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ABSTRACT 

Hutchinson-Gilford Progeria Syndrome (HGPS) is an extremely rare genetic disorder characterized by 
premature aging, involving aberrant splicing of the LMNA gene, resulting in the production of a disease-causing 
mutant lamin A protein called progerin. Clinical manifestations are evident by the first or second year of life and 
include the physical characteristics usually associated with the elderly. Because neither parent carries or 
expresses the mutation, each case is believed to represent a sporadic, new mutation that happens most notably 
in a single sperm or egg immediately prior to conception. Clinical trials investigating farnesyltransferase 
inhibitors (FTIs), statins, and bisphosphonates as HGPS treatments are currently underway. FTIs prevent 
farnesylation and localization of progerin to the cell membrane but do not repair the function of the abnormal 
progerin protein within the cytoplasm that may result in abnormalities in cell function and DNA repair that, 
therefore, would not be treated with these drugs. Thus some other novel treatment strategies are required for the 
more effective treatment. This review summarizes the clinical characteristics of this disease, the underlying 
mutation in the lamin A (LMNA) gene that results in this phenotype and the recent advances in treatment 
strategies. 
 
Keywords: Progeria, Lamin A, Hutchinson-Gilford progeria syndrome, farnesyl transferase inhibitor. 
 

 

INTRODUCTION 
The word Progeria comes from the Greek word 
“progeros” meaning prematurely old (“pro” means 
before and “geras” means old age). Progeria is also 
known as Hutchinson-Gilford Progeria Syndrome 
(HGPS) as it was first described by Dr. Jonathan 
Hutchinson in 1886 [1] and by Dr. Hastings Gilford in 
1897. [2] HGPS is a very rare, fatal genetic disorder 
occurring in childhood, characterised by a dramatic 
premature aging and accelerated cardiovascular 
disease. [3] The other signs include growth failure, loss 
of body fat and hair, skin changes, stiffness of joints, 
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hip dislocation, generalized atherosclerosis, 
cardiovascular disease, and stroke. Children with 
progeria die of atherosclerosis (heart disease) or stroke 
at an average age of 13 years (with a range of about 7-
21 years).  
There are currently fewer than 150 documented cases of 
HGPS worldwide. The children have a remarkably 
similar appearance, even though progeria affects 
children of all different ethnic backgrounds. The 
estimated incidence of progeria is 1 in 4-8 millions. [4-5] 
It is a genetic condition that occurs as a new mutation 
and is not usually inherited, although there is a 
uniquely heritable form. [6] In nearly all cases HGPS is 
caused due to denovo point mutation in codon 608 of 
exon 11 of LMNA gene. [7-8] Even though no single 
mechanism has clearly emerged to explain the complex 
phenotype in HGPS, literature suggests that 
farnesylated progerin is the molecular culprit. 
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Although children with progeria are born looking 
healthy, they begin to display many characteristics of 
accelerated aging by 18-24 months of age, or even 
earlier. Both boys and girls have an equal risk of having 
progeria. Remarkably, the intellect of children with 
progeria is unaffected, [9-10] and despite the physical 
changes in their young bodies, these extraordinary 
children are intelligent, courageous, and full of life. On 
average, death occurs at the age of 13, with at least 90% 
of subjects dying from progressive atherosclerosis of 
the coronary and cerebral arteries, with tissues such as 
bone and skin also prominently affected. Scientists are 
particularly interested in progeria because it may help 
in understanding the heart diseases and normal process 
of aging. Majority of affected patients show an 
autosomal dominant inheritance, although some cases 
of autosomal recessive inheritance are also reported. [10-

15] 

 
CLINICAL FINDINGS 
The diagnosis of progeria is based on recognition of the 
following clinical features (summarized in Table 1) and 
is confirmed with molecular genetic testing. [16] 

Effect on Growth 
Growth in patients with Hutchinson–Gilford progeria 
syndrome is abnormal. Growth rate is decreased below 
the third percentile for normal height by 15 months of 
age: between 2 and 10 years, healthy children grow 5.84 
cm per year, while HGPS children grow 3.58 cm per 
year. [6] These patients are usually short and thin with 
an average height of 100 cm and average weight of 12-
15 kg or even less. [17] In general, HGPS children are 
characterized by short stature, below average weight. 
Weight is even more affected, with the weight curve 
running almost horizontally from 2 years of age. [18] 
Within the first year, growth is disturbed, with weight 
more affected than height. A ten-year-old HGPS patient 
will be of same height as an average three-year-old 
child. [17]  
Effect on Dermatological Features 

The first noticeable signs of HGPS are circumoral 
cyanosis (a blue tint to the skin surrounding the lips) 
and a visible vein across the nasal bridge. [6, 18] Typical 
dermatological features include dry, wrinkled skin, 
caused by the hardening of connective tissue and the 
loss of subcutaneous adipose tissue, as well as the 
uneven thickening of the skin due to the presence of 
scar tissue-like lesions. [17, 19] The skin is initially thick 
and swollen, with pitting oedema. Pitting oedema 
(slight swelling due to fluid build-up in the tissues) is 
seen in the lower abdomen, upper gluteal area, 
genitalia, and anterior thighs. [6, 18] Pitting oedema can 
arise anywhere from one and a half months to two 
years, taking on a thick, tight, stiff quality with time. [18] 
With time, it becomes more firm and sclerodermatous. 
The scleroderma disappears after 6 months to 2 years, 
after which the skin becomes thin, dry, and atrophic, 
with reduced turgor, and sometimes with fine scaling 
or hyperkeratosis. 

Table 1: Various Clinical Findings in Hutchinson-Gilford Progeria 
Syndrome 

Clinical Findings 

Growth Short stature, below average weight 
Dermatological 

 
Circumoral cyanosis, visible vein across the 
nasal bridge, dry and wrinkled skin, pitting 
edema, hyperkeratosis, thinning of skin, loss 
of hair including eyebrows and eyelashes 

Facial 
 

Small jaw, proportionally large cranium, 
protruding eyes, narrow nose, prominent 
veins on the scalp, dental crowding, 
prominent outer ears, mild myopia 

Speech & Hearing High-pitched voice, mild conductive hearing 
loss 

Musculoskeletal 
 

Osteolysis, deterioration in joint mobility, 
joint and knee stiffness, osteopenia of the 
long bones, vertebral bodies are ovoid with a 
‘fish-mouth’ appearance 

Cardiovascular 
 

Atherosclerosis, elevated blood pressure, 
shortness of breath, transient ischemic 
attacks, hypertrophy, loss of smooth muscles 

Genital Development of secondary sexual 
characteristics is rare 

 
The skin over the phalanges usually becomes red and 
swollen, while the nails become dystrophic. Loss of 
subcutaneous fat leading to lipodystrophy can start at 6 
months, becoming visible at 3-4 years of age. This fat 
loss occurs first in the limbs, followed by the thorax, 
neurocranium and face, with the buccal and pubic fat 
disappearing latest. Less intra-abdominal fat causes the 
characteristically prominent abdomen seen in nearly all 
children with HGPS. The disappearance of 
subcutaneous and intra-orbital fat and ‘thinning’ of the 
skin, cause the underlying blood vessels to be more 
clearly visible and the eyes to appear more prominent. 
[18] 
Rarely, the hair is still present at the age of 12–15 year. 
[20] The eyebrows and eyelashes also disappear, 
although some of the lateral eyelashes may remain. [2] 
The hair usually becomes light in color, with rare 
exceptions. [20-21] Body hair (chest, axilla, pubis, limbs) is 
sparse or completely absent. Loss of hair, including 
eyebrows and eyelashes, makes patients almost bald by 
2-3 years of age, and wide veins became clearly visible 
on the scalp. [6] 

Effect on Facial Features 

Phenotypes are most notable in the facial area, 
including a small jaw (micrognathia), proportionally 
large cranium, protruding eyes, narrow nose, and 
prominent veins on the scalp. [13] Other facial features 
are: narrow nasal bridge and ridge; thin skin that 
wrinkles easily around the mouth; irregular teeth with 
increased decay, dental crowding due to the limited 
size of both the maxilla and mandible, [22] other oral 
abnormalities such as hypodontia, ankyloglossia, 
ogival palate, double rows of teeth, delayed tooth 
eruption, vertical chewing where rotatory chewing 
should normally develop, [6] and difficult dental care 
due to a small oral aperture. [23] The other facial features 
of HGPS patients are small chin, prominent outer ears 
that lack lobules, flattened and subsequently collapsed 
point of the nose with a nasal ridge that becomes 
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convex and a viscerocranium that becomes relatively 
small compared with the neurocranium. 
Effect on Eyes 
With one exception, [24] cataracts have not been found 
in patients with HGPS. But strabismus and mild 
myopia is common. Unusual eye findings are irregular 
nystagmoid movements, [5] ptosis and Marcus–Gunn 
phenomenon, [25] retinal arteriolar narrowing and 
tortuosity, [26] and photophobia. [27] 
Effect on Speech, language and Hearing 
Auditory comprehension and expressive language 
skills were reported to be average in HGPS patients, [6] 
in contrast to a mild conductive hearing loss reported 
in a majority of European patients. [18] Almost all 
patients have a high-pitched voice. In spite of the 
unusual voice, children generally speak well, are 
usually alert, active and cheerful, and have a normal 
psychosocial development. [18] Conductive hearing loss 
[28] and moderate bilateral sensory neural loss [29] has 
been occasionally seen, but mild conductive hearing 
loss was found in most European patients. 
Effect on Musculoskeletal Function 
Osteolysis is always present, in the distal phalanges, 
clavicles, mandible, neurocranium, and 
viscerocranium. It causes a reduction in size of the chin 
during the first 2 years of life and characteristic narrow 
shoulders with a gradual narrowing of the upper part 
of the thorax. As the mandibular osteolysis is greater 
than that of the viscerocranium, retrognatia also occurs. 
There is deterioration in joint mobility and in late 
phases the ankles, wrists, shoulders, and hips are also 
involved. The clavicle has a small and tapered distal 
end, the angle between the head and neck of the femur 
and its shaft are substantially increased (an extreme 
coxa valga), and the vertebral bodies are ovoid with a 
‘fish-mouth’ appearance. [18] Joint mobility is normal at 
birth but decreases from the 2nd to 3rd year, initially in 
the knees followed by the elbows and fingers. In one 
recent study every patient showed an abnormal range 
of motion in at least three peripheral joints and 
developed a wide based, shuffling gait, resulting from 
joint and knee stiffness and joint deformities. [6] 
Radiologically, with time osteopenia of the long bones 
develops. The long bones are slender and sometimes 
somewhat bowed. [30-32] 

Effect on Cardiovascular System 
Cardiovascular complications generally cause death in 
Hutchinson–Gilford progeria syndrome. Autopsy 
reports have described varying degrees of generalized 
atherosclerosis, mainly involving the larger arteries. 
Coronary occlusions with myocardial infractions were 
found more frequently than cerebral vascular lesions. 
[10] Medial smooth-muscle cells are lost, with secondary 
maladaptive vascular remodeling, intimal thickening, 
disrupted elastin fibres, and deposition of extracellular 
matrix; sclerotic plaques in the aorta and coronary 
arteries are associated with stenosis. [33-34] There is 
stiffening of blood vessels with elevated systolic and 
diastolic blood-pressure levels and an increased arterial 

augmentation rate. Peripheral vascular disease, with 
reduced ankle–brachial indexes and vessel occlusion 
has been seen in few cases. [6] Thickening of the 
coronary arteries has been found, with or without 
calcification. Affected children gradually develop 
shortness of breath with exertion and easy fatigability 
starting at 6-8 years of age, when pulse rates and blood 
pressure increase. A hypertrophy of myocardial cells 
often accompanied by interstitial fibrosis occurs. [35-38] 
Marked medial hypertrophy of the pulmonary 
muscular arteries with fibrous intimal thickening as a 
result of fatal pulmonary hypertension has been also 
reported. [38] These changes tend to occur after age of 
seven [39] but transient ischemic attacks can occur at an 
age of four. [16] 

Effect on Genital System  
There is no pre-pubertal or pubertal growth spurt. 
Marked hypoplasia of the nipples has frequently been 
described, [40] although true athelia has not been found. 
[18] Genitalia are normal or may include somewhat 
small penis, with testes usually descended. Complete 
absence of spermatogenesis, [35, 41] maturation arrest of 
spermatogenesis, [42] normal spermatogenesis, [43] and 
nocturnal emissions [2, 44] have been reported. 
Development of secondary sexual characteristics is 
rare, although some of the oldest children have reached 
a Tanner developmental stage II (first appearance of 
pubic hair, breast buds, and slight enlargement of penis 
and testicles). Female external and internal genitalia 
have been reported to be normal, except for hypo 
plastic labia in an adult, [45] a single large ovarian cyst 
adenoma, [46] and multiple follicular ovarian cysts of 
various sizes. [47] Development of secondary sexual 
characteristics is very unusual; breast development is 
virtually absent, as is axillary and pubic hair growth. 
While a 32-year-old woman with non-classical progeria 
had her menarche at 12 years and gave birth to a 
healthy child at 23 years; however no male patient is 
known to have fathered a child. [6, 20, 45] 

Other early distinguishing physical features include 
sleeping with eyes open, thin lips, nearly normal 
neurocranial growth paralleling brain growth, and a 
narrow nasal bridge with a sharp nasal tip. [16, 18] 
 
POSSIBLE MECHANISM INVOLVED IN 
OCCURANCE OF PROGERIA 
Past few year studies have suggested that in humans, 
some genetic defect causes progeroid syndrome that 
interferes with formation of mature Lamin A (LMNA). 
The genetic basis of HGPS was uncovered in 2003, 
when it was found that most cases of the disease are 
associated with a single nucleotide substitution that 
leads to aberrant splicing of LMNA, the gene that 
encodes the A-type nuclear lamins. [7-8, 48]  
Normal processing of Lamin A  
Lamins are type V intermediate filamentous proteins 
and have a short N-terminal “head” domain, an α-
helical “central rod” domain, and a globular tail 
domain. [49] They are major determinants of nuclear size 
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and shape and are involved in essential functions such 
as chromatin organization, DNA replication and 
transcription, RNA processing. [50-51] There are two 
types of lamins: Type A and Type B. A-type lamins 
include two major products, lamin A and lamin C, and 
two minor products, laminA∆10, and lamin C2, which 
results from an alternative mRNA splicing within exon 
10. [52] 

 
Fig. 1: Normal Lamin A Processing: Farnesylation of prelamin A; 
removal of a-a-X sequence and carboxymethylation, finally release 
of mature Lamin A by enzyme ZMPSTE24 

 
Fig. 2: de novo point mutation in Exon 11 of LMNA gene 

 
Fig. 3: Defect in Lamin A processing in Progeria: Farnesylation of 
prelamin A; removal of a-a-X sequence and carboxymethylation, 
permanent anchoring of unprocessed Lamin A in the nuclear 
membrane due to lack of ZMPSTE24 cleavage site 

 
The lamin gene is made up of 12 exons. Exons 1-10 
encode the N-terminal 566 amino acids of lamins A and 
C; however, exons 11 and 12 are unique to lamin A 
mRNA and code for an additional 98-amino acid C-
terminal region which contains functionally important 
post-translational modification sites. Thus, lamin C 
differs at the C-terminal from lamin A, since it lacks the 
final part of exon 10, as well as exons 11 and 12. [52] 

Lamins A and C are major constituents of the nuclear 
lamina, form either homodimers or heterodimers to 
create the filamentous structure of the nuclear lamina 
that support the inner nuclear membrane and also 
extend throughout the nucleus. [53-55] In contrast to 
lamin C, lamin A is produced by post-translational 
processing of the prelamin A precursor. Lamin A is 
expressed in only differentiated tissue fulfilling 
essential functions in organ and tissue homeostasis, 
while Lamin B is expressed throughout the 
development forming the fundamental constituents of 
the nuclear envelope, essential for cell viability and 
normal embryonic development. Thus defects in Lamin 
B are generally more lethal. [56] 

Normally lamin A maturation involves a series of post-
translational modifications of newly translated 
prelamin A protein to form mature lamin A by two 
transfer reactions and two proteolytic cleavages. [57] In 
normal cells, pre-lamin A (664 amino acids) contains a 
cysteine-aliphatic-aliphatic-any amino acid  (CaaX) 
motif at the carboxy-terminal, where the cysteine 
residue becomes farnesylated by the enzyme farnesyl 
transferase. [58-59] The 4–amino acid tail serves as a 
recognition site for posttranslational modifications 
where a 15-carbon farnesyl group is added. The 
presence of a farnesyl group at the carboxy-terminal 
end, along with the CaaX motif allows the prelamin A 
to be embedded in nuclear membrane and these are 
thus essential for correct localization of the mature 
protein. [60] This farnesylated protein then undergoes a 
two step endo-proteolytic cleavage by a zinc 
metalloproteinase enzyme ZMPSTE24/FACE1. [61] First 
the C-terminal aaX sequence is cleaved and the 
remaining farnesyl cysteine is then methylated. The 
addition of farnesyl and methyl group increases the 
hydrophobicity [62] and thus helps in association of 
Prelamin A with nuclear membrane. In the second step, 
15 amino acids at the C- terminal end including the 
farnesylated cysteine are cleaved by ZMPSTE24 
releasing mature Lamin A (Fig. 1). [58] The removal of 
the terminating 15 amino acids allows detachment of 
lamin A from the nuclear membrane. [63] 

Defect in normal processing of Lamin A in Progeria 
The HGPS arise from deficiencies in these post-
translational modifications of prelamin A. In the 
majority of HGPS patients, there is a de novo nucleotide 
substitution i.e. GGC to GGT in exon 11 of LMNA gene 
on chromosome 1 at position 1824 of the coding 
sequence (Fig. 2). [7-8] However this mutation does not 
cause change in amino acid sequence in protein 
(G608G), it generates a cryptic splice donor site in exon 
11 which results in removal of 150 base pairs and thus 
in-frame deletion of last 50 amino acids (607–656) from 
C-terminal of exon 11, but does not affect the CaaX 
motif.  
Because exon 12 does not undergo any change, the first 
3 steps of prelamin processing occur normally 
(farnesylation of the CaaX site, removal of the aaX, and 
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addition of the methyl group at C-terminal). But 
unfortunately, it lacks an endoproteolytic cleavage site 
required for normal processing of the lamin A 
precursor because the necessary sites for Zmpste24 
cleavage are among the 50 amino acids not translated. 
[7-8, 64] This new molecule, with a 50–amino acid deletion 
from the exon 11 and preservation of the 3’ farnesyl 
group, is called “LA∆50/progerin”. [65-66] As a result 
LA∆50/progerin remains permanently farnesylated [67- 

68] and thus permanently anchored in the nuclear 
membrane (Fig. 3). 
 
HGPS PHENOTYPES 
The abnormal progerin protein acts in a dominant-
negative manner to prevent the normal assembly of 
nuclear lamins into the nuclear lamina. Its 
accumulation causes disruption of nuclear integrity and 
leads to formation of abnormally shaped nuclei, a 
prominent characteristic seen in HGPS. [69-70] It leads to 
all of the downstream nuclear defects that are 
characteristic of HGPS. Nuclei appear larger, distorted, 
blebbed, and have a thicker nuclear lamina. [69] 
Moreover there is heterochromatin disorganization, 
mislocalization of nuclear envelope proteins, disrupted 
gene transcription, [68, 71-73] and increase in DNA 
damage with a loss of DNA repair efficiency. [74-75] It is 
evident that not the absence of Lamin A, but the 
accumulation of progerin is responsible for the toxic 
effects in affected cells. [70, 76-77] 
Transcriptional misregulation has also been reported in 
HGPS fibroblasts. [73, 78] In HGPS cells, the mechanical 
properties of nuclear lamina gets reduce. The nuclei 
become stiffer, have reduced deformability, [79] and do 
not respond to mechanical force in the same manner as 
normal cells. [80] When Lamin A/C-deficient mouse 
embryo fibroblasts are subjected to mechanical strain 
show increased nuclear deformation, defective 
mechanotransduction, and impaired viability [81] which 
may be responsible for cardiac-muscle and skeletal 
muscle pathologies in HGPS patients, as resulting from 
mechanical damage during muscle contraction. 
Cells derived from patients with HGPS and HGPS 
mouse models display some signs of activated DNA-
damage response, including enhanced phosphorylation 
of histone H2AX and markedly increased transcription 
of p53 target genes. [74, 82] Cell division is also modified 
during nuclear envelope dissolution and reassembly. 
The lamina becomes depolymerized during the 
disassembly of the nuclear membrane in mitosis, and 
improper assembly at the end of mitosis leads to cell 
death. [83] During mitosis progerin plus normal lamin A 
mis-localize into insoluble cytoplasmic aggregates and 
membranes, delaying their return to the inner nuclear 
membrane and lamina of the reformed nucleus. This 
causes spatial and functional disruption of interphase 
G1 chromatin and may lead to formation of bi-nucleate 
cells. [67-68] These structural, spatial and DNA 
damage/repair changes lead to increased genome 
instability and cytotoxicity due to accumulation of 

progerin in aging HGPS cells. [50, 69, 84] HGPS also results 
in a decreased epidermal population of adult stem cells 
and impaired wound healing in mice. [85] 

In nearly all cases HGPS is caused due to denovo point 
mutation in codon 608 of exon 11 of LMNA gene. [7-8] 
However other heterozygous and homozygous 
mutations have also been found in HGPS patients, such 
as R471C, R527C, G608S, c.2036C>T, T528M, M540T, 
R644C, T623S, A57P, R133L, L140R, K542N 14, 86-90, 
and some of which show a less severe form of the 
disease. [86-90] 
Several laboratory studies have indicated that progeria 
patients excrete an excessive amount of 
glycosaminoglycan hyaluronic acid. [91-93] Fibroblasts 
from patients with progeria show a 3-fold increase in 
total glycosaminoglycan and, in particular, hyaluronic 
acid, compared with age-matched control groups 
which results from an abnormality in degradation and 
is not caused by increased synthesis. This increase in 
hyaluronic acid level may be responsible for decreased 
density of vasculature, sclerodermatous changes, and 
calcification of blood vessels. 
 
TREATMENT 
Prior to the HGPS gene discovery, progeria patients 
were given nutritional treatment and growth hormone 
therapy, which was unsuccessful and resulted in only 
transient improvements. [9] But now many mouse 
models have been generated that allows better 
understanding of Lamin A and more insights into 
HGPS treatment strategies. 
Farnesyltransferase inhibitors 
Mouse lines absent in the lamin A Zmpste24 cleavage 
sites or Zmpste24 deficient mice demonstrate HGPS-
like symptoms, [94-95] illustrating the importance of 
Zmpste24 cleavage and the deleterious effects of 
accumulated farnesylated prelamin A. Thus, a potential 
therapeutic approach involves farnesyl inhibition using 
farnesyl transferase inhibitors (FTIs) as a potential 
method for treatment of HGPS. Indeed, issues arise 
with nonfarnesylated prelamin A potentially causing 
toxicity in the cell, just as farnesylated prelamin A does. 
[96] Thus it may be possible that FTIs could improve 
HGPS disease phenotypes but the resultant 
accumulation of nonfarnesylated prelamin A produce 
other disease phenotypes. [97-98] 

FTI treatment is also correlated with the relocalization 
of the lamin A protein away from the nuclear periphery 
and partially rescues the nuclear morphology 
phenotype. [97-101] Furthermore, FTIs improved the 
survival of mice missing the enzyme, Zmpste, which is 
responsible for the cleavage events that produce 
mature lamin A. [96] Toth and co-workers [98] 
hypothesized that the partially processed prelamin A of 
Zmpste24 deficient cells accumulates at the nuclear 
lamina, interfering with normal lamina formation, and 
causing nuclear blebbing. Their hypothesis is 
supported by the nuclear shape normalization 
observed in these cells after been treated with FTI. [97-98] 
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Indeed, nuclear blebbing might not be the accurate 
indicator of disease phenotype at the whole-body level 
in humans, because other LMNA mutations cause 
human disease without any effect on nuclear shape. [102] 
Only a small amount of mature LA is necessary for 
proper nuclear-envelope assembly. [103] In support of 
this idea, clinical trials using FTIs demonstrate little 
toxicity, even when levels of unfarnesylated prelamin 
A are raised significantly. [104] However, the absence of 
LA leads to serious cellular consequences and disease. 
[105] 
Treatment with protein FTI reverses aberrant nuclear 
shapes and improves the abnormal phenotypes in mice 
with an HGPS mutation in LMNA. [106] These 
fascinating laboratory studies have led to clinical trials 
of protein prenylation inhibitors in children with 
HGPS. However, progeroid mice treated with FTI as 
well as mice that express a progerin variant that cannot 
be farnesylated still have a fairly severe disease 
phenotype and die prematurely. [107] 
Interfering with lamin A processing in the mouse, 
either by deleting Zmpste24 or by expressing progerin, 
results in an HGPS-like phenotype. [106, 108-109] Treating 
these mice with FTIs markedly ameliorates many of the 
HGPS-like phenotypes such as lack of adipose tissue, 
growth retardation and skeletal pathology. [97, 106, 110] It 
has been also established by Mehta and co-workers [111] 
that exposure to farnesyl transferase inhibitors restores 
the mis-localized chromosome territories to a nuclear 
position similar to chromosomes in proliferating 
control cells. Some additional studies reveal that in 
mouse models of HGPS, FTIs improved bone quality, 
growth, and survival. [97, 107, 110] Such findings have led 
to the first HGPS treatment clinical trials with the FTI to 
investigate the efficacy of FTIs as treatments for HGPS. 
[112] 
FTI treatments may result in an alternative route of 
prelamin A prenylation known as geranylgeranylation, 
which is an alternative form of prenylation which may 
reduce the efficacy of FTIs. Treatment of HGPS mice 
with statins and bisphosphonates inhibits both 
farnesylation and geranylgeranylation and improves 
nuclear shape. The utilization of statins and 
bisphosphonates resulted in reduced lipodystrophy, 
reduced hair loss, improved bone defects, and 
enhanced longevity. [82] Pravastatin (a statin) and 
zoledronic acid (a bisphosphonate) are being studied in 
a second set of clinical trials as treatments for patients 
with HGPS. A third set of trials has also been initiated 
in 2009 which examines FTI, Pravastatin, and 
Zoledronic acid in combination. [112] The dose-
dependent administration of the FTI Tipifarnib 
(R115777, Zarnestra) to the HGPS mouse model can 
significantly prevent both the onset of the 
cardiovascular phenotype as well as the late 
progression of existing cardiovascular disease. [113] 
The results of the first-ever clinical drug trial for 
children with progeria reveal that Lonafarnib, a FTI 

originally developed to treat cancer, has proven 
effective for progeria. Every child showing 
improvement in one or more of four ways: gaining 
additional weight, better hearing, improved bone 
structure and/or, most importantly, increased 
flexibility of blood vessels. [114] It should be noted that 
FTIs prevent farnesylation and localization of progerin 
to the cell membrane but do not ameliorate the function 
of the abnormal progerin protein within the cytoplasm, 
which may result in abnormalities in cell function and 
DNA repair that, therefore, would not be treated with 
these drugs. [75, 115] 
New treatment strategies 
Recent studies have indicated that the nuclear blebbing 
phenotype in HGPS fibroblasts can be ameliorated with 
morpholino antisense reagents [70] or by expressing 
short hairpin RNA constructs (RNA interference). 
Literature suggests that selective inhibition through 
small molecules (or other RNA interference techniques) 
of the alternative splicing caused by the classical 
mutation is one of the most promising therapies for 
HGPS. [116-118] The addition of a synthesized dsRNA 
with the LMNA sequence would prompt the cell to 
eliminate all mutated lamin proteins at the post-
transcriptional level, thereby reducing progerin 
expression. [119] Several recent studies have shown that 
antisense oligonucleotides (ASOs) have the potential to 
modulate splice site utilization. [120-123] Moreover, 
treating Zmpste24-/- cells with a prelamin A-specific 
antisense oligonucleotide reduced prelamin A levels 
and significantly reduced the frequency of misshapen 
nuclei. [110] It has been shown that cellular disease 
phenotype is reversible in cells from HGPS patients. 
The repeated transfection of a morpholino 
oligonucleotide directed against the exon 11 splice 
donor site has been shown to inhibit alternate splicing. 
Upon splicing correction, HGPS fibroblasts assume 
normal nuclear morphology, the lamina-associated 
protein’s distribution and cellular levels are rescued, 
defects in heterochromatin-specific histone 
modifications are normalized, the dynamic properties 
of lamin A are restored, and proper expression of 
several misregulated genes is re-established. [70] 
Osorio and co-workers [124] also observed the 
effectiveness of morpholino antisense nucleotide which 
led to a marked amelioration of their progeroid 
phenotype and substantially extended their life span in 
the mutant mice. In a study by Fong and co-workers 
[125] demonstrated that the one of the 2′-MOE ribose 
oligonucleotide has moderately decreased the progerin 
level in comparison to others that have increased the 
progerin level, which suggests that ASOs with similar 
properties could be therapeutically useful. Hernandez 
and co-workers [126] observe decreased Wnt signaling 
and extracellular matrix gene expression in a murine 
model of the disease, suggesting potential therapeutic 
strategies. Wnt signaling regulates extracellular matrix 
composition and is critical for cartilage development as 
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well as osteoblast and chondrocyte differentiation 
during vertebrate skeletogenesis. Then they treated 
cultured fibroblasts of mice model of the disease and 
further two human subjects with HGPS with a GSK-3β 
inhibitor, which is known to activate the Wnt effector 
protein β-catenin, improved survival, and restored 
proliferation. This preliminary observation suggests a 
potential new therapeutic option for HGPS. 
Recent experimental studies demonstrate that 
rapamycin decreases the amount of the disease-causing 
protein progerin by 50%, improves the abnormal 
nuclear shape, extends the lifespan of progeria cells [127] 
and leads to autophagic degradation of toxic 
farnesylated Prelamin A and progerin. [128-129] 

 
Hutchinson-Gilford progeria syndrome is a rare, 
segmental premature aging syndrome of accelerated 
atherosclerosis, cardiovascular diseases and early death 
from myocardial infarction or stroke. Progeria has 
fascinated clinicians for a century because the disease 
has been seen as a window into the process of aging for 
all of us. A better understanding of the pathogenesis of 
this human progeroid syndrome is likely to improve 
our understandings about several areas of cell biology, 
mainly in the areas of nuclear structure, dynamics and 
DNA repair, as well as how defects in these 
fundamental biological processes lead to cellular and 
organismal disease phenotypes. Current clinical trials 
show that this disease may be controlled 
symptomatically using farnesyl transferase inhibitors. 
We believe that it will be important to continue to 
develop other therapeutic strategies, such as 
approaches to reduce the alternative splicing event that 
lies at the root of the disease, or to eliminate prelamin A 
transcripts with antisense approaches. 
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