)
Hence $\left(A_{B} A_{B}^{\dagger}\right)^{2}=\left(A_{1} A_{1}^{\dagger} \cup A_{2} A_{2}^{\dagger}\right)^{2}$
$=\left(A_{1} A_{1}^{\dagger}\right)^{2} \cup\left(A_{2} A_{2}^{\dagger}\right)^{2}$
$=\left(A_{1} A_{1}^{\dagger}\right)\left(A_{1} A_{1}^{\dagger}\right) \cup\left(A_{2} A_{2}^{\dagger}\right)\left(A_{2} A_{2}^{\dagger}\right)$
$=A_{1}\left(A_{1}^{\dagger} A_{1}\right) A_{1}^{\dagger} \cup A_{2}\left(A_{2}^{\dagger} A_{2}\right) A_{2}^{\dagger}$
$=A_{1}\left(A_{1} A_{1}^{\dagger}\right) A_{1}^{\dagger} \cup A_{2}\left(A_{2} A_{2}^{\dagger}\right) A_{2}^{\dagger}$
$=A_{1}^{2} A_{1}^{\dagger 2} \cup A_{2}^{2} A_{2}^{\dagger 2}$
$=\left(A_{1}^{2} \cup A_{2}^{2}\right)\left(A_{1}^{\dagger 2} \cup A_{2}^{\dagger 2}\right)$
$\left(A_{B} A_{B}^{\dagger}\right)^{2}=A_{B}^{2} A_{B}^{\dagger 2}$

To Prove (ii) \Rightarrow (i)
Suppose A_{B} satisfies (ii)
Note that $\left(A_{B} A_{B}^{\dagger}\right)^{2}=A_{B} A_{B}^{\dagger}$
That is, $A_{B} A_{B}^{\dagger}=A_{B}^{2}\left(A_{B}^{\dagger}\right)^{2}$
$\Rightarrow A_{1} A_{1}^{\dagger} \cup A_{2} A_{2}^{\dagger}=A_{1}^{2} A_{1}^{\dagger 2} \cup A_{2}^{2} A_{2}^{\dagger 2}$

Post-multiply both sides by $A_{B} A_{B}^{*}=A_{1} A_{1}^{*} \cup A_{2} A_{2}^{*}$ we get
$\left(A_{1} A_{1}^{\dagger} \cup A_{2} A_{2}^{\dagger}\right)\left(A_{1} A_{1}^{*} \cup A_{2} A_{2}^{*}\right)=\left(A_{1}^{2} A_{1}^{\dagger 2} \cup A_{2}^{2} A_{2}^{\dagger 2}\right)\left(A_{1} A_{1}^{*} \cup A_{2} A_{2}^{*}\right)$
$A_{1} A_{1}^{\dagger} A_{1} A_{1}^{*} \cup A_{2} A_{2}^{\dagger} A_{2} A_{2}^{*}=A_{1}^{2} A_{1}^{\dagger 2} A_{1} A_{1}^{*} \cup A_{2}^{2} A_{2}^{\dagger 2} A_{2} A_{2}^{*}$
Now use the fact that $A A^{\dagger} A=A$ and $A^{\dagger} A A^{*}=A^{*}$ we get
$A_{1} A_{1}^{*} \cup A_{2} A_{2}^{*}=A_{1}^{2} A_{1}^{\dagger} A_{1}^{*} \cup A_{2}^{2} A_{2}^{\dagger} A_{2}^{*}$
$\left(A_{1} \cup A_{2}\right)\left(A_{1}^{*} \cup A_{2}^{*}\right)=\left(A_{1}^{2} \cup A_{2}^{2}\right)\left(A_{1}^{\dagger} \cup A_{2}^{\dagger}\right)\left(A_{1}^{*} \cup A_{2}^{*}\right)$
$A_{B} A_{B}^{*}=A_{B}^{2} A_{B}^{\dagger} A_{B}^{*}$
Then it follows by equation (1.4) of lemma (1.2) of [10] that
$r\left(A_{B} A_{B}^{*}-A_{B}^{2} A_{B}^{\dagger} A_{B}^{*}\right)=r\left[\left(A_{1} A_{1}^{*} \cup A_{2} A_{2}^{*}\right)-\left(A_{1}^{2} A_{1}^{\dagger} A_{1}^{*} \cup A_{2}^{2} A_{2}^{\dagger} A_{2}^{*}\right)\right]$
$=r\left[\left(A_{1} A_{1}^{*}-A_{1}^{2} A_{1}^{\dagger} A_{1}^{*}\right) \cup\left(A_{2} A_{2}^{*}-A_{2}^{2} A_{2}^{\dagger} A_{2}^{*}\right)\right]$
$=r\left(A_{1} A_{1}^{*}-A_{1}^{2} A_{1}^{\dagger} A_{1}^{*}\right) \cup r\left(A_{2} A_{2}^{*}-A_{2}^{2} A_{2}^{\dagger} A_{2}^{*}\right)$
$=r\left[\begin{array}{cc}A_{1}^{*} A_{1} A_{1}^{*} & A_{1}^{*} A_{1}^{*} \\ A_{1}^{2} A_{1}^{*} & A_{1} A_{1}^{*}\end{array}\right]-r\left(A_{1}\right) \cup r\left[\begin{array}{cc}A_{2}^{*} A_{2} A_{2}^{*} & A_{2}^{*} A_{2}^{*} \\ A_{2}^{2} A_{2}^{*} & A_{2} A_{2}^{*}\end{array}\right]-r\left(A_{2}\right)(3.1)$

Observe that
$\left[\begin{array}{c}A_{1}^{*} A_{1} A_{1}^{*} \\ A_{1}^{2} A_{1}^{*}\end{array}\right]\left(A_{1}^{\dagger}\right)^{*}=\left[\begin{array}{c}A_{1}^{*} A_{1} \\ A_{1}^{2}\end{array}\right] ;\left[\begin{array}{c}A_{2}^{*} A_{2} A_{2}^{*} \\ A_{2}^{2} A_{2}^{*}\end{array}\right]\left(A_{2}^{\dagger}\right)^{*}=\left[\begin{array}{c}A_{2}^{*} A_{2} \\ A_{2}^{2}\end{array}\right]$
and $\left[\begin{array}{c}A_{1}^{*} A_{1} \\ A_{1}^{2}\end{array}\right] A_{1}^{*}=\left[\begin{array}{c}A_{1}^{*} A_{1} A_{1}^{*} \\ A_{1}^{2} A_{1}^{*}\end{array}\right] ;\left[\begin{array}{c}A_{2}^{*} A_{2} \\ A_{2}^{2}\end{array}\right] A_{2}^{*}=\left[\begin{array}{c}A_{2}^{*} A_{2} A_{2}^{*} \\ A_{2}^{2} A_{2}^{*}\end{array}\right]$
Hence, $\mathcal{R}\left[\begin{array}{c}A_{1}^{*} A_{1} A_{1}^{*} \\ A_{1}^{2} A_{1}^{*}\end{array}\right]=\mathcal{R}\left[\begin{array}{c}A_{1}^{*} A_{1} \\ A_{1}^{2}\end{array}\right] ; \mathcal{R}\left[\begin{array}{c}A_{2}^{*} A_{2} A_{2}^{*} \\ A_{2}^{2} A_{2}^{*}\end{array}\right]=\mathcal{R}\left[\begin{array}{c}A_{2}^{*} A_{2} \\ A_{2}^{2}\end{array}\right]$
According to equation (1.12) of lemma (1.2) in [10], then the equation (3.1) is reduced to

$$
\begin{aligned}
& \mathrm{r}\left(A_{B} A_{B}^{*}-A_{B}^{2} A_{B}^{\dagger} A_{B}^{*}\right)=r\left[\begin{array}{cc}
A_{1}^{*} A_{1} & A_{1}^{*} A_{1}^{*} \\
A_{1}^{2} & A_{1} A_{1}^{*}
\end{array}\right]-r\left(A_{1}\right) \cup r\left[\begin{array}{cc}
A_{2}^{*} A_{2} & A_{2}^{*} A_{2}^{*} \\
A_{2}^{2} & A_{2} A_{2}^{*}
\end{array}\right]-r\left(A_{2}\right) \\
& =r\left(\left[\begin{array}{c}
A_{1}^{*} \\
A_{1}
\end{array}\right]\left[A_{1} A_{1}^{*}\right]\right)-r\left(A_{1}\right) \cup r\left(\left[\begin{array}{l}
A_{2}^{*} \\
A_{2}
\end{array}\right]\left[A_{2} A_{2}^{*}\right]\right)-r\left(A_{2}\right) \\
& =r\left(\left[A_{1} A_{1}^{*}\right]^{*}\left[A_{1} A_{1}^{*}\right]\right)-r\left(A_{1}\right) \cup r\left(\left[A_{2} A_{2}^{*}\right]^{*}\left[A_{2} A_{2}^{*}\right]\right)-r\left(A_{2}\right) \\
& =r\left(\left[A_{1} A_{1}^{*}\right]\right)-r\left(A_{1}\right) \cup r\left(\left[A_{2} A_{2}^{*}\right]\right)-r\left(A_{2}\right) \\
& =\left\{r\left(\left[A_{1} A_{1}^{*}\right]\right) \cup r\left(\left[A_{2} A_{2}^{*}\right]\right)\right\}-\left\{r\left(A_{1}\right) \cup r\left(A_{2}\right)\right\} \\
& =r\left[A_{B} A_{B}^{*}\right]-r\left(A_{B}\right)
\end{aligned}
$$

$\Rightarrow r\left(A_{B} A_{B}^{*}-A_{B}^{2} A_{B}^{\dagger} A_{B}^{*}\right)=r\left[A_{B} A_{B}^{*}\right]-r\left(A_{B}\right)$

Hence $A_{B} A_{B}^{*}=A_{B}^{2} A_{B}^{\dagger} A_{B}^{*}$ is equivalent to $r\left[A_{B} A_{B}^{*}\right]=r\left(A_{B}\right)$
By (i) and (iii) of lemma (3.5),
A_{B} is EP bimatrix.
To Prove (i) \Rightarrow (iii)
If A is EP then $A A^{\dagger}=A^{\dagger} A$ (By lemma 3.5)
Hence $\left(A_{B}^{\dagger} A_{B}\right)^{2}=\left(A_{1}^{\dagger} A_{1} \cup A_{2}^{\dagger} A_{2}\right)^{2}$
$=\left(A_{1}^{\dagger} A_{1}\right)^{2} \cup\left(A_{2}^{\dagger} A_{2}\right)^{2}$
$=\left(A_{1}^{\dagger} A_{1}\right)\left(A_{1}^{\dagger} A_{1}\right) \cup\left(A_{2}^{\dagger} A_{2}\right)\left(A_{2}^{\dagger} A_{2}\right)$
$=A_{1}^{\dagger}\left(A_{1} A_{1}^{\dagger}\right) A_{1} \cup A_{2}^{\dagger}\left(A_{2} A_{2}^{\dagger}\right) A_{2}$
$=A_{1}^{\dagger}\left(A_{1}^{\dagger} A_{1}\right) A_{1} \cup A_{2}^{\dagger}\left(A_{2}^{\dagger} A_{2}\right) A_{2}$
$=A_{1}^{\dagger 2} A_{1}^{2} \cup A_{2}^{\dagger 2} A_{2}^{2}$
$=\left(A_{1}^{\dagger 2} \cup A_{2}^{\dagger 2}\right)\left(A_{1}^{2} \cup A_{2}^{2}\right)$
$\left(A_{B} A_{B}^{\dagger}\right)^{2}=A_{B}^{\dagger 2} A_{B}^{2}$

To Prove (iii) \Rightarrow (i)

Suppose A_{B} satisfies (iii)
We have $\left(A_{B} A_{B}^{\dagger}\right)^{2}=A_{B} A_{B}^{\dagger}$
That is, $A_{B} A_{B}^{\dagger}=A_{B}^{2}\left(A_{B}^{\dagger}\right)^{2}$
$\Rightarrow A_{1} A_{1}^{\dagger} \cup A_{2} A_{2}^{\dagger}=A_{1}^{2} A_{1}^{\dagger 2} \cup A_{2}^{2} A_{2}^{\dagger 2}$
Pre-multiply both sides by $A_{B}^{*} A_{B}=A_{1}^{*} A_{1} \cup A_{2}^{*} A_{2}$ we get
$\left(A_{1}^{*} A_{1} \cup A_{2}^{*} A_{2}\right)\left(A_{1} A_{1}^{\dagger} \cup A_{2} A_{2}^{\dagger}\right)=\left(A_{1}^{*} A_{1} \cup A_{2}^{*} A_{2}\right)\left(A_{1}^{2} A_{1}^{\dagger 2} \cup A_{2}^{2} A_{2}^{\dagger 2}\right)$
$A_{1}^{*} A_{1}\left(A_{1} A_{1}^{\dagger}\right) \cup A_{2}^{*} A_{2}\left(A_{2} A_{2}^{\dagger}\right)=A_{1}^{*} A_{1}\left(A_{1}^{2} A_{1}^{\dagger 2}\right) \cup A_{2}^{*} A_{2}\left(A_{2}^{2} A_{2}^{\dagger 2}\right)$
$A_{1}^{*} A_{1}\left(A_{1}^{\dagger} A_{1}\right) \cup A_{2}^{*} A_{2}\left(A_{2}^{\dagger} A_{2}\right)=A_{1}^{*} A_{1}\left(A_{1} A_{1}^{\dagger}\right)^{2} \cup A_{2}^{*} A_{2}\left(A_{2} A_{2}^{\dagger}\right)^{2}$
$A_{1}^{*} A_{1} A_{1}^{\dagger} A_{1} \cup A_{2}^{*} A_{2} A_{2}^{\dagger} A_{2}=A_{1}^{*} A_{1}\left(A_{1}^{\dagger} A_{1}\right)^{2} \cup A_{2}^{*} A_{2}\left(A_{2}^{\dagger} A_{2}\right)^{2}$
$A_{1}^{*} A_{1} A_{1}^{\dagger} A_{1} \cup A_{2}^{*} A_{2} A_{2}^{\dagger} A_{2}=A_{1}^{*} A_{1} A_{1}^{\dagger 2} A_{1}^{2} \cup A_{2}^{*} A_{2} A_{2}^{\dagger 2} A_{2}^{2}$
Now apply $A A^{\dagger} A=A$ and $A^{*} A A^{\dagger}=A^{*}$ we get
$\Rightarrow A_{1}^{*} A_{1} \cup A_{2}^{*} A_{2}=A_{1}^{*} A_{1}^{\dagger} A_{1}^{2} \cup A_{2}^{*} A_{2}^{\dagger} A_{2}^{2}$
$\left(A_{1}^{*} \cup A_{2}^{*}\right)\left(A_{1} \cup A_{2}\right)=\left(A_{1}^{*} \cup A_{2}^{*}\right)\left(A_{1}^{\dagger} \cup A_{2}^{\dagger}\right)\left(A_{1}^{2} \cup A_{2}^{2}\right)$
$A_{B}^{*} A_{B}=A_{B}^{*} A_{B}^{\dagger} A_{B}^{2}$
Then it follows by equation (1.4) of lemma (1.2) of [10] that
$r\left(A_{B}^{*} A_{B}-A_{B}^{*} A_{B}^{\dagger} A_{B}^{2}\right)=r\left[\left(A_{1}^{*} A_{1} \cup A_{2}^{*} A_{2}\right)-\left(A_{1}^{*} A_{1}^{\dagger} A_{1}^{2} \cup A_{2}^{*} A_{2}^{\dagger} A_{2}^{2}\right)\right]$
$=r\left[\left(A_{1}^{*} A_{1}-A_{1}^{*} A_{1}^{\dagger} A_{1}^{2}\right) \cup\left(A_{2}^{*} A_{2}-A_{2}^{*} A_{2}^{\dagger} A_{2}^{2}\right)\right]$
$=r\left(A_{1}^{*} A_{1}-A_{1}^{*} A_{1}^{\dagger} A_{1}^{2}\right) \cup r\left(A_{2}^{*} A_{2}-A_{2}^{*} A_{2}^{\dagger} A_{2}^{2}\right)$
$=r\left[\begin{array}{cc}A_{1}^{*} A_{1} A_{1}^{*} & A_{1}^{*} A_{1}^{2} \\ A_{1}^{*} A_{1}^{*} & A_{1}^{*} A_{1}\end{array}\right]-r\left(A_{1}\right) \cup$
$r\left[\begin{array}{cc}A_{2}^{*} A_{2} A_{2}^{*} & A_{2}^{*} A_{2}^{2} \\ A_{2}^{*} A_{2}^{*} & A_{2}^{*} A_{2}\end{array}\right]-r\left(A_{2}\right)$
Observe that
$\left(A_{1}^{\dagger}\right)^{*}\left[\begin{array}{ll}A_{1}^{*} A_{1} A_{1}^{*} & A_{1}^{*} A_{1}^{2}\end{array}\right]=\left[\begin{array}{ll}A_{1} A_{1}^{*} & A_{1}^{2}\end{array}\right]$
and $A_{1}^{*}\left[\begin{array}{ll}A_{1} A_{1}^{*} & A_{1}^{2}\end{array}\right]=\left[\begin{array}{ll}A_{1}^{*} A_{1} A_{1}^{*} & A_{1}^{*} A_{1}^{2}\end{array}\right]$
similarly,
$\left(A_{2}^{\dagger}\right)^{*}\left[\begin{array}{ll}A_{2}^{*} A_{2} A_{2}^{*} & A_{2}^{*} A_{2}^{2}\end{array}\right]=\left[\begin{array}{ll}A_{2} A_{2}^{*} & A_{2}^{2}\end{array}\right]$
and $A_{2}^{*}\left[\begin{array}{ll}A_{2} A_{2}^{*} & A_{2}^{2}\end{array}\right]=\left[\begin{array}{ll}A_{2}^{*} A_{2} A_{2}^{*} & A_{2}^{*} A_{2}^{2}\end{array}\right]$
Hence, $\mathcal{R}\left[A_{1}^{*} A_{1} A_{1}^{*} \quad A_{1}^{*} A_{1}^{2}\right]=\mathcal{R}\left[\begin{array}{ll}A_{1} A_{1}^{*} & A_{1}^{2}\end{array}\right]$
and $\mathcal{R}\left[\begin{array}{ll}A_{2}^{*} A_{2} A_{2}^{*} & \left.A_{2}^{*} A_{2}^{2}\right]=\mathcal{R}\left[\begin{array}{ll}A_{2} A_{2}^{*} & A_{2}^{2}\end{array}\right], ~(2)\end{array}\right.$
According to equation (1.12) of lemma (1.2) in [10], then the equation(3.2) is reduced to

$$
\begin{aligned}
& \mathrm{r}\left(A_{B}^{*} A_{B}-A_{B}^{*} A_{B}^{\dagger} A_{B}^{2}\right)=r\left[\begin{array}{cc}
A_{1} A_{1}^{*} & A_{1}^{2} \\
A_{1}^{*} A_{1}^{*} & A_{1}^{*} A_{1}
\end{array}\right]-r\left(A_{1}\right) \cup r\left[\begin{array}{cc}
A_{2} A_{2}^{*} & A_{2}^{2} \\
A_{2}^{*} A_{2}^{*} & A_{2}^{*} A_{2}
\end{array}\right]-r\left(A_{2}\right) \\
& =r\left(\left[\begin{array}{c}
A_{1} \\
A_{1}^{*}
\end{array}\right]\left[A_{1}^{*} A_{1}\right]\right)-r\left(A_{1}\right) \cup r\left(\left[\begin{array}{c}
A_{2} \\
A_{2}^{*}
\end{array}\right]\left[A_{2}^{*} A_{2}\right]\right)-r\left(A_{2}\right) \\
& =r\left(\left[A_{1}^{*} A_{1}\right]^{*}\left[A_{1}^{*} A_{1}\right]\right)-r\left(A_{1}\right) \cup r\left(\left[A_{2}^{*} A_{2}\right]^{*}\left[A_{2}^{*} A_{2}\right]\right)-r\left(A_{2}\right) \\
& =r\left(\left[A_{1}^{*} A_{1}\right]\right)-r\left(A_{1}\right) \cup r\left(\left[A_{2}^{*} A_{2}\right]\right)-r\left(A_{2}\right) \\
& =\left\{r\left(\left[A_{1}^{*} A_{1}\right]\right) \cup r\left(\left[A_{2}^{*} A_{2}\right]\right)\right\}-\left\{r\left(A_{1}\right) \cup r\left(A_{2}\right)\right\} \\
& =r\left[A_{B}^{*} A_{B}\right]-r\left(A_{B}\right) \\
& \Rightarrow r\left(A_{B}^{*} A_{B}-A_{B}^{*} A_{B}^{\dagger} A_{B}^{2}\right)=r\left[A_{B}^{*} A_{B}\right]-r\left(A_{B}\right)
\end{aligned}
$$

Hence $A_{B}^{*} A_{B}=A_{B}^{*} A_{B}^{\dagger} A_{B}^{2}$ is equivalent to $r\left[A_{B}^{*} A_{B}\right]=r\left(A_{B}\right)$
$\Rightarrow A_{B}$ is EP bimatrix.

Theorem 3.7

Let $A_{B}=A_{1} \cup A_{2}$ be a bimatrix, then the four equations
$A_{B} X_{B} A_{B}=A_{B}$
$X_{B} A_{B} X_{B}=X_{B}$
$\left(A_{B} X_{B}\right)^{*}=A_{B} X_{B}$
$\left(X_{B} A_{B}\right)^{*}=X_{B} A_{B}$
have a unique solution for any A_{B}.

Proof

First to show that equations (3.4) and (3.5) are equivalent to the single equation,
$X_{B} X_{B}^{*} A_{B}^{*}=X_{B}$
On Substituting (3.5) in (3.4) we get,
$X_{B}\left(A_{B} X_{B}\right)=X_{B}$
$X_{B}\left(A_{B} X_{B}\right)^{*}=X_{B}$
$X_{B} X_{B}^{*} A_{B}^{*}=X_{B}$
Conversely,
(3.7) $\Rightarrow X_{B} X_{B}^{*} A_{B}^{*}=X_{B}$
$A_{B} X_{B} X_{B}^{*} A_{B}^{*}=A_{B} X_{B}$
$\left(A_{B} X_{B}\right)\left(A_{B} X_{B}\right)^{*}=A_{B} X_{B}$
$\left(A_{B} X_{B}\right)\left(A_{B} X_{B}\right)=A_{B} X_{B}$
$X_{B} A_{B} X_{B}=X_{B}$
which gives (3.4)
Thus, (3.4) and (3.5) are equivalent to $X_{B} X_{B}^{*} A_{B}^{*}=X_{B}$
Similarly from (3.3) and (3.6)
$X_{B} A_{B} A_{B}^{*}=\left(X_{B} A_{B}\right)^{*} A_{B}^{*}$
$=A_{B}^{*} X_{B}^{*} A_{B}^{*}$
$=\left(A_{B} X_{B} A_{B}\right)^{*}$
$X_{B} A_{B} A_{B}^{*}=A_{B}^{*}$
Thus, it is sufficient to find an X_{B} satisfying (3.7) and (3.8). Such an X_{B} exists if a B_{B} can be found satisfying,
$B_{B} A_{B}^{*} A_{B} A_{B}^{*}=A_{B}^{*}$
For then $X_{B}=B_{B} A_{B}^{*}$ satisfies (3.8). Also we have seen that (3.8) implies,
$A_{B}^{*} X_{B}^{*} A_{B}^{*}=A_{B}^{*}$
and therefore $B_{B} A_{B}^{*} X_{B}^{*} A_{B}^{*}=B_{B} A_{B}^{*}$

Thus, X_{B} also satisfies (3.7).
Now, the expressions $\left(A_{B}^{*} A_{B}\right),\left(A_{B}^{*} A_{B}\right)^{2},\left(A_{B}^{*} A_{B}\right)^{3}, \ldots$ cannot all be linearly independent that is, there exists a relation
$\lambda_{1} A_{B}^{*} A_{B}+\lambda_{2}\left(A_{B}^{*} A_{B}\right)^{2}+, \ldots,+\lambda_{\kappa}\left(A_{B}^{*} A_{B}\right)^{\kappa}=0,(3.9)$
where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\kappa}$ are not all zero.

Let λ_{r} be the first non zero λ and put
$B_{B}=-\lambda_{r}^{-1}\left\{\lambda_{r+1} I+\lambda_{r+2}\left(A_{B}^{*} A_{B}\right)+\cdots+\lambda_{\kappa}\left(A_{B}^{*} A_{B}\right)^{k-r-1}\right\}$
Thus, (3.9) gives $B_{B}\left(A_{B}^{*} A_{B}\right)^{r+1}=\left(A_{B}^{*} A_{B}\right)^{r}$
Apply (vi) and (vii) of (2.6) repeatedly we obtain,
$B_{B} A_{B}^{*} A_{B} A_{B}^{*}=A_{B}^{*}$
To show that X_{B} is unique, we suppose that X_{B} satisfies (3.7) and (3.8) and that Y_{B} satisfies,
$Y_{B}=A_{B}^{*} Y_{B}^{*} Y_{B}$ and $A_{B}^{*}=A_{B}^{*} A_{B} Y_{B}$
These relations are obtained by substituting (3.6) in (3.4) and (3.5) in (3.3) respectively.
Now, $X_{B}=X_{B} X_{B}^{*} A_{B}^{*}$
$=X_{B} X_{B}^{*} A_{B}^{*} A_{B} Y_{B}$
$=X_{B} A_{B} Y_{B}$
$=X_{B} A_{B} A_{B}^{*} Y_{B}^{*} Y_{B}$
$=A_{B}^{*} Y_{B}^{*} Y_{B}$
$X_{B}=Y_{B}$
The unique solution of (3.3),(3.4),(3.5)and (3.6) is called the generalized inverse of A_{B} (abbreviated as g.i) and written as $X_{B}=A_{B}^{\dagger}$.

Note 3.8

In the above lemma,

- $\quad A_{B}$ need not be a square bimatrix and may even be zero.
- Use the notation λ^{\dagger} for scalars, where λ^{\dagger} means λ^{-1} if $\lambda \neq 0$ and 0 if $\lambda=0$.

Theorem 3.9

Let $A_{B}=A_{1} \cup A_{2}, B_{B}=B_{1} \cup B_{2}$ and $C_{B}=C_{1} \cup C_{2}$ are bimatrices. A necessary and sufficient condition for the equation $A_{B} X_{B} B_{B}=C_{B}$ to have a solution is,

$$
A_{B} A_{B}^{\dagger} C_{B} B_{B}^{\dagger} B_{B}=C_{B}
$$

in which case the general solution is,

$$
X_{B}=A_{B}^{\dagger} C_{B} B_{B}^{\dagger}+Y_{B}-A_{B}^{\dagger} A_{B} Y_{B} B_{B} B_{B}^{\dagger},
$$

Where Y_{B} is arbitrary.

Proof

Suppose X_{B} satisfies $A_{B} X_{B} B_{B}=C_{B}$
Then $C_{B}=A_{B} X_{B} B_{B}$
$=A_{B} A_{B}^{\dagger} A_{B} X_{B} B_{B} B_{B}^{\dagger} B_{B}$
$C_{B}=A_{B} A_{B}^{\dagger} C_{B} B_{B}^{\dagger} B_{B}$
Conversely, if $C_{B}=A_{B} A_{B}^{\dagger} C_{B} B_{B}^{\dagger} B_{B}$, then $A_{B}^{\dagger} C_{B} B_{B}^{\dagger}$ is a particular solution of $A_{B} X_{B} B_{B}=C_{B}$
For the general solution, we have to solve $A_{B} X_{B} B_{B}=0$
Now, any expression of the form
$X_{B}=Y_{B}-A_{B}^{\dagger} Y_{B} B_{B}^{\dagger} B_{B}$
Satisfies $A_{B} X_{B} B_{B}=0$.
And conversely if $A_{B} X_{B} B_{B}=0$ then,
$X_{B}=X_{B}-A_{B}^{\dagger} A_{B} X_{B} B_{B} B_{B}^{\dagger}$.

Theorem 3.10

Let $A_{1} X_{1}=B_{1}$ and $A_{2} X_{2}=B_{2}$ be two system of equations and can be written as $A_{B} X_{B}=B_{B}$, where $A_{B}=A_{1} \cup A_{2}$ be a co-efficient bimatrix, $X_{B}=X \cup Y$ be a unknown bimatrix and $B_{B}=B_{1} \cup B_{2}$ be a column bimatrix. And let $A u g_{B}=\left[\begin{array}{ll}A_{1} & B_{1}\end{array}\right] \cup\left[\begin{array}{ll}A_{2} & B_{2}\end{array}\right]$ be the augmented bimatrix of the two systems. If the components of augmented bimatrix are equivalent then both the systems has the same solution.

In particular, for the homogeneous system of equations, if the components of co-efficient bimatrix are equivalent then the system must have the unique solution.

Note 3.11

For the non homogeneous system of equations, if the components of augmented bimatrix are not equivalent then both the systems need not have same solution.

Example 3.12

Let the two system of equations be,
$2 x_{1}+3 x_{2}-x_{3}=5 ; \quad x_{1}+2 x_{2}+x_{3}=8$
$4 x_{1}+4 x_{2}-3 x_{3}=3 ; \quad 2 x_{1}+3 x_{2}+4 x_{3}=20$
$2 x_{1}-3 x_{2}+2 x_{3}=2 ; \quad 4 x_{1}+x_{2}+2 x_{3}=12$
This can be written as
$A_{B} X_{B}=B_{B}$
Where $A_{B}=\left(\begin{array}{lll}2 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 3 & 5\end{array}\right) \cup\left(\begin{array}{ccc}2 & 1 & -1 \\ 0 & 2 & 1 \\ 5 & 2 & -3\end{array}\right), \mathrm{X}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right), \mathrm{B}_{\mathrm{B}}=\left(\begin{array}{l}5 \\ 3 \\ 2\end{array}\right) \cup\left(\begin{array}{c}8 \\ 20 \\ 12\end{array}\right)$
The solution is $x_{1}=1, x_{2}=2, x_{3}=3$

REFERENCES

1. Adi Ben-Isreal and Thomos N.E Greville, ‘Generalized inverses: Theory and Application’ $2^{\text {nd }}$ Ed. Network, NY: springer2003.
2. Awni M.Abu-Saman,'Solution of linearly independent equations by generalized inverse of a matrix',int J.sci Emerging Tech,vol-4 No. 2 August 2012 pp: 138-142.
3. Hartwig. R.E, Katz.I.J, 'On products of EP matrices' Linear Algebra Appl. 252(1997)338-345.
4. Moore.E.H,‘Generalized analysis’,Philadelphia, American Philosophical society,1935.
5. Moore. E.H, 'On the Reciprocal of the general algebraic Matrix,' Bull amer Math. soc., vol. 26(1920), PP(394395)
6. Penrose. R, 'A Generalized inverse of matrices' proc cambridge philos.soc. vol 51(1955), $\mathrm{PP}(406-413)$.
7. Ramesh. G, Anbarasi. N, ‘On Bihermitian matrices’ IOSR journal of Mathematics, vol 9 Issue 6 (Jan 2014).
8. Ramesh. G, Anbarasi.N, 'On EPr Bimtarices' Int. jour. of Mathematics and Statistics Invention (IJMSI) vol. 2 Issue 5 May 2014, PP(44-52).
9. Rao. C.R. and Maitra. S.K, 'Generalized inverse of matrices and its applications’ wiley New york,(1971).
10. Shizhen cheng, yongge Tian, 'Two sets of new characterizations for normal and EP matrices' Elsevier, Linear Algebra and its applications 375 (2003) (181-195).
