
|| Bioinfo Publications || 90

A SCALABLE AGENT PEDESTAL FOR WIRELESS SENSOR NETWORKS

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 2, 2012, pp.-90-98.
Available online at http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000221

PATEL R.B.1* AND JAIN D.2
1Department of Computer Science and Engineering, G.B. Pant Engineering College, Pauri-Garhwal-246194, Uttarakhand, India.
2Department of Computer Engineering, M.M. Engineering College, Ambala-134003, Haryana, India.
*Corresponding Author: Email- patel_r_b@yahoo.com

Received: October 25, 2012; Accepted: November 06, 2012

Abstract- Wireless sensor network (WSN) is envisioned as an economically viable paradigm and a promising technology because of its
ability to provide a variety of services, such as intrusion detection, weather monitoring, security, tactical surveillance, and disaster manage-
ment. In this article we present a Scalable Agent Pedestal (SAP) for WSNs. In SAP mainly mobile agent (MAs) are used to manage the
WSNs. It provides common solution to WSNs fault tolerance, load balancing, energy & end-to-end network delay problems. SAP gives true
distributed computing and communication environment with the help of MAs. It supports code mobility over the mobile/fixed base station

(BS) and sensor node (SNs). A comparative study is also made.

Keywords- WSN, MA, SN, SAP, AMS

Issues

Distributed Wireless sensor Networks (DWSN) has become a very
popular research topic due to its wide application spanning across
civilian and military domain, including environmental monitoring
(e.g. temperature sensing), generic object tracking (e.g. people or
object locator), and surveillance in a large building, disaster area or
battlefield [16,19]. The advances in sensor technology and ad hoc
wireless networking have brought the study of DWSN to a new
stage the emergence and spurs of Wireless sensor Networks
(WSNs). It is economically feasible today to implement WSNs, but
there are several technical challenges that must be overcome be-
fore they can be used for the increasingly complex information
gathering tasks. These tasks, such as battlefield surveillance, re-
mote sensing, global awareness, etc., are usually time critical,
cover a large geographical area, and require reliable delivery of

accurate information for their completion [17,18].

A mobile agent (MA) is an autonomous transportable program that
can migrate under its own or processing element (PE) control from
one PE to another in a heterogeneous network [13,14]. In other
words, the program running at a PE can suspend its execution at
an arbitrary point, transfer itself to another PE (or request the PE to
transfer it to its next destination) and resume execution from the
point of suspension. Once an agent is launched it can continue to
function even if the user is disconnected from the network. They
implement a computational metaphor that is analogous to how

most people conduct business in their daily lives: visit a place, use
a service, and then move on. It behaves like a human agent, work-
ing for clients in pursuit of its own agenda. When an agent reaches
a server, it is delivered to an agent execution environment. If it
agent possesses necessary authentication credentials, its executa-
ble parts are started. To accomplish its task, the MA can transport
itself to another server in search of the needed resource/service,
spawn new agents, or interact with other stationary agents. Upon
completion, the MA delivers the results to the sending client or to

another server.

It has been found that MAs are especially suitable for structuring
and coordinating wide area networks and distributed services that
require intensive remote real time interactions. While pursuing the
goal of collecting the sensed data in a WSN, instead of transmitting
the raw data from the sources to the application in the collection
point, the application (or a subset of it) is sent to where the data is
[25-26]. Thus, MAs carry and aggregate the data being sensed.
Moreover, MAs can be aware of network failures. This capability
enables them to dynamically decide where to move or clone in the
event of an unexpected failure or topology change. Therefore, MAs
allow a great degree of flexibility regarding which data is collected
and in what manner. In terms of reliability, MAs provide a greater
degree of fault-tolerance than query propagation and single-path
approaches, comparable to multipath approaches. However, the
time it takes the MAs to collect all the information (i.e., latency)

Citation: Patel R.B. and Jain D. (2012) A Scalable Agent Pedestal for Wireless Sensor Networks. International Journal of Computational Intel-

ligence Techniques, ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 2, pp.-90-98.

Copyright: Copyright©2012 Patel R.B. and Jain D. This is an open-access article distributed under the terms of the Creative Commons Attrib-
ution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credit-

ed.

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 2, 2012

|| Bioinfo Publications || 91

tends to be larger than in other approaches such as multipath and

single-path approaches [15].

The new challenges brought to the study of WSN include [19]:

 Data volumes being integrated are much larger due to the in-

creasing amount of sensors being deployed;

 The communication bandwidth for wireless network is much

lower;

 The environment is more unreliable, causing unreliable network
connection and increasing the likelihood of input data to be in

faulty; and

 Fixed routing is impossible.

In addition of balancing the load across networks for the above
defined issues, the system should provide Fault Tolerance, Optimal
Resource Utilization, Route and Resource Discovery, Path Mainte-

nance, Service Discovery, and Security.

Rest of the paper is organized as follows. Issues are explored in
Section 1. Section 2 highlights on related works. System model is
given Section 3. Section 4 explores on the architecture of Scalable
Agent Pedestal (SAP) and Agent/SN namespace is given in Sec-
tion 5. Advantages of SAP are discussed in Section 6. Section 7
presents results and discussion and finally article is concluded in

Section 8.

Related Works

LIME [1] is a Java based middleware tool that provides an API for
applications to use in a mobile setting. It is based on shared
memory computing model and is entirely based on Linda the idea
of communicating through reading, writing and deleting data from
tuple space. In Linda, this tuple space is assumed to be globally
available for all applications. However this is not the case with Lime
do to its distributed nature. Each tuple space is a set of tuples rep-
resenting messages that are stored either for sending or receiving
data on a given node. While Lime’s use of tuple spaces is very
advantageous to creating mobile applications for a wireless sensor
network, Lime itself has a number of shortcomings. Primarily, Lime
does not aid in developing intelligent agents in any way. Because
of this, developing anything other than a simple reflex agent would
require a great deal of work and application overhead, making any

agents static to a specific node and unable to be upgraded.

AGILLA is middleware solution which supports mobile agents in
WSNs [2]. It is based on the older Mate middleware [3-4] and it was
specifically designed for use on the MICA2 Mote (node) using Ti-
nyOS. Agilla and agents work on very limited hardware. It provides
support for multiple agents to seamlessly move not only program
code but also the current execution state to any node within the
WSN. Agilla provides ability to agents to migrate. The sensor net-
work can accomplish mobility logically rather than physically which
simplifies the WSN’s requirements. It provides a variety of instruc-
tions that allow an agent to move or clone to other nodes. As with
any software, Agilla has its downfalls. While the mobility of agents
provides a huge step forward, building an intelligent sensor net-
work is extremely difficult. First, Agilla only supports the low-level
assembly-like Mate language. It is very inefficient to program large
amounts of code such as an expert system, let alone a fuzzy logic

based system. Second, the hardware the Agilla software was writ-
ten for is very slow. Agilla also experiences significant overhead
when cloning agents on new nodes, which can be very costly for

the low power Mote devices.

Impala [5] is a middleware system using modular programming
approach. The whole architecture includes two level layers: upper
layer contains all the necessary protocols and application pro-
grams. The lower layer contains middleware agents such as Appli-
cation Updater, Application Adapter, and Event Filter. Impala can
support multiple different applications which located in upper layer
by adapting, updating and event filtering data from lower layer. The
Impala is original designed in Zebra Net Project, which focus on
wildlife tracking in large area with few communications devices. It
has good performance on mobility, lower event processing time

and lower application data transmission volume.

JADE[6] is a unique Java based middleware solution for a multia-
gent system that complies with the official FIPA specification in a
streamlined and simplified way. It takes full advantage of Java’s
interoperability, uniformity, portability, ease of use, and freedom to
provide a rich feature set to develop a wide variety of agents on
systems ranging from enterprise servers to low power wireless
devices. Jade focuses on providing a communication architecture
that is suitable for distributed data fusion. It is designed with the
mobile agent paradigm (MAP) in mind, which specifies that all
agents act as object and use high level communication mecha-
nisms to interact with other agents within the network. Using the
Jade API, some properties of intelligent agents such as autonomy,
pro-activeness, cooperative and mobility can be easily cultivated.
While Jade is used in a variety of distributed P2P environments, it
can excel in a mobile environment such as a WSN. It can also use
the LEAP module which can offload some of the resource hungry
computational work to a backend container to try to conserve ener-
gy and overcome memory and processing power limits. When cre-
ating an intelligent agent for a WSN, Jade’s API can provide a wide
range of support; however the intelligence of the agent itself is left
entirely up to the programmer. Many Jade users have been able to
successfully integrate Jess into the system to provide an intelligent
solution with minimal effort. This combination has a substantial
potential for integrating true intelligent agents in a WSN with power-
ful rule based expert system with Jade’s agent runtime environ-

ment.

MANNA [7-8] is a policy-based network management system for
wireless sensor networks. Depending on the network topology and
characteristics (homogeneous vs. heterogeneous), MANNA as-
signs different roles (network managers or agents) to various SNs.
These nodes exchange request or response messages with each
other for management purposes. MANNA forms a basis for fault
management [12], one of several network management services
supported by this architecture. MANNA network management pro-
tocol (MNMP), is a lightweight protocol for managing information
exchange among management entities (cluster heads, common
nodes, and manager) [8]. Basically, sensor nodes are organized in
clusters (sub-network) and send their states to the agent located in
the cluster-head. MNMP places management agents on the cluster
-heads and each cluster-head acts as a manager for a cluster
(local manager). Cluster-heads are responsible for executing local
management functions and they aggregate management data re-

A Scalable Agent Pedestal for Wireless Sensor Networks

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 2, 2012

|| Bioinfo Publications || 92

ceived from SNs. Cluster heads forward management data directly
to the BS. Furthermore, cluster heads can work cooperatively with
other cluster-heads to achieve an overall. A manager is a powerful
management entity located outside the WSN responsible for com-
plex management tasks requiring global knowledge of the network.
This approach achieves energy efficiency and increases the accu-
racy of management decisions. Fault management in MANNA
mainly relies on the coverage area maintenance service and the
failure detection service. Faults are detected in two phases in
MANNA. In the installation phase, nodes report their location and
energy level to the manager via the agents. The network manager
builds coverage and energy models based on the initial infor-
mation. During the operational phase, nodes update their location
or energy whenever there is a change in their state. The network
manager periodically performs network auditing by retrieving a
node state. If a node which has enough remaining energy accord-
ing to the energy model does not respond to the auditing, a fault is
detected. This scheme has a drawback of possibly providing false
debugging diagnostics. For instance, common-nodes may be dis-
connected from their cluster-head. Random distribution and limited
transmission range capability of common nodes and cluster-heads
provide no guarantee that every common-node can be connected

to a cluster head.

In [9] authors proposed a service discovery management architec-
ture for WSNs. The architecture is based on UPnP, the standard
service discovery protocol for network management. However,
UPnP only runs on devices with high computation power and large
memory. Thus, resource-constrained SNs are unable to process
the UPnP protocol. Authors address this issue by implementing an
UPnP agent in the BS, called Bridge Of the Sensor (BOSS), which
provides a bridge between a managed sensor network and a UPnP
network. The proposed system consists of three main components:
UPnP control point, BOSS, and non-UPnP SNs. The control point
is a powerful logical device with sufficient resources to run the
UPnP protocol and manage a sensor network using the services
provided by BOSS, e.g. PCs, PDAs, and notebooks. BOSS is a
base node that acts as the mediator between non-UPnP sensor
nodes and UPnP control point and is implemented in the BS. Each
node in a sensor network is a non-UPnP device with limited re-
sources and sensing capability. The advantage of using BOSS is
that different sensor network applications (e.g. Structural monitor-
ing, fire detection, and auto light control) can be managed by multi-
ple UPnP control points (e.g. PCs and PDAs). Furthermore, BOSS
allows a sensor network to adapt to topology changes and so sup-
ports proactive network management. A drawback of BOSS is that
it requires an end-user to observe network states and take man-

agement actions accordingly.

In [10] authors have designed an intelligent agent based power
management system (IABP) using the Belief, Desire and Intention
paradigm [11]. In IABP, beliefs represent states of SNs that an
agent holds to be true. Commitment rules (or desires) are pre-
defined conditions to evaluate beliefs. If beliefs match commitment
rules, the corresponding commitment management function
(intention) will be executed. This agent-based approach is de-
signed for applications where only a partial view of the state of the
network as a whole can be known at any one location or time [10].
IABP agents make power management decisions locally based on

requirements of an application. By using agents, information ex-
change between nodes in a neighborhood in order to make a local
decision can be eliminated since agents collect node data and
process it to meet a specified goal. The BS could inject a mobile
agent into a sensor network to evaluate battery level of sensors in
the network. This agent could also command nodes to reduce the
sampling rate of sensors if their battery level is low. This scheme
allows the BS to assess network states locally rather than gather-

ing SN states to the BS.

The energy preserved by reducing transmissions allows a greater
sampling rate of SNs, which usually increases the accuracy of
sensor data. However, when data polling rates are reduced, there
is a risk of missing a crucial event. End users can command that
nodes reduce their transmission power in order to conserve power.
However, since reducing transmission power reduces communica-
tion range, this scheme may compromise network connectivity. The
degree of agent mobility freedom allowed in the network can influ-

ence the latency of data collected from SNs to the user.

The current available solutions for WSNs have advantages and
severe limitations with regard to performance issues. A better
WSNs performance can be achieved with a more flexible and intui-
tive architecture which should be well-researched [21-24]. Thus, we
need to design an adequate WSNs management system which
should meet requirements/challenges for fulfilling need of an appli-

cation.

System Model

A communication area is divided into different regions. A high ener-
gy node will be the member of a region. This high energy node in a
region will work like backbone node (BN) and maintains information
about other members of the region in the form of database. Each
region would have a backbone node (BN). All the routing is carried
out through BNs only. Thus, a BN acts as a centralized control for
a region. BN is a node with maximum energy and maximum node
degree in a particular region. All the nodes (SNs/BNs) are distribut-
ed randomly in communication area. In the model, distance table is
assign to each node with an entry in terms of hop distance from
every other node in the network. The distance is calculated using

Euclidian formula.

MAXEN=32% of Etotal

MINEN=30% of Etotal

Euclidian formula to calculate distance table is:

 D [i][j]=sqrt(((xi-xj)*(xi-xj))+((yi-yj)*(yi-yj)))

Each node sends request to every other node in their region con-
taining information of their node degree and energy. The node with
maximum number of node degree and maximum energy is select-
ed as a BN of that region. Once the BN is selected, all the nodes in
that region are notified. All BNs of different regions should be in

transmission range of each other.

We are required to develop a computing/communication system for
WSNs that fulfills most of the above the challenges. The developed
system should enable the fast and cost-efficient deployment of self-
managed computing/communication sensing devices with high
overall management cost, but with low management cost at each

Patel R.B. and Jain D.

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 2, 2012

|| Bioinfo Publications || 93

SNs. With developed system one should be able to deploy large
scale computing/ communication systems without the need of cost-
intensive distributed sensing infrastructure to monitor sensitive
area with long life network. This system should facilitate to improve

the performance and incorporate new ideas.

System Architecture

When a BN/BS wants to search some information it requests to BN
for members information (viz. ID, energy level, node degree, etc.).
If the BN is not aware about availability of the type of services a
BN/BS is interested and presence of the same in the region then it
guides the same to the BN/BS. Then BN/BS uses a scalable agent
pedestal (SAP) for fault tolerance, load balancing, energy efficient
and efficient end-to-end packet delivery across the network for
WSNs and creates a MA to perform its desired task in the present

region.

Keeping in view of the above defined issues, we have designed
and implemented A Platform for mobile agent Distribution & Execu-
tion (PMADE) [13-15] based a Scalable Agent Pedestal (SAP) for
WSNs [Fig-1]. The main components of the system are as follows-
Policy Manager, Resource Manager, MAs, Interface, and Agent-

Agent communication layer.

Fig. 1- Scalable Agent Pedestal (SAP) for WSNs

This system implements the agents for Load Balancing, Sensing
Agents, Application Agents, Interface Agents, etc. depending upon
their roles. These agents execute the predefined policies for net-
work management and share the valuable information with each
other through different layers using interface for the communica-
tion. The various components of the system are illustrated in the

following sections:

Policy Manager

This manager comprises of different supporting policies and a poli-

cy is selected as per requirement of an application.

Initiation Selection Policies

It selects one of the predefined policies for executing the MAs. The
application selection plays a major role for categorizing and group-
ing the policies. The policies defined in the development of SAP

may be subcategorized into the following:

The load balancing process can be started by under-loaded or the
overloaded BN. The overloaded BN is responsible for finding other
BNs to share its workload (BS Initiative (BS-I)). If a lightly loaded
BN is the initiator then it is called receiver initiative (R-I). When
above two policies are integrated together, i.e., mixture of first two
(BS-I and R-I). It is a hybrid initiative called Symmetrical Initiative

(Sy-I).

Virtual Server Selection

This policy is further subcategorized into the following: first policy is
based on the one-to-one mechanism, where two BNs are picked at
random. A virtual server transfer is initiated if one of the BNs is
heavily and the other is lightly loaded. Unlike the first scheme, this
scheme allows a heavily loaded BN to consider more than one
lightly BN at the time of transfer of load. Third scheme is a logical
extension of the first two schemes (one-to-one, one-to-many).
While in the first scheme we match one heavily loaded BN to a
lightly loaded BN and in the second scheme, we match one heavily
loaded BN to many lightly loaded BNs, in this scheme we match

many heavily loaded BNs to many lightly loaded BNs.

Resource Selection

There are various resources available in DWSN. These resources
are either available at local site (at the sensing unit, i.e., SN) or at
global site (BN/BS). To achieve quick response time and high
throughput, proper resource scheduling is always necessary. The
resource selection is further subcategorized into the following: (a)
Route discovery- This policy is used to select the path from the
available SN/BN disjoint paths. (b) Topology update- DWSN is a
dynamic network where SNs dead frequently. In this network, to-
pology changes quickly. Hence this policy is used to update the
topology of the network. (c) Cost computation- There are various
node disjoint paths available from source (SN) to destination (BS).
The best path from the available paths is that which is most reliable
in terms of data transmission. This policy is used to compute the

cost of the available path in terms of reliability.

Service Selection

For the sake of simplicity, we have selected three different types of
policies for service selection namely multicasting, topology update,
and broadcasting. This mechanism is used to avoid delay in trans-

A Scalable Agent Pedestal for Wireless Sensor Networks

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 2, 2012

|| Bioinfo Publications || 94

mission of sensitive information from SNs. Topology changes occur
frequently in WSN, so to face the challenges due to frequent topo-

logical changes each SN sends a hello message to its neighbors.

Security Selection

Security policies are based on the PMADE on the security frame-

work [27].

Data Aggregation and Correlation Engine (DACE)

It is necessary for the DACE to aggregate and correlate the differ-
ent detection results before further transmission. The local DACE
for a mobile BS (MBS) are capable of operating in a standalone
mode and detect attacks against the SN/BN. Since WSNs are con-
strained by bandwidth, energy consumption, and process capabil-
ity, it is desirable to correlate the alert information on the local SNs

first, before transmitting every alert across the network.

The functionality of the DACE depends on the node type: if the
node is a BN, its DACE utilizes the aggregation and correlation to
combine the detection results from the intrazone SNs in the same
region and neighboring gateway BNs. If the node is an intrazone
SN, the functionality of the local DACE is to distribute the outputs

to all the gateway BNs in the same region.

Agent Management System (AMS)

The main task of AMS is management of agents and nodes (SNs/
BNs/BSs), i.e., registration, authentication, security and mobility as
per PMADE [13-15,27]. AMS can also be extended to support clus-

tering and teaming.

AMS selects the agents as per their requirement. These agents are
not fixed but vary according to their role. Agents are divided into
different groups and they are picked by AMS depending upon their
requirement. Each agent has a role defined and executes the pre-
defined policies. The generalized architecture of the developed
SAP consists of the following groups of agents which are used in
heterogeneous networks. This list of agent is not only limited to

following groups also.

At present AMS contains nine SAP agents- SAP Mapping Agent
(SMAPA), SAP Route Estimating Agent (SREA), SAP Migration
Planning Agent (SMPA), SAP Code Container Agent (SCCA) and
SAP Result Container agent (SRCA), SAP Sensor Agent (SSA),
SAP Broker Facilitator Agent (SBFA), SAP Application Agent
(SAA), and SAP Interface Agent (SIA) in future number of agents
may be increased as per need of the applications, means devel-
oped system is adaptable in nature. These agents are called SAP
agents because at any moment of time as per requirement of the
applications algorithm/protocols associated with these agents are
changed/updated or new amendment can be made. SRCA and
SCCA facilitates distributed environment for adapting the nature of
the network bandwidth. These agents are identified as single entity
known as agent management system (AMS). AMS is named be-
cause of its nature to accommodate any kind of changes occurring
in the system. Other component of AMS is Network manager (NM)
which is responsible to identify the topology of the network with
assistantship of SMAPA. NM provides global identification to mo-
bile devices and MAs. AMS supports code mobility over the mobile/
fixed peer device. For balancing the load over the network these

agents work together as a SAP multiagent system.

Load Balancing

For balancing the load across the network, we have developed a

set of agents which are briefly introduced as under.

Load Index Agent (LIA)- This agent calculates the load index (LI)
of each resource (Processing Unit: PU, Memory, I/O) on a particu-
lar node (SN/BN). LI of PU is the sum of remaining PU lifetimes of
the tasks running on a node. LI of memory is the sum of page fault
processing time of tasks on a node (SN/BN). Similarly LI of I/O is
the sum of I/O processing time of tasks on a node (SN/BN). The
sum of load index of each resource is the total value function for a
node (SN/BN) and is used for load transfer by the respective agent.
Normally this cared by BNs, because we are balancing the load on
BNs only. If model will be used at global network (Internet) level

then BS is also included in the list for managing the load.

Load Transfer Agent (LTA)- This agent is used for migration of
task from heavily loaded BN to lightly loaded one. It executes two
predefined policies namely–local and global. The policy is chosen
according to the response time of task submitted for execution. If
the response time of a task at the local site is less than the global

site then local policy is executed otherwise global policy.

Resource Management Agent (RMA)- This agent is responsible
for gathering information about each node’s (SN/BN) resource
requirement and passing this information to Resource Manager
(RM)[14], which makes its entry in resource database and allocates

the appropriate resource to the requesting node.

Routing Agent (RA)- It is a stationary agent responsible for updat-
ing the routing table that resides at each node (SN/BN). RA carries
a route vector table containing the communication cost from the
assigned node (SN/BN) to other nodes (SN/BN) in the network.
This table has a lifetime measured by the number of hops. It plays
an important role in informing each node (SN/BN) in the network
about the addresses of other nodes (SN/BN) and if failure of link for
a particular node (SN/BN) is detected, RA spreads route failure

information over the network by flooding the updated table.

Load Computation Agent (LCA)- This is a set of MA. It is respon-
sible for information gathering. It travels around the BNs and col-
lects the load information, and propagates this information to other

BNs.

Directory Agent (AD)- This agent is activated whenever an over-
loaded situation arises on a BN. AD finds the suitable receiver

partner for the overloaded BN that launched it.

Resource Discovery

For route discovery and balancing the load across the network, a
set of agents are developed. A brief introduction about these

agents is as follows:

Route Discovery Agent (RDA)- This agent keeps a record of SN
disjoint paths which are not deemed failed yet. As soon as the
rating of a path falls below a given threshold, the path is discarded
from the Active Path Set (APS) (set of SN disjoint paths) and ac-
cordingly a new path is added for future references. This agent

executes route discovery policy.

Topology updates Agent (TUA)- This agent keeps record of one
hop neighbors using the hello message technique. As in WSN,

Patel R.B. and Jain D.

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 2, 2012

|| Bioinfo Publications || 95

SNs died the network in a random interval of time, so every SN/
BN should have knowledge about its neighbors. This agent exe-
cutes topology update policy. For simplicity BN maintains infor-

mation about SNs in its region.

Cost computation Agent (CCA)- This agent computes the cost
of sending the messages to another SN in the network. The cost
is measured by the number of hops traveled by the message and
bandwidth lost due to the presence of selfish SN in between the
paths. As the battery power of SN is a sacred resource in WSN,
this agent plays an important role in cost computation in terms of

bandwidth loss. This agent executes the cost computation policy.

Fault Tolerance

For fault tolerance across different types of networks, a set of

agents are developed. They are briefly introduced as under-

Process monitor agent- This agent monitors the state and starva-
tion of a process in a task queue. It classifies a process state into a

processing state, a stop state, a silent state, and an unknown state.

Processor monitor agent- This agent monitors the crash state of
a node (SN/BN) (shutdown, power value) and the normal state of a
node (SN/BN). During the normal execution of a processor, this
collects the used and the available node (SN/BN) processing pow-

er utilization.

Network monitor agent- This agent monitors communication
bandwidth, communication latency time, network disconnection,
and partition between its own node (SN/BN) and connected nodes

(SN/BN).

Fault decision agent- This agent decides the occurrence of a
failure by analyzing state information of each resource and identi-

fies a process failure, a node failure or a network failure.

Rescheduling agent- This agent evaluates the performance bene-
fits that can be obtained due to task migration and decides whether
task migration occurs or not. This agent also decides a new re-

source allocation for tasks.

State display agent- This agent shows the state of each resource
and the type of failures occurred. Also it decides whether task mi-
gration occurs or not. If this agent receives a rescheduling result for
migration from the rescheduling agent, it requests to allocate new

selected resources and restarts execution.

Service Discovery

For selection of service across the network, we have developed a

set of agents which are briefly introduced as under.

Advertising Agent

This agent actively broadcasts service descriptions already regis-
tered. The Policy Manager controls the rate of advertisements.
Various policies are employed to adjust the rate of advertisement.
For example, if the network is fairly static, then the advertisement
rate can be slowed down. Also policy is event driven (Events repre-
sent the availability of the paths from source (SN) to destination

(BS)). Advertisements can also be assigned different priorities.

Forwarding Agent- This agent receives service advertisements
and requests for service messages. Then it decides whether to

drop or to propagate the advertisement based on the policy. To
prevent broadcast storms, this agent uses multicast tree for selec-
tively forwarding service advertisements. For example, this uses to
forward advertisements to more active or resource rich SNs in the

network.

Cache Agent- This agent is responsible for handling remote adver-
tisements, storing remote advertisements of services, handling
requests to match services present in the cache. The Forwarding
Agent, on receiving an advertisement might also decide to forward
it to other SNs/BNs or broadcast the advertisement to all other BNs
and from it to SNs. Each advertisement contains a lifetime. When a
new advertisement is received by a Cache Agent, the agent de-
cides to either accept it or reject it. An advertisement is accepted
only when there is sufficient space in the cache to hold this adver-
tisement or when an old advertisement is removed from the cache

based on the policy chosen.

Security

A set of agents are developed for secure data transmission across

the network. These agents are briefly introduced as under:

Multi path Secure Routing Agent- This agent executes the multi-
path policy which has multiple paths to combat the frequent topo-
logical change and link instability problem in WSN, since the use of

multiple paths could diminish the effect of possible link failures.

Secret Sharing Agent- This agent executes secret sharing policy.
In this policy, the secret message is divided into N pieces such that
in order to get message, the adversary must compromise at least T
shares. With fewer than T shares, the enemy cannot learn anything
about the message and has no better chance to recover the secret
than an outsider who knows nothing about the message. This gives

the desirable security properties.

Share Allocation Agent- This agent executes share allocation
policy with the objective of maximizing the message security. It
chooses a SN disjoint path for secret allocation so that adversary

can never get the message.

Resource Manager (RM)

Resource Manager (RM) manages the resources in the network.
Each task (agent) in execution has its own resource requirement,
which is provided by RM. It keeps track of which resource is availa-
ble at which node (SN/BN). Resources may be at local site or at
global site. As soon as the demand of resources comes from the
tasks (agents) in execution, these are provided by the RM. MAs
execute predefined policies to provide the desired resources to the
demanding task (agent). In this process they also consume certain
resource like memory, processor time, etc. So, to keep track of the
all these resources, RM is included in the architecture which fulfills

the demand of resources as per the requirement.

Agent-Agent Communication

SAP includes P2P type communication between agents. It sup-
ports both local & remote communication and uses wireless trans-
mission as the transport mechanism for remote communication.
Agent Communication Channel (ACC) is a message routing agent
integrated in the SAP, which delivers messages as requested by
their senders. It supports both local as well as remote communica-

A Scalable Agent Pedestal for Wireless Sensor Networks

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 2, 2012

|| Bioinfo Publications || 96

tion. The agent-to-agent communication, also known as the agent-
based messaging paradigm, and is uses message queue proces-
sor [29] for making the different type of communications viz. feder-
ated communication, direct communication, etc[28-29]. Agents can
communicate directly or indirectly through the ACC. The agents
can be located at the same node (SN/BN/BS) or communicate

wirelessly between remote nodes (SN/BN/BS).

For information processing in WSN applications, SAP supports
both types of computational models, namely, remote communica-
tion between agents located at different nodes (SN/BN/BS), as well
as agent mobility with local communication at the same node (SN/
BN/BS). In the CSCP, the SAP Sensing Agents (SSAs) located at
the constituent SNs communicate remotely with the agents in BNs.
In the MACP, the mobile SAAs move from SN-to-SN and communi-
cate locally with the SSAs, residing on the same SNs. This layer
provides the facility for agent-agent communication. There are

three layers for agent- to-agent communication.

Resource and Data Management Layer- RM which is the key
component of the system architecture operates on this layer. As
discussed earlier it is responsible for managing the resources con-
sumed by MAs when it executes on a particular site. On each layer

the respective MA operates.

Coordination Layer- MAs communicate and coordinate using
communication and coordination layers. The request an agent
receives from the communication layer is submitted to the coordi-
nation layer for further processing. Agents communicate by ex-
changing messages using mobile group approach through reliable
communications channels. This is normally happen between BS-

BS, BN-BN, BS-BN and SN-BN.

Mobility Manager Layer- SAP supports agent mobility. It provides
ability to agent to move from one node (SN/BN/BS) to another in
the network. Migration of an agent from source (BS) to destination
(SN) and vice-versa may trigger updates for the service provider

agents.

Among the different components of the MA, the most important is
the MA's itinerary. Itinerary can be determined either statically, i.e.,
it can be calculated either before the agent is dispatched or while
the agent is migrating. Dynamic itinerary planning is more flexible,
and can adapt to environmental changing (sensor ups and downs)
in real time. However, since the itinerary is calculated on the fly, it
also consumes more computation time and more power of the local
sensor. In the SAP this job is done by BNs and exchange between
BN and BS which saves energy of SNs. Computation-efficiency,
power-efficiency, and flexibility are three conflicting objectives that

cannot be satisfied at the same time.

A simplified sub-optimal solution that determines the agent itinerary
on the fly based on three parameters obtained in real time, namely,
the remaining energy on board the SN, the signal energy sensed at
the current location, and the geographical distance with possible
neighbors. When the packet size is the same, the communication
cost is proportional to the distance between the source and the
destination, which can be calculated using the longitude and lati-
tude information exchanged between nodes(SN/BN). The SAP
Broker Facilitator Agent (SBFA) on each SN is responsible for ex-
changing information through ACC when the SN is initially activat-

ed and when dramatic changes have occurred to any of these
three parameters. Therefore, the SBFA on each SN is able to cal-

culate the cost for migrating to each neighboring SN.

Before the MA migrates to the next destination, the SBF compares
the cost and directs the SAP Application Agent (SAA) to migrate to
the one with the lowest cost, that is, the SN with the high remaining
energy, sensed with high signal energy, and very close to the cur-

rent SN.

Agent and SN Namespace

This system maintains a local ID at each layer. These ID’s are
down-streamed at the boot up time, i.e., the ID of system high up in
the hierarchy will be sent to all the lower layers. The layer low in
this hierarchy will prefix the parent layer ID to its own local ID and
this combination forms the new ID of the layer. The lowest layer
(layer 7th) will be at the node/PE level. Each agent/SN will have a
12-digit Hexadecimal ID. Format of ID is shown in [Table-1]. In this
format we have 1-digits to represent a country code, 1-digit for
state provincial, 1-digit for sub-state provincial, 1 Digit for next sub-
provincial, 1 digit for next sub-region, 2 digits for next sub-region, 2
digit for smallest region beyond that area will not be divided and 3
digits for representing the agent/SN identification number (ID). Out
of 3 bytes- 1 byte is used by representing BNs and remaining 2

Bytes for SNs, i.e., 64 K SNs/BN.

Table 1- Format of 12 digit hexadecimal id

This format enables a total population of SNs 16M nodes in a
smallest area where deployment of agent may be done. Thus, by
using this assumption 288 agents/SNs can be uniquely identified
across a country and 296 SNs/agents across the world which is
quite a good assumption to manage a whole world using agents
and SNs. The first time registration will be only through the layer 7.
This process will append the agent/SN ID with the system ID thus
giving a unique ID to each SN/agent. For example, see [Table-1]
where we are getting “111111111111” for SN X belonging to coun-
try India (Layer 1), Haryana State (Layer 2), Ambala District (Layer
3), Barara tehsil (Layer 4), Narayangarh block (Layer 5), Panjlasa
panchayat (Layer 6) and Seembla Village (Layer 7). Here “1” is a
code of India and personal ID of SN X is “1111”. This SN will be

under BN 1 in the said area.

This ID will be up-streamed towards the root system via the branch
of the hierarchical tree, thus making identity available to each of its
parental ancestor layer. This way every SN/agent has a unique ID
and will communicate to any ancestor layer via its local layer. Any
information may be collected or disseminated across the whole
network or particular region, etc. In case of certain failure, mali-
ciousness the node/agent can directly communicate with its next
ancestor higher in the branch because of P2P nature of this sys-
tem. This system also prevents any unauthorized access by a SN/
agent to any other system to which it dose not belong. This is be-
cause the ID of that SN/agent will be supported only by the branch

Patel R.B. and Jain D.

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 2, 2012

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Country
Code

State
Provincial

Sub-State
Provincial

Sub-
Provincial

Sub-
Region

Sub-
Region

Smallest
Region

Agent ID
Source of

Data

1 - 256 1 - 256 1 - 256 1 - 256 1 - 256 64 K 64 K 64K
Maximum

range

1 BYTE 1 BYTE 1 BYTE 1 BYTE 1 BYTE 2 BYTE 2 BYTE 3 BYTE
ID in

Hexadecimal

|| Bioinfo Publications || 97

to which it belongs. In case of roaming of mobile BS, the system
may be enhanced to provide only limited privileges to the agents

like query, etc.

Advantages

The SAP saves network bandwidth, because only results travel on
the network and not the whole agent. Further, SAP agents regular-
ly reduce their size by removing processed methods which are no
longer required during their itineraries. When there are several
clones of an agent running, saving in bandwidth is quite substan-
tial. It also saves processing power, secondary and primary storage

devices at the remote node.

From the security point of view, agents are required to report re-
sults to the BS/BN in a secure manner, so that further tampering of
the result is not possible by the BN. In SAP, the agent provides the

result in encrypted form to the BN.

If an agent is running on a machine which is disconnected from the
network, its results remain on the machine for a fixed period of
time. When the machine is reconnected the results are sent to the
BS/BN. However, if this duration is large, the BS/BN removes the
entries of the pending agents and the result is lost. The system
administrator can set this duration as per the application require-

ments.

SAP is component oriented, both in system environment and in
agent construction. The basic component of the system is a MA
from which both the system components and user agents are built.
Component orientation allows the application developer to adopt a
systematic design which is extensible and in which ideas such as
transport protocols or communication mechanisms from different

systems can be imported in the form of plug-in components.

A useful aspect of the design of SAP is modularization to facilitate
experimentation. It is possible to redesign and re-implement a sin-

gle module within SAP, without affecting any others.

Major advantages of remote agent creation of the SAP are that
user does not have to install the agent platform on the mobile de-
vice. The system also reduces communication over wireless links
to overcome low bandwidth and network disconnection. SAP en-
hances service functionality by operating without constant user
input. SAP is platform independent. One of its important features is

its flexibility and extendibility.

Results and Discussion

WSNs have continually proven their usefulness in many different
fields ranging from temperature regulation to traffic monitoring.
Intelligent agents are allowing such WSNs to be more usable,
productive, and available and they will continue to do so as the
technology continues to develop. Because of hardware constraints,
using intelligent agents on WSNs can be a very difficult task, which
is why middleware technologies are needed. Middleware software
can reduce the memory footprint, provide mobility to agents, help
to maintain agents in the network and significantly reduces devel-

opment time.

There are different middleware software solutions for WSNs availa-
ble today, each with their own advantages and disadvantages.
When MAs are desired on severely limited hardware such as a

Mote, SAP may be the good solution because of its small footprint
and great support for agent mobility. Agilla is also good and sup-
port mobility to agents. If there is more powerful hardware is availa-
ble, Jade, along with Jess may be a viable solution because of
Jade’s feature rich API and possible expert system shell. If dynam-

ic updates are needed, SAP and Impala may be considered.

It is essential to evaluate each situation and possible choice care-
fully to identify the best solution. The final solution depends upon
the existing requirements of the implemented WSN coupled with

the best possible middleware to create the desired outcomes.

A comparative of SAP with some existing WSN management mid-
dleware are shown in [Table-2]. From the table it is clear that SAP
is agent and component based system which is Energy Efficient,
Robust, Adaptive, Scalable and Fault tolerant. It is not memory

efficient because of agent framework size.

Table 2- A Comparative Study of SAP with some Existing WSN

Management Middleware

Conclusion

In this article we have presented a Scalable Agent Pedestal (SAP)
for WSNs. In this system mainly MAs are used to manage the net-
work. SAP is capable of balancing the load across network. It uses
set of MAs which are executing predefined policies for finding the
load and resource requirement status at each node (SN/BN/BS).
Due to the support for mobility of agents in heterogeneous net-
works, it is able to locate the resource and service in WSNs. Inter-
agent communication is supported by the system to get the updat-
ed load information on each SN. It generates less message trans-
fer complexity and overhead compared to other existing systems
developed earlier. Also it has a major impact on the efficiency of
the network with the following performance measurement metrics-
response time, energy, throughput, fault tolerance and end-to-end
network delay. We are in the process of studying and design fault

tolerant and mobility management of the SAP.

References

[1] Murphy A., Picco G.P. and Gruia-Catalin R. (2006) ACM Trans-

A Scalable Agent Pedestal for Wireless Sensor Networks

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 2, 2012

Network
Management
System

Main Management
functionalities

Energy
efficien-

cy

Robust-
ness

Adapt
ability

Memory
efficien-

cy

Scala-
bility

Fault
Tolerant

Agilla Event detection Yes No Yes Yes No No

MANNA
Policy based man-
agement framework

NA NA NA NA NA Yes

BOSS

Network state retriev-
al, localization,
synchronization, and
power management

Yes Yes Yes Yes No No

IABP

Local power man-
agement and sam-
pling frequency
control

Yes No Yes Yes No No

Lime
shared memory
computing model

 Yes No No Yes No No

Impala
Component based
Management System

Yes Yes No Yes Yes No

Jade
Agent Management
System

No Yes Yes No Yes Yes

SAP
Agent and Compo-
nent based Manage-
ment System

Yes Yes Yes No Yes Yes

|| Bioinfo Publications || 98

actions on Software Engineering and Methodology, 15, 279-

328.

[2] Fok C., Roman G. and Lu C. (2005) Proc. IEEE ICDCS Conf.

[3] Levis P. and Culler D.E. (2002) Architectural Support for Pro-

gramming Languages and Operating Systems.

[4] Blum B. (2006) Mate-VM for Sensor Nets.

[5] Ting L. and Martonosi M. (2003) ACM SIGPLAN Symp. Princi-
ples and Practice of Parallel Programming, Princeton Universi-

ty.

[6] Bellifemine F., Caire G., Poggi A. and Rimassa G. (2003) Intro-

duction JADE a White Paper.

[7] Ruiz L.B., Nogueira J.M. and Loureiro A.A.F. (2003) IEEE

Communications Magazine, 41(2), 116-125.

[8] Ruiz L.B. (2003) MANNA: A Management Architecture for
Wireless Sensor Networks, Ph.D. dissertation, Federal Univ. of

Minas Gerais, Belo Horizonte, MG, Brazil.

[9] Song H., Kim D., Lee K. and Sung J. (2005) Proc. ICMU Conf.

[10] Zhang H. and Hou J.C. (2004) Proc. NSF TAWN Conf.

[11] Tynan R., Marsh D., OKane D. and OHare G.M.P. (2005) IEEE

ICPPW Conf.

[12] Ruiz L.B., Siqueira I.G., e Oliveria L.B., Wong H.C. Nogueira
J.M.S., Loureiro A.A.F. (2004) International Workshop on Mod-
eling Analysis and Simulation of Wireless and Mobile Systems,

Venice, Italy, ACM Press.

[13] Patel R.B. and Garg K. (2001) 5th World Multi Conference on
Systemics, Cybernetics and Informatics (SCI) and 7th Interna-
tional Conference on Information System Analysis and Synthe-

sis (ISAS), Orlando, Florida, USA, 4, 287-293.

[14] Patel R.B. and Garg K. (2004) WSEAS Transaction on Com-

puters, 1(3), 57-64.

[15] Patel R.B. and Mastorakis N. (2005) WSEAS Transactions on

Computers, 3, 4, 287-314.

[16] Akyildiz I.F., Su W., Sankarasubramaniam Y., Cayirci E. IEEE

Communications Magazine, 40(8), 102-116.

[17] Culler D., Estrin D., Srivastava M. (2004) IEEE Computer, 37

(8), 41-49.

[18] Mhatre V., Rosenberg C., Kofman D., Azumdar R. and Shroff

N. (2005) IEEE Transactions on Mobile Computing, 4(1), 4-15.

[19] Yu-Chee Tseng, Sheng-Po Kuo, Hung-Wei Lee and Chi-Fu

Huang (2004) The Computer Journal, 47(4), 448-460.

[20] Chee-Yee Chong, Kumar S.P. (2003) IEEE, 91(8), 1247-1256.

[21] Georgoulas D., Blow K. (2008) Fourth Advanced International

Conference on Telecommunications, 8-13, 95-100.

[22] Yongzhong Li, Jing Xu, Bo Zhao, Ge Yang (2008) 3rd IEEE
Conference on Industrial Electronics and Applications, 1562-

1565.

[23] Xiaofeng Han, Xiang Cao, Lloyd E.L., Chien-Chung Shen

(2007) IEEE INFOCOM, Anchorage, Alaska, 1667-1675.

[24] Cui Yanrong and Cao Jiaheng (2007) International Conference
on Wireless Communications, Networking and Mobile Compu-

ting, 2372-2375.

[25] Biswas P.K., Xu Y., Qi H. (2008) Information Fusion, 9(3), 399-

411.

[26] Wu Q., Rao N.S.V. and Barhen J. (2004) IEEE Transactions on

Knowledge and Data Engineering, 16(6), 740-753.

[27] Patel R.B. and Garg K. (2005) Control and Intelligent Systems,

33(3), 175-183.

[28] Patel R.B., Kumar N. (2010) International Journal of Mobile

Computing and Multimedia Communications, 2(3), 34-46.

[29] Patel R.B., Garg K. (2002) First International ICSC Congress
on Autonomous Intelligent Systems, Deakin University Water-

front Campus, Geelong, Australia, 107.

Patel R.B. and Jain D.

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 2, 2012

