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ABSTRACT 
Quantitative structure activity relationship (QSAR) has become a tool for designing in various areas like drugs, food 
additive, Pesticides, biochemical reactant, environmental pollutant and toxic products. In QSAR biological activity can be 
related with physicochemical properties and in QSPkR (Quantitative Structure Pharmacokinetic Relationship), 
pharmacokinetic properties can be related with physicochemical properties, relation found in terms of quantity. A number 
of literature and review article have been published on Quantitative structure pharmacokinetic relationship. But prediction 
of human pharmacokinetic properties of known and unknown is much difficult job in pharmaceutical industry. 
Pharmacokinetic data of animal cannot be put straightforward. Artificial neural network (ANN) is used to predict the 
pharmacokinetic properties. Artificial neural network has basic structure like biological brain and compose of neurons 
which are interconnected to each other. The present review not only compiles the literature of QSPkR using ANN, but 
gives detail about the physicochemical properties and artificial neural network. 
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INTRODUCTION 
Virtual screening and combinatorial chemistry firmly 
established itself as a powerful technique in drug discovery 
efforts, particularly in lead discovery as well as lead 
optimization. Incorporation of medicinal chemistry 
knowledge and biopharmaceutical properties into library 
design is a prerequisite to rational drug design. [1] Recent 
advances in lead compound identification using high 
throughput and in silico techniques have allowed rapid 
identification of compounds exhibiting possible 
pharmacological effects at known drug receptor sites. [2] The 
use of combinatorial chemistry in drug design has drastically 
increased the number of compounds that can be synthesized.  
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With the availability of software which is relatively 
inexpensive, powerful and computer hardware allows for the 
enumeration of large virtual librareraries. [3-6]

Application of computers [7-9] led the structure activity 
relationship from qualitative to a quantitative relationship. 
Quantitative structure activity relationship (QSAR) has 
become a tool for design of new drug. QSAR is used in 
various areas like drugs, food additives, pesticides, 
biochemical reactant, environmental pollutant and toxic 
products to design a new and safer drug or chemical. [10-12] 
Quantitative structure activity relationship (QSAR) has 
become tool in design of new drug. The most successful 
approach which appears involves computing molecular 
descriptors (Physicochemical characteristics and topological 
parameter). This collection of descriptors is then subjected to 
a D-optimal design to select structure or structural building 
blocks to be included in creating a combinatorial library for 
biological evaluation. [13-14] In the free energy approach, 
Hansch used physicochemical properties and correlated with 
biological activity using regression analysis. The result of 
treatment was an equation which describes, in a quantitative 
manner the relationship between biological activities of 
compound with its chemical structure (Fig 1). QSAR  
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Fig. 1: Diagram showing the general procedure for Molecular Modeling 
technique has been helpful in understanding of 
pharmacological activities based on structure and is 
important part of modern drug discovery activities. [15-18] 
Physiochemical properties can be calculated from experiment 
but it is time consuming and expensive. [19] Theoretical 
descriptors generated from the molecular structure of a 
compound have become popular now days. Over a thousand 
of these descriptors have been defined but all these are not 
equally useful. [20] Many of these descriptors have been 
successfully correlated with parameters such as boiling 
points of alkanes, octane isomers [21-22] aqueous solubility [23-

24], plasma protein binding affinities [25] and enzyme 
inhibition property. [26-28] For design of drug requires 
prediction of both pharmacokinetic and pharmacodynamic 
properties. During the drug development process, prediction 
of human pharmacokinetic parameters such as clearance and 
volume of distribution is fundamental in the design, 
optimization and selection of lead drug candidates and in 
determination of optimal dosing regimens for early phase 
clinical trials. [29] For prediction of human pharmacokinetic 
parameters from animal data is far from straightforward 
while using appropriate pharmacokinetic allometric 
principles because there is great intrinsic difference between 
animal and human models and there is complexicity of 
human pharmacokinetic properties. [30-33] Prediction of 
pharmacokinetic properties is performed in-vitro or with 
various animal models which can be both time consuming 
and expensive. [34] Drug development often fails because of 
poor pharmacokinetic properties of drug candidates and 

results may not accurately reflect the human pharmacokinetic 
properties. [35] For minimizing the risk of such failure, 
selection of compound having pharmacokinetic properties is 
required in the early stages of a drug discovery programme. 
[36-37] As the pharmacokinetics is mechanism oriented 
science, most of pharmacokinetic model included a 
significant mechanistic element. Even the most common and 
two exponent models are based on assumption regarding the 
functional mechanism involved e.g. that the drug is 
transported by blood circulation (Central compartment) 
eliminated. [38] Screening for absorption, distribution, 
metabolism and excretion (ADME) properties and toxicity is 
often performed in-vitro or with various animals models 
which can be both time consuming and expensive. In 
addition existing model are limited by their high cost, 
intensive labor requirements, low throughput, and 
consumption of large amount of test sample. These 
limitations would be overcome by developing a reliable 
model for predicting pharmacokinetic parameter from easily 
measured physicochemical parameters. Partition coefficient 
had been utilized for prediction of pharmacokinetic property 
of Propylene glycol dipelargonate. [39] Prediction of human 
pharmacokinetic parameters is an area which needs lots of 
attention to aid in pharmaceutical product development. The 
complexity of prediction of drug input-drug effect systems 
makes such systems prime candidates for neural network 
analysis. Artificial neural network (ANN) has become 
popular in solving many complex nonlinear relationships that 
exist amongst data when dealing with drug data sets. [40]
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ANN is used widely for many studies due to their inherent 
nonlinearity and suitability for predictive applications. 
Moreover, Generalization ability of ANN makes them 
successful for construction of predictive model. Therefore, a 
number of workers have used artificial neural network 

(ANN) in prediction of pharmacokinetic parameters. [41-46]  In 
many areas of pharmacy multilayer perceptron ANNs has 
been used. ANNs were used to monitor the 
pharmacodynamics of short-acting neuromuscular blockers 
in clinical setting. [47] ANNs were chosen for current studies 
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because it is fast and give controllable mechanism for 
prediction without the need of more costly biopharmaceutical 
data. When it is compared with conventional closed-loop 
controllers suggesting a potential use for ANN technique in 
clinical study. Both pharmacokinetics and pharmacodynamic 
relationships were analyzed using ANNs [48] in many studies 
ANN have been compared with common statistical technique 
such as multiple linear or polynomial regression analysis, 
nearest neighbor classifier, maximum likelihood estimation 
and Bayesian estimation. [49] The performance of ANN was 
reported to be comparable superior to that of other 
techniques. The advantages of ANN over statistical 
estimation technique is that no a prior knowledge of 
underlying statistical nature of problem is required and no 
simplifying assumption need to be made for application of 
this technique in a sparse data environment. [50] Neural 
network use an empirical approach for prediction and are 
based on observations of the system to discover relationships 
from the system recorded behavior. Neural computing is an 
attempt to build mathematical models that mimic the 
computing power of human brain. Like biological brain 
learning power depends on the connection between its 
neurons but not on the structure of neurons. Neural network 
has been used to model many complex problems in QSAR 
and QSPR studies. [51-53] Several attempts have been used to 
establish Quantitative structure pharmacokinetic relationship. 
[54-63] Gobburu [64] et al 1995 established QSPkR using 
artificial neural network. Quantitative structure 
activity/Quantitative structure pharmacokinetic relationship 
(QSAR/QSPkR) Modeling is used to establish mathematical 
expression correlating activity and Pharmacokinetic 
parameter to physicochemical properties of a congeneric 
series of compound. [65-68] QSAR approach has been used to 
predict the correlation and optimize molecular structures 
which are used to study and understand the mechanism of 
action of drugs. The general equation used for QSAR is: 

BA = f(y) 
Where BA represents biological acivity (usually reciprocal of 
a drug concentration producing a standard response such as 
1/IC50). f(y) is a mathematical expression correlating 
biological activity with a matrix of structural parameter (y). 
If biological activity is replaced by pharmacokinetic, toxicity 
and metabolism, is known as QSPR, QSTR, and QSMR. For 
traditional Hansch analysis 

F(y) =M∑aiyi+b 
Where Yi are individual structural properties, ai are 
coefficients and b is a constant .both ai and b are obtained 
from  multi linear regression analysis, providing the number 
of compounds exceeds the number of structural properties. 
[69] Many QSPR attempts have been established but these 
efforts have been less adapted than classical QSAR because 
of in appropriate data sets or phenomena is too complex to be 
depicted by model. [70]

Artificial neural network 
Neural network are computational systems implemented in 
software or hardware that attempt to simulate the 
neurological processing abilities of biological systems, in 
particular brain. [71] ANN are the computational models that 
consist of number of simple processing unit that 
communicate by sending signal to each other over a large 
number of weighted connection. It is based on human brain 
in which neurons collect signal from other neuron or 
dendrites. [72] ANN contains mainly three layers: (1) input 

layer (2) hidden layer (3) Output layer (Fig. 2). The layer that 
receives the input from environment (i.e. independent 
variable of the system) is the input layer. The output layers 
nodes generate the dependent variable (i.e. output layer). The 
layers interconnecting the input and output layer are known 
as hidden layer. [73] The hidden and output neuron received 
an additional constant input called the ‘bias’. The sigmoidal 
function was used as the neuron transfer or called as 
squashing function. [74] The total input, Xj to unit j is a linear 
function of outputs Yi,of the units that are connected to j and 
of the weights, Wij, on these connections. 

Xj = ∑YiWij 
The symbol Wij denotes the weight associated with 
connection through which signal inpi enters the neuron j. [75] 
Neural work professional II/plus version 5 (Neuralware, 
Pittsburgh, PA) and was used to creat the neural network for 
prediction of peak and trough gentimicin concentration 
which is multilayer feed forward perceptron using the 
extended delta bar delta algorithm. [76-77] Model of human 
brain was drawn by soft computing and derives artificial 
intelligence (AI) sources including fuzzy logic, General 
regression neural network (GNN) and artificial neural 
network (ANN). [78] Yap [79] et al 2004 establish QSPkR 
using general regression  neural network When population 
pharmacokinetic data is analyzed   using NONMEM and 
ANN, ANN show less predictive error than NONMEM. [80] 
Neural network are most suitable to model the behavior of 
complex kinetic systems so it has been used to predict 
pharmacodynamics property of alfentanil drug. [81]

Descriptors 
Descriptors may be scalar representation of an atom or a 
matrix. For Calculation of 3-D descriptor require lattice type 
information. There are currently over a thousand theoretical 
descriptors that have been applied to chemical and drug 
related problems. [82] There are two types of descriptors. 

(1)Independent           (2) Dependent 
Independent descriptors 
Independent descriptors are those which are not significantly 
linearly correlated with one another.eg topological, molar 
volume, molar refractivity etc. 
Topological descriptors 
Three dimensional structure of a molecule depends on the 
position of individual atom and the connection between them 
i.e. on its topology. Topology indices are numerical 
quantities derived from molecular graphs represent 
molecules. Topological indices have been used in connection 
and prediction of most molecular properties. [83] Wiener [84] et 
al 1947 proposed the first topological index based on 
distance matrix known as Wiener index and defined it for 
saturated hydrocarbons, the path number W as the sum of the 
number of bonds between all pairs of vertices; this index 
reflects the branching of molecule, may be calculated from 
the sum of the off diagonal elements of the distance matrix. 

W = ∑i=1dij                   i=1     j=1 
Connectivity index: Connectivity index introduced by randic 
[85] et al 1975 

χR
 = ∑ (δiδj)-½ 

δ is the vertex degree of adjacency matrix. Among 
topological index molecular connectivity has been used 
widely applied in simple and complex problems and relate it 
with boiling point, Molar refractivity and molar volume of 
alkanes, alkenes alcohol. [86] Kier and Hall connectivity 
indices called as chi (χ) indices developed to calculate zero- 
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and higher-order connectivity descriptors. [87-88] Many studies 
have been done correlating connectivity indices with 
physicochemical properties [89] and biological activity of 
mostly for structurally related compounds. Equation for both 
valence and non valence electrons. 

δiv = (Ziv-Hi)/ (Zi-Ziv-1) 
Zi is the atomic numberof i, δi

v values for non-hydrogen atom 
like C,N and O in various hybrid state Hi is the number of 
hydrogen bonded to atom I and Zi

v is number of valence 
electrons for atom i. [90]

Balaban index (J) - The Balaban index J = J(G) of G 
(matrix) is defined as [91]

J = M/ (μ+1) ∑(di.dj)-0.5

Where M is the number of bonds in G, μ is the cyclomatic 
number of G, and di (i = 1, 2, 3, N; N is the number of 
vertices in G) is the distance sum. 
 The cyclomatic number μ = μ(G) of a cyclic graph G is 
equal to the minimum number of edges necessary to be 
erased from G in order to transform it into the related acyclic 
graph. In case of monocyclic graph μ = 1 otherwise it is 
calculated by means of the following expression 

Μ = M-N+1 
Van der Waal radius and volume 
 Each atom of molecule represent as a sphere which is 
centered at the equilibrium position of the atomic nucleus 
with a radius equal to vander waal radius (rw) is a function of 
the electron density distribution around each atom .Van der 
waal surface area may be defined as the surface of 
intersection of all van der waals sphere in the molecule, 
while the van der waal volume is represented by volume 
contained by surface. [92]

Verloop parameter 
These parameters are evaluated by measuring the dimensions 
of substituents in a restricted number of directions.Verloop 
[93] et al 1976 defined four width parameters B1, B2, B3 and 
BB4 determined by rotations of the substituents arrround the 
X-axis.B1 (minimum width parameter) was determined as the 
smallest distance to X-axis of the substituent tangential 
planes perpendicular to 2-coordinates.The additional 
parameters B2, B3 and B4 were derived in such a way that 
represent the width parameters in four rectangular directions. 
Molar refractivity 
The molar refractivity (MR) is given by  

MR:  (n2-1) MW/ (n2+2) d 
MW is the molecular weight is the density and n is the 
refractive index. The refractive index does not vary much 
from one organic compound to another and as the molecular 
weight divided by the density equals the volume, MR gives 
some indication of steric bulk of a molecule. The presence of 
the refractive index term also provides a connection to the 
polarisibility of a molecule. [94] 

Parachor 
Parachor parameter is related to molar refractivity and it is 
defined by sugden [95] et al 1924 

Pr = γ¼M/ (d-d1) 
Where d and d1 are the densities of a liquid and vapor 
respectively and γ is the surface tension in dyne/cm2 at the 
same temperature. When vapor density is negligibly small in 
comparison with that of liquid, the relationship reduces to  

Pr = γ¼ M/d 
Log P 
Lipophillicity is an important parameter for drug disposition 
and drug activity. [96-98] Partition coefficient is an important 

property because it measure lipophillicity and hydrophillicity 
of a drug. More the partition coefficient, more the drug is 
hydrophilic. [99] Partition coefficient can be determined by 
Shake-flask method. [100-101]

                        Log P = log [C]org 
                                             [C]aq. 
Log p can be calculated from chromatography. [102] Neural 
network is also used for prediction of lipophillicity of 
compounds. [103] Many studies have been established for 
correlating biological activity with lipophillic parameters. 
[104-106]

Dependent descriptors and their relationship 
Dependent descriptors are those which depends on the 
independent descriptors all pharmacokinetic properties are 
included in this descriptors 
Pharmacokinetic properties 
It is defined as the kinetics of drugs absorption, distribution, 
metabolism and excretion and their relationship with 
pharmacologic, therapeutic or toxicological response in men 
and animals. [107]

Absorption 
Absorption is defined as the process by which unchanged 
drugs proceeds from site of administration to the site of 
measurement with in the body. Absorption at the site of 
administration can influence bioavailability. When the drugs 
are given with the intravenous route, it does not undergo 
dissolution and absorption. The major causes of differences 
in absorption of drug from various products are dissolution. 
Absorption follows two step processes (Fig. 3) 
                           
Drug in product            Drug in solution                   Absorbed 
drug                                         

Dissolution Entry into the body

In this two situation has been considered. One in which 
dissolution is much faster than is entry of drug into the body. 
The drugs which are administered in the solid form, the first 
of drug process are dissolution in aqueous media. It follows 
the Noyes –Whitney equation:   
              Rate of dissolution =   DA (S-C) 
                                                    δ 
D = Diffusion coefficient of solute  
δ = Thickness of stagnant diffusion layer and 
C = Concentration of solute in bulk solution  
A = Surface area  
S = Solubility 
This equation gives the relationship between the rate of 
dissolution with the surface area and solubility. Dissolution is 
rate limiting process; A remains constant and maintained sink 
condition. [108] Gao et al 2002 relates aqueous solubility with 
log p. 
    log Sw = 2.34 - 0.41 log p - 0.24b_ar + 0.35 0χv

C - 0.31 1χC 
- 0.831Қα+0.34 2Қα                 
                                                                                  (r2 = 0.92) 
The prediction of human intestinal absorption is a major goal 
in design, optimization and selection of candidates for 
development of oral drugs. [109] Many QSAR studies have 
been established to show their importance in prediction of 
intestinal absorption. [110-115] The bioavailability of a drug and 
its access to the therapeutic target are important 
considerations in rational drug design. Before the drug can 
elicit an effect, for example if it is orally administered, it 
usually has to pass through a series of barriers (e.g. biological 
membranes) either by passive diffusion and/or carrier-
mediated uptake. Depending on the route of the 
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administration of the drug and the location of the target site, 
the pH of the environments that the compound is exposed to 
may vary considerably. Some examples of physiological pH 
values are as follows: stomach 2.0, kidneys 4.2, small 
intestine (food 5.0; fasted 6.8), duodenal mucus 5.5, plasma 
7.4. In this context, the affinity of the drug molecule for the 
target of interest and its ability to partition into a lipophillic 
environment at different pH values has to be quantified for a 
proper prediction of its ability to interact with the biological 
target and hence to be efficacious. [116] The rule of five is used 
widely for screening in combinatorial chemistry. According 
to this rule the compound are seemed to have poor absorption 
if it satisfies any two of condition of following rule: 
 (1) Molecular weight>500   (2) No. of hydrogen bond donor 
>5 (a donor being any O-H or   N-H groups (3) No. of 
hydrogen bond acceptor>10 (an acceptor being any O or N 
including these in donor groups (4) clog p>5.0. [117] Palm [118] 
et al 1996 correlated the molecular surface properties with 
drug absorption and show a good correlation (r2= 0.94). 
Wessel et al 1998 predict human absorption from molecular 
descriptor of 67 structurally different drug and drug like 
compound using the artificial neural network. The choice of 
parameter is important aspect in QSPkR study. Cmax, Tmax, 
AUC are important parameter for drug absorption and 
directly relates with the lipophillicity [119] but these are more 
complex because it involves distribution and elimination 
other than absorption. The equation which are used for this. 
                                   C = FDKa 
                                         V(Ka-K) 
                                   FD = (Cl)(AUC) 
                                   Cl = KV 
                                 Tmax = In(Ka/k 
                                                Ka-K 
                                 Cmax = FD(Ka) (k/Ka-K)

                                                 V  K   (k/ka-k)
Where C is concentration of drug in plasma, K and Ka are 
elimination absorption rate constant.Winiwarter [120] et al 
1998 used a combination of experimental and theoretical 
descriptors for prediction of human intestinal absorption of 
drugs. Theoretical descriptors have been established for a 
number of structure-bioavailability relationships. One model 
constructed for 232 commercial drugs classified compounds 
into four classes according to their predicted bioavailability. 
[121]

Distribution and Plasma protein binding 
Distribution is defined as the reversible transfer of a drug 
between the blood and extra vascular fluids and tissues. 
Distribution of a drug is not uniform throughout the body 
because different tissues receive the drug from plasma at 
different rates and to different extent [122] after absorption 
drug enters into the distribution where it is distributed 
reversibly among the extra vascular tissue and blood. 
Volume of distribution 
Presuming that the body behaves as a single homogenous 
compartment with volume V into which drug gets 
immediately and uniformly distributed. 
                                 Dose administred i.v 
 
                                 Plasma concentration  
The extent of distribution of a drug depends on its lipid 
solubility (log p), ionization at physiological pH, extent of 
binding to plasma and tissue proteins and differences in 
regional blood flow. [123] Apparent volume of distribution or 

volume of distribution of the unbound fraction (fu) can 
provide useful clinical information because it is generally 
considered that the unbound fraction of a drug is responsible 
for the pharmacological action. Volume of distribution for 45 
structurally unrelated drugs has been performed. [124] The 
partitioning of a drug between tissue and blood describe the 
distribution of drug under steady state conditions is an 
important pharmacokinetic property. Extent of partitioning is 
given by the partition coefficient, Ptb is defined as follows:  

Ptb = Ct / Cb
Where Ct is the concentration of drug in the tissue of interest 
and Cb is the drug concentration in the blood. [125-126] When 
ANN compared with mechanistic model demonstrated that 
both techniques were able to provide acceptable models for 
prediction of log P and tissue-to-unbound plasma 
concentrations for series of analogues. Herman et al 1994 
used 17 noncongenric drugs to predict the various 
distribution parameters from physicochemical properties, 
including molecular weight, intrinsic solubility, aqueous 
solubility etc. 
Plasma protein binding 
Most of the administered drugs are retained by plasma 
protein, which act as major drug storage sites. The stored 
drug is in equilibrium with the free drug in plasma and is 
released as the free drug concentration fall below the 
therapeutic value. [127] Albumin, lipoproteins glycoprotein are 
the proteins from which the drug mainly bind reversibly and 
affects the pharmacokinetics and pharmacodynamics of drug. 
[128-130] It is clear from many studies that lipophillicity (log p) 
is an important parameter for plasma protein binding but 
other physicochemical parameters (pka, σ) also affect the 
protein binding. [131] Seedhar et al [132-133] used aniline & non 
–steroidal anti-inflammatory drugs for quantitative structure 
protein binding relationship (QSPBR) and found that steric 
parameter are highly correlated with plasma protein binding 
in both cases. The equations obtained in study of aniline and 
non-steroidal anti-inflammatory drugs: 

(e-kt-e-kat) 

Log K = 0.2201χar+1.603                                            R= 0.990 
Log K1 = 56.13 ID-33.041χ +3.87P9-739.97               R= 0.951 
Thus size of drug molecule and electrostatic interactions 
plays important role in plasma protein binding. Many 
relationships have been established between molecular 
structure and protein binding. [134]

Metabolism and Elimination 
Knowledge of the metabolic fate and tissue half-life of drugs 
and xenobiotics is of critical importance to the understanding 
of their mode of action and for validation of toxicological 
studies. Elimination can be related to molecular structure 
with elimination half life. Biotransformation or Metabolism 
is the chemical conversion of parent drug into its metabolites. 
As with enterohepatic cycling, this metabolic interconversion 
is a route of elimination only to the extent that the 
metabolites is excreted or otherwise irreversibly lost from the 
body. Metabolism is divided into two phase: Phase1 and 
phase 2 (Fig. 4). Many enzymes are involved in metabolism 
make it complex. One approach in structure metabolism 
relationship modeling characterize molecule interact with one 
of specific enzyme. [135] Flavonoid derivatives made use of 
quantum chemical descriptors to inhibit the CYP 1A2. [136] 
One study examined urinary excretion of glucuronide 
conjugates, glycine conjugates, and unchanged parent drug 
for 22 benzoic acid derivatives. [137] Many structure 
metabolism relationships have been limited because it 

    V =   
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involves simple models of calculation of conformational 
space filling properties or by standard substituent effects. [138- 

139] 

Clearance 
Clearance relates the rate of elimination to the plasma 
concentration and is an important elimination parameter. [140] 
It is defined as the hypothetical volume of body fluids 
containing drug from which the drug is removed or cleared 
completely in a specific period of time 
     Clearance = elimination rate/Plasma drug concentration 
Schneider [141] et al. 1999 study a larger data set of more 
structurally diverse drugs to develop a model for in vivo 
hepatic clearance. Clearance due to a single organ is given as 
the product of the blood flow to that organ and the extraction 
ratio:  
                                               Q.CA-CV
                                   Cl   =                     =   Q.ER 
                                                    CA
Q is blood flow to the organ, CA is concentration of drug in 
arterial blood, CV is concentration of drug in venous blood 
and is extraction ratio. The extraction ratio is the ratio of the 
rate of elimination of a drug to the input rate of the drug to an 
organ. Thus, the higher the extraction ratio the more drugs is 
eliminated and the less passes through the eliminating organ 
intact. Wajima [142] et al 2002 predicted new regression 
equation of human clearance from animal data and molecular 
structural parameters. Oral clearance is one of most 
important pharmacokinetic parameters for characterizing 
drug pharmacokinetics and is related to metabolism, renal 
excretion and bioavailability of drug. Predicting oral 
clearance is more difficult than predicting clearance after 
intravenous administration because oral clearance includes an 
absorption process and a first pass effect. [143] Clearance 
(CL), apparent volume of drug distribution (V (ap)), fractal 
clearance (CL (f)), and fractal volume (v (f)), for a series of 
23 cephalosporins used for the quantitative structure 
pharmacokinetic prediction. CL and CL (f) expressed similar 
performance while the predictive performance of v (f) was 
much higher than that of V (ap). [144-145]     
This article gives the overview of the possible use of 
pharmacokinetic parameters in quantitative drug design. 
QSAR and QSPR (quantitative methods) apply for solving of 
toxicological problems which are related to the drugs. We 
have used models to describe the complex interdependency 
of pharmacokinetic parameters. Physiologically based 
pharmacokinetic modeling describes the whole body by a 
number of anatomical compartments. In a more general way, 
simultaneous modeling of the pharmacokinetic and 
pharmacodynamic phases of drug action has been reported. 
QSAR help in predicting the limiting factors to understand 
drug action in the whole body. Each step in drug action 
should be analyzed by using a quantitative method. The 
information obtained from Quantitative Structure estimation 
is worth the efforts but it is time consuming. QSPkR helps in 
designing of more rational drug design in the development of 
drugs. From this article it is cleared that the pharmacokinetic 
parameters can be useful but when it use properly. 
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