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Abstract

In the field of operations management, most decisions are seen as being based on measurement results. 
However, every measurement has some uncertainty and therefore managerial decisions can be incorrect. 
Measurement uncertainty can cause particularly large losses in the case of maintenance decisions, where 
decision error can cause the breakdown of the entire production or service process. Taking measurement 
uncertainty into consideration the losses can be decreased. The standards, technical reports and guides 
dealing with measurement uncertainty use probability approach and focus on the metrology aspect. 
They do not support a risk based decision based on the forecast of the observed characteristics. In the 
proposed risk based model the realized (or lost) revenue is treated along with the occurred costs in order 
to maximize the profit with the help of analytic calculation and simulations. This paper suggests that by 
treating measurement results as a time series the time of probable failure can be predicted at a given 
confidence level, this can support the scheduling of maintenance tasks. The uncertainty of measurement 
and the uncertainty of forecasting can be treated in the same model.
Key words: forecast, measurement uncertainty, risk-based maintenance, stochastic process. 

Introduction

In preventive maintenance a conclusion is drawn about the future based on actual meas-
ured values: What will be the next value of the observed characteristic? When will the failure 
occur? These questions cannot be answered when using traditional conformity control. Since 
the measured values are not independent of the previous ones the future values are predictable 
with the use of time series (Kosztyán, Csizmadia, Hegedűs and Kovács, 2009; Pintelton and 
Schoukens, 2006). However, in the use of time series the measurement uncertainty is not taken 
into account or it is not separated from the uncertainty, treated as part of the white noise. 

Every measurement is subject to some uncertainty that must be defined and expressed 
in order to make the measurement results explicit (BIPM, IEC, IFCC, ISO, IUPAP and OIML, 
1993). The Guide to the Expression of Uncertainty in Measurement (GUM) proposes methods 
to evaluate and express this uncertainty in a uniform way. However, GUM does not give any 
suggestions about how to decide about the conformity of a product or a process on the basis of 
uncertainty. Following the GUM many studies discussing this problem have been published. 
Forbes (2006) approaches the conformance assessment as a Bayesian-decision, where the costs 
of wrong decisions are taken into account. Pendrill (2006) emphasizes that the impact of deci-
sions should be kept to the fore at the specification of maximum permissible errors. For the 
correct calculation of risks the measurement uncertainty must be treated in a probabilistic ap-
proach (Rossi and Crenna, 2006). According to previous studies the consideration of measure-
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47ment uncertainty has advantages not only in the case when this uncertainty is high (Kosztyán 
and Schanda, 2006) but also in cases when the consequences of a decision error (type I or type 
II) are significant (Arunraj and Maiti, 2009). Treating measurement uncertainty has vital impor-
tance in the area of maintenance where the failure of a device can cause the halt of the whole 
production or service (Krishnasamy, Khan and Haddara, 2005). 

Research Focus

The studies dealing with measurement uncertainty take only the costs into account and 
try to minimize them. They oppose the producer’s risk and the customer’s risk. Kosztyán, Csiz-
madia, Hegedűs and Kovács (2010) have already shown that by taking revenues into consid-
eration the two points of view can be integrated, and the producer’s profit can be maximized. 
These revenues also depend on the decisions. 

The main purpose of this research is developing a model and method to take into account 
the measurement uncertainty in conformity and maintenance decisions. The searched method 
minimizes the risk of these decisions with the consideration of measurement uncertainty and 
can be combined with forecasting methods. The intention of the authors is to provide a tool to 
the managers that helps the decisions in conformity assessment and the scheduling of mainte-
nance tasks by determining when the control should be performed.

Background

According to the methods proposed by the GUM, the uncertainty can be expressed in 
two ways. On the one hand, the measurement uncertainty can be expressed as a probability dis-
tribution of measurement results described by the value of standard deviation (standard uncer-
tainty). If the measurement result is obtained from the values of a number of other quantities the 
standard deviation is called combined standard uncertainty. On the other hand, the uncertainty 
can be described as an interval, the length of the interval calculated as a multiplication of the 
combined standard uncertainty and a k coverage factor. The value of k determined by the confi-
dence level and the type of the probability distribution function, but it is often specified as 2 or 
3 (Ellison and Williams, 2007; ISO, 1998; ILAC, 2009). This approach assumes the symmetry 
of the probability distribution, but this assumption is not valid in every case. This is why in the 
suggested model a kLSL lower and a kUSL upper values are used instead of k and these new altered 
coverage factors are determined not by the reliability but by the risk of decisions (Figure 1). In 
this way instead of measuring points, measuring intervals are taken into consideration between 
the specification limits. It is an equivalent solution if instead of using intervals new limits (criti-
cal values) are set for the decision. Since the alteration of limits depends not only on standard 
deviation of measurement uncertainty but also the type of the probability distribution and the 
consequence of decisions the KLSL and KUSL correction factors are used subsequently. These fac-
tors give the total length and direction of the offset of specifications limits.

Figure 1: Decision-making of adequacy based on measuring intervals instead 
of measuring points and the alteration of limits as an equivalent solu-
tion. 
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48 The change of the observed characteristic can be analysed in several ways. It can be 
treated as a sequence of various states identified by artificial neural networks (Chen, Lu, and 
Lam, 2007) and the probability of transition between two states can be calculated. The actual 
state of the process of the characteristic can be specified based on the measured values of the 
characteristic and the previous observations. The time in the process is in this state and the most 
probable state into which it switches after that can be determined from the probability of the 
transitions. If the actual or the most probable subsequent state of the characteristic threatens the 
operation of device or process maintenance is necessary.

There is another way to handle the change of characteristic, its values are treated as a 
time series and can be studied in time-domain or frequency-domain. The stationary or quasi-
stationary time series can be described with an autoregressive integrated moving average (ARI-
MA) model (Pintelton and Shoukens, 2006; Åkesson and Toivonen, 2006). This is the model 
that is combined with the consideration of measurement uncertainty. The ARIMA model is the 
generalisation of autoregressive moving average (ARMA) model for d ordered integrated proc-
ess. AR (p) is the p ordered autoregressive and MA (q) is the q ordered moving average process. 
ARMA (p, q) is the combination of AR (p) and MA (q) process (see Eq. 1-2).

	 	
		

To determine the order of AR and MA the autocorrelation function (ACF) and the partial 
autocorrelation function (PACF) are considered. There are simple rules that show the 

estimation of orders of ARMA process. However, there is no rule how to determine the order 
of ARMA when ACF and PACF functions are cutting off or decaying at same time. 
•	 ACF: decays, PACF: cuts off = AR (p = cut off)
•	 ACF: cuts off, PACF: decays = MA (q = cut off)
•	 ACF: decays, PACF: decays = Problem 
•	 ACF: cuts off, PACF: cuts off = Problem

When estimating the orders of ARIMA process the simplest and significant model is 
selected, where the coefficients of AR and MA processes are also significant. 

Methodology of Research

Monte Carlo simulations and analytical calculations will be used to determine the opti-
mal modification of the control limits based on the consideration of measurement uncertainty. 
After that this model will be combined with stochastic time series models in order to forecast 
the future values of the observed characteristic, the expected (point of) time of the failure and 
the risk of failure.

Simulations

For the simulation it is assumed, that the probability distribution (with its parameters) of 
x real value of observed characteristic and probability distribution of m measurement error from 
the calibration report are known. The decision on the conformity of process, device or product 
based on y=x+m measured value as a sum of the real value and measurement error. The proc-
ess is considered as conform if the observed value is between the LSL lower and USL upper 
specification limit, LSL≤y≤USL. If there is only one specification limit, the other limit can be 
ignored in the model. The process is conforming if the x real value of observed characteristic is 



problems
of Management
in the 21st century
Volume 1, 2011

49between the specification limits, LSL≤x≤USL.
Because of the measurement uncertainty four cases can be distinguished as a combina-

tion of real conformity and the decision itself (Table 1). If control or maintenance is not re-
quired, but the measured value shows the inverse, unnecessary control is done (producer’s risk) 
and decision error type I is made. If the real value of observed characteristic is non-conforming 
but it is undetected because of the measurement uncertainty (customer’s risk) and decision error 
type II is made. Also appropriate decisions can be made, if non-conform process gets controlled 
or conform process is let run. 

Table 1. Profits influenced by the decisions and the facts.
 

Profit/Loss
Decision
Maintenance/Control is not 
performed (1)

Maintenance/Control  
is performed (0)

Fact

Maintenance/Control is not 
required(1)

π11=r11 - c11
Appropriate acceptance

π10=r10 - c10
Inappropriate control 

Maintenance/Control is 
required (0)

π01=r01 - c01
Inappropriate acceptance 

π00=r00 - c00
Appropriate control 

In the four cases the cij costs are different. These costs depend on the number of executed 
measurement, the cost of production of service or product and the actions in accordance with 
the decisions. In order to calculate the unrealized profit an alternative decision is made the rij 
revenues must also be taken into account beside the costs. So πij=rij‑cij proportional profits are 
used to calculate the ΣΠ total profit in reference to decisions: 
	 (3)

The qij number of element belongs to certain cases calculated in the simulation. 
To maximize the expected profit the decision rules should be modified: the process will 

be treated as conform if LSL+KLSL≤y≤USL-KUSL where KLSL and KUSL the correction factors 
belong to the LSL and USL. The value of correction factors are calculated in the simulation. 
These correction factors are not coefficients; they give directly the extent of the alteration of 
specification limits. If the risk of decision error type II is low the value of correction factor can 
be negative, in this case the control limits do not become stricter but wider. The Monte Carlo 
simulation searches the value of KLSL and KUSL that result the maximum of total profit in refer-
ence to decisions.

		  (4)
In the maintenance of a device the revenue cannot be interpreted in every case, that is 

why only costs are used to express consequences. The cost can include the costs of inspection, 
control and failure or the loss of unutilized productivity. This modification does not alter the 
structure of model but the value of rij revenues will be zero. 
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50 Analytic Calculation of Risks

Let the probability density function of x real values be f(x), and the probability density 
function of m measurement error be g (m). It is assumed that these two distributions are 
independent of each other, and the common distribution is calculated as its multiplication. On 
the left side of Figure 2 the four cases of Table 1 can be seen: the parallelogram in the middle is 
the region of appropriate acceptance bounded by the y=LSL, y=USL, x=LSL and x=USL lines. 
Above and below this parallelogram are the regions of decision error type I, on the left and the 
right side between the y=LSL and y=USL lines are the regions of decision error type II. The 
uncoloured regions belong to the appropriate control. 
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Figure 2: The 4 regions of decision outputs (left side) and the modification of 
these regions (right side). 

The control limits and decisions must be modified in order to maximize the profit simi-
larly to the simulation. For the sake of simplicity let the KLSL=KUSL=K that is the lower and up-
per limit be modified to the same extent. If the profits belong to certain cases are weighted with 
the probability of occurrence, the profit maximizing target function is the following: 
	 (5)

The Π (0) is the expected profit without any modification (K=0) and the ∆Π (K) is the 
increase (or decrease) of the expected profit as a function of K. The Π (K)  is similar to risk, be-
cause a probability is multiplied with consequence in terms of money, but the negative implica-
tions of risk, the term of expected profit is used. To maximize the expected profit it is sufficient 
to maximize ∆Π (K) (right side of Figure 2):
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Where deterioration appears and there is a trend in the observed characteristic it is suf-

ficient to take into consideration only the specification limit to the tendency of the trend. In 
those cases when only a minimum or only a maximum value is determined that must not be 
exceeded by observed characteristic, this limit must be taken into consideration in the course 
of decision making. If there is only LSL the regions belong to ∆Π (K) are similar to the region 
in Figure 3.

All the points above the y=LSL+K line are in the accepting region but only the points 
right of the x=LSL vertical line actually conform. Under the y=LSL+K line the maintenance is 
executed, but it should be done only if x<LSL. The increase of profit is calculated with the Eq. 
(7). 	

(7)

Forecasting

If deterioration occurs, the process of the observed characteristic of the device has 
a trend and therefore it is suitable to handle the process as a time series. In order to treat the 

Figure 3: The region of ∆Π (K) in case of only LSL exists.  
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52 time series of the observed characteristic with linear stochastic models the time series must 
be decomposed. The trend shows the expected value of the characteristic. The uncertainty of 
this forecast derived from the random variation of real value, the frequency of sampling, the 
sample size and the time interval of the forecast. If the intervals between the samplings are 
equal the width of the confidence interval of the trend is constant. The lower and upper bound 
of confidence interval parallel to the trend (left side of Figure 4). 

maintenance

predicted 
failure

t

y

trend

maintenance

predicted 
failure 

t

y

LSL LSL

Figure 4: Confidence intervals of measured processes.

At a given confidence level the width of confidence interval can be decreased if the 
sampling frequency is increased when the trend comes closer to the LSL (right side of Figure 
4). Increasing the frequency of sampling, the length of the confidence interval of forecasting 
will decrease. The length of the confidence interval (for a given significance level α) can be 
calculated as follows: 

	
N
n

n
tyINT −⋅

σ
⋅±= α−α− 1211 	

(8)
where n is the size of the sample, N is the number of the elements of the whole popula-

tion, σ is the uncertainty expressed as a standard deviation and t is the value of Student-t distri-
bution that belongs to the confidence level of 1-α/2.

After the decomposition we identify the stochastic process best fitting to the real process. 
Once we have identified a particular model we need to estimate the parameters and assess how 
well the model fits. After the validation of the stochastic model it can be used for forecasting. 
This model predicts the next value on the basis of actual and previous values of real process 
and prediction error. The further we try to forecast the higher the uncertainty will be (see Figure 
5).

The optimal control limit can be determined by simulation or estimation with the meth-
ods shown in previous sections. This limit is not a constant as it changes with the time. At the 
time of the initial measurements the risk of decision error type II is low, because the observed-
characteristic is far from the LSL (see Figure 5). This risk is increasing because of the deterio-
ration. The risk of decision error type I is also increasing but at a slower rate than the risk of 
decision error type II. So the curve of minimal total risk will increase.
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Figure 5: The uncertainty increases with the interval of forecast. 

The following measurement must be performed there, where the confidence interval of 
forecast intersects the curve of minimal total risk (tM1) (see Figure 6). Until this point failure 
will not occur in the process with the confidence level of forecast. With the new measurement 
result the decomposition, identification, estimation of parameters and forecast will be executed 
again. These steps are performed iteratively (tM2, tM3) until the interval between intersection of 
the confidence interval and the curve of minimal total cost and the intersection of the confi-
dence interval of the trend and the curve of minimal total risk is inessential. At this point main-
tenance is required as opposed to measurement.

Figure 6: The intersections of confidence intervals and curve of minimal total 
risk determine the time of measurements 

Results of the Simulations and Calculations

Simulations and calculations have been done to different types of distributions 
including continuous uniform, triangle and normal distributions (Table 2). There was only a 
lower specification limit; LSL=52. Two cases were considered: in the first case the loss of 
decision error type II    	  was much (15 times) higher than the loss of decision error type I 
. In the second case the loss of decision error type II was only twice as high as the loss of 
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54 decision error type I. (If the rate of these losses are below 1 then the corrective maintenance 
would be more efficient than the preventive maintenance.) Two relative costs 

were calculated:

	 ( ) ( )
( )0

sim
sim optsim

sim opt
sim

C K
c K

C
= 	

(9)

	 ( ) ( )
( )0

calc
calc optcalc

calc opt
calc

C K
c K

C
= 	

(10)

The sim
optK  is the optimal correction factor determined by simulations; the Csim( sim

optK ) 

is the total cost in sim
optK . The calc

optK  and Ccalc(
calc
optK ) the optimal correction factor and minimal 

total cost calculated analytically. 

Table 2. The results of the simulations and analytical calculations. 

Distribution 
of real values

Distribution of 
measurement 
uncertainty

sim
optK calc

optK csim( sim
optK ) ccalc(

calc
optK ) 

uniform 
(50,70)

uniform 
(-3,3)

15 2.6250 2.6393 0.2608 0.2614

2 0.9798 0.9986 0.9593 0.9596

triangle 
(50,60,70)

uniform 
(-3,3)

15 1.9693 2.1890 0.6821 0.6801
2 -1.6469 -1.4563 0.7909 0.7839

normal  
(60,4.0825)

uniform 
(-3,3)

15 1.9745 1.8341 0.6634 0.6628
2 -1.1109 -0.9758 0.9024 0.8946

uniform 
(50,70)

triangle 
(-3,0,3)

15 1.9484 1.9425 0.2981 0.2981
2 0.4468 0.5038 0.9314 0.9300

triangle 
(50,60,70)

triangle 
(-3,0,3)

15 1.3543 1.4005 0.5889 0.5815

2 -0.3438 -0.2383 0.9768 0.9655
normal 

(60,4.0825)
triangle 
(-3,0,3)

15 1.3264 1.2106 0.5772 0.5727
2 -0.1441 -0.1947 0.9895 0.9719

uniform 
(50,70)

normal 
(0,1.2247)

15 1.8698 1.8870 0.3244 0.3232
2 0.5182 0.4801 0.9320 0.9319

triangle 
(50,60,70)

normal 
(0,1.2247)

15 1.3016 1.1185 0.5879 0.5521
2 -0.2738 -0.3504 0.9783 0.9770
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normal 

(60,4.0825)
normal 

(0,1.2247)
15 1.2436 1.2546 0.5818 0.5808

2 -0.1438 -0.1770 0.9921 0.9896

On Figure 7 profits are compared to each other as a result of simulations. The gray 
surface represents the profit (Π(0)) as a function of the process performance index when the 
acceptance limit is not altered. The black surface depicts the profit (Π (K)) when the acceptance 
limit is modified with K in order to compensate the measurement uncertainty. Three typical 
solutions are in the practice: the measurement uncertainty is not taken into consideration (K=0), 
the acceptance zone is tightened with the double of the standard deviation of measurement 
uncertainty (K=2σm

 marked with white dash-dot line on Figure 7.A) or the acceptance zone is 
widened with the same extent (K=-2σm marked with white dashed line on Figure 7.B). The op-
timal value of K (K=Kopt) is delineated with white solid line, the profit is reached by using this 
optimal correction (Kopt) of the acceptance limit is the highest reachable. 

Figure 7: Comparison of profits when acceptance limit is modified and not modi-
fied. 
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In the case of forecast the curve of minimal total risk in reference to decisions was de-
termined by simulations. The time series of the process could be decomposed to a trend and 
random effects according to the initial measurement. The trend decreased exponentially. The yT 
was the value of the trend at the t-th measurement without random effect. 

		  (13)

The ARIMA(1,1,1) process was the identificated stochastic process that described the 
random effect in the real process. The parameters of ARIMA(1,1,1) are in Table 3.

Table 3. The parameters of ARIMA model.

Parameters Estimate SE t Sig.
Constant 0.043 0.302 0.141 0.888
AR Lag 1 0.682 0.043 15.994 0.000
Difference 1
MA Lag 1 0.903 0.025 35.828 0.000

The confidence interval of forecast intersects the curve of minimal risk in the tM point 
(Figure 8). This is the latest point in time the measurement must be performed . The interval 
between the last measured point and tM1 corresponds to 125 measurment interval

Figure 8: Forecast of the time of the next measurement. 

In the case of condition based (predictive) maintenance after the initial transient phase 
and the identification of stochastic process, a considerable amount of inspection cost can be 
spared with the forecast. 
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In the practice, in technical reports and guides the measurement uncertainty is taken 
into account with a reliability centered approach. If the alteration of acceptance or control 
limits neglects the consequences of the decision errors, the loss can be higher than without 
the consideration of measurement uncertainty (see Figure 7.). The advised method unlike the 
previous ones uses a risk based approach that takes into account costs and revenues of the 
decision outputs. Thus it can minimize the loss or maximize the profit of a measurement based 
decision. 

The introduced model can be used to determine the optimal control limit if the 
measurement error is independent from the real value of the process and the probability 
distribution of measurement uncertainty and the process can be determined. This model can 
be used to forecast the value of the process if the time series of the process is stationary or 
transformable to stationary (quasi-stationary). This method is worth using where the loss 
(	        ) of decision error type II is higher than the loss (  	     ) of decision error 
type I. The suggested method  combined with the forecast increases the profit if the costs of 
measurement are high and the continuous observation is not necessary. It can be developed to 
give the optimal control limit and time of linked devices on the basis of joint reliability and total 
cost of consequences.

Conclusion

The preventive maintenance decisions are based on measurement results, but these 
results have an uncertainty and cause incorrect decisions. It is necessary to take into account 
this uncertainty on a risk base. In this paper a uniform model was presented that treats the 
customer’s risk along with the producer’s risk through the consideration of the measurement 
uncertainty and costs or losses in reference to maintenance decisions. This model gives the 
optimal control limit of the process that minimizes the total risk associated with the decisions 
and maximizes the related profits. It can treat both kinds of the processes that have either 
only one or two specification limits. The optimal control limit influenced by the risks can be 
determined by Monte Carlo simulation or analytical calculation. The weakness of condition 
based maintenance is the difficulty of planning. If the process can be forecasted the proposed 
model gives the latest time when the next measurement must be performed, to minimize the 
cost of measurement but avoid threatening the operation of the device or the production process. 
Until this time, control is not necessary at a given level of confidence.

Note

This is a revised and enhanced version of an international scientific conference paper in 
Problems of Management in the 21st Century. The reference for the conference version is: 

Csaba Hegedűs, Zsolt T. Kosztyán (2010): Treating measurement uncertainty in 
maintenance related decisions, 38th ESReDA Seminar on Advanced Maintenance Modelling, 
Pécs, Hungary, 4-5 May 2010.
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