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Introduction 

In all the living organisms, gene is one of the most important part of 
the cells. These genes after undergoing certain processes produce 
proteins. Each protein within the body has a specific role. Some 
proteins are involved in structural support, while others are involved 
in bodily movement, or some are busy in defense activity against 
germs. These proteins are responsible for every biological activity 
of living organisms. To study the proteins is one of the most com-
plex process. Hence, Bioinformaticians do the research on genes 
which are origin of these proteins. Scientists produced many im-
portant conclusions after a deep study of these genes which ulti-
mately helps to understand the complex processes of proteins. 
Gene expression is the process by which information from a gene is 
used in the synthesis of a functional gene product that is proteins. 
Other than understanding of proteins, analysis of gene expression 
contributes to many important bioinformatics activities, they are 
shortly listed as follows: 

 Finding genes, locating coding regions, predicting function: 

automate 

 Sequence, structure, function, evolution (FESS relationships) 

 Metabolic genotype, phenotype, redundancy 

 Genes to Pathways; Genes to biological knowledge 

 Assigning gene sets to different species: homologs vs paralogs 

 Finding conserved proteins common to all life 

 Expression profiles, relation to metabolic pathways / genetic 

networks 

 Gene synteny between species: gene adjacency in genomes. 

The study of gene expression starts with gene expression matrix. 

These matrices are the big matrices, where number of rows are 
genes and number of columns are conditions. As per biological 
observations, any biological activity is only present with group of 
genes and group of conditions. Hence to catch only involved genes 
and conditions (which may contribute lot of biological significance), 
algorithm must select the bicluster having only involved genes and 
conditions responsible for specific biological activity. In this paper, 

we try to catch these significant biclusters using two algorithms. 

The paper further talks in detail about above subject. It is divided 
into Background, Literature survey, Algorithm, Experimental stud-

ies, and Discussion on generated outcome. 

Background 

Every cell in living organism, contain instructions for every structure 
(protein) and processes in our body. The instructions are present in 
a material called DNA. The transformation of DNA to RNA 
(transcription) and RNA to protein (translation) is called the central 
dogma of molecular biology. DNA is the heredity material of the cell. 
A gene is a small segment of DNA, found in a small section of the 
chromosome. Transcription and translation are highly regulated 
processes, with constantly changing environments. The 30,000 
genes of the human genome can express hundreds of thousands of 
proteins, each with a specific role to play. Transformation of genes 
to proteins is considered to be one of the most complicated biologi-
cal processes. It is even more complicated than genomics because 
an organism's genome is more or less constant, whereas the prote-

ome differs from cell to cell and from time to time. 

Distinct genes are expressed in different cell types, which means 
that even the basic set of proteins that are produced in a cell need-
ed to be identified. Recent advances in bioinformatics brings a revo-
lution in understanding of the molecular mechanisms underlying 
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normal and dysfunctional biological processes. Proteins are directly 
or indirectly responsible for all these biological process. It is really 
difficult to study the most complicated(proteins) form of genes than 
to study directly the genes. Hence, we try to find many important 
answers by studying or analysis of originate of proteins i.e. genes. 
The analysis of genes and their expression will help to understand 
the complex processes, under which each gene in the DNA se-
quence is “expressed”, i.e. when, where, and to what extent the 

gene is stimulated to produce the protein (encoding). 

DNA Microarray 

DNA microarray is a high throughput technology used in molecular 
biology and in medicines. It is very powerful technology and can 
measure the performance of thousands of genes simultaneously. 
DNA microarrays works as per principle of Watson-Crick base pair-
ing rule. Two types of experiment can be done using DNA Microar-
ray, one is time course experiment and second is comparative ex-
periment. In time course experiment, we note the changes found in 
terms of expressions by the genes after each time course as experi-
mental conditions. For example, we want to see the effect of injec-
tion of some drug to certain cell. Then rows of datasets will be num-
ber of genes and column will be timestamp of some interval. Each 
element in the dataset is an expression of specific gene at respec-
tive time, we consider it as effect of drug at various time span on 
genes. Second experiment is of comparative nature i.e. infected cell 
vs. normal cell. We can note down the expressions of normal cell 
and then compare it with expression of infected cell. This infor-
mation is very helpful to find which genes are affected, we can have 
detailed study like how to treat these genes, what is effect of differ-

ent drugs on them and many more. 

For generating final datasets of gene expression, microarrays fol-

lows three steps: 

Sample Preparation and Labeling 

It involves, extraction of mRNA from tissue of interest, conversion 
from mRNA to cDNA and labeling of this cDNA. Labeling is im-
portant as it founds detection of which cDNA are bound to which 

microarray. 

Sample Hybridization and Washing 

In hybridization, DNA probes on the microarrays and labeled DNA 
target, forms heteroduplexes according to Watson-Crick base pair-
ing rule. After hybridization, microarray chip is washed to eliminate 

any excess labeled sample other than DNA complementary probes. 

Image Scanning and its Processing 

A hybridized array is scanned to produce a microarray image. La-
beled samples with dyes emit detectable light when simulated by a 
laser. Detectable emitted light by target DNA strands are bound to 
their complementary probes. This scanned output is a monochrome 

image. 

The scanned image can be considered as an input for microarray 
information analysis. The analysis further categorized as low level 
analysis and high level analysis. In low level analysis, spot quanti-
zation matrices are generated. Knowledge extraction, is done in 
high level analysis. The set of spot quantization matrices are sum-
marized to form single gene expression data matrix (dataset). The 

above complete process is shown in pictorial form [Fig-1].  

Gene Expression Matrix 

The results of microarray experiment are often produced in terms of 

matrix, called as Gene Expression Matrix, in which rows represents 
genes and columns represents various time points or different envi-
ronmental conditions. An element of a matrix represents the loga-
rithm of the relative abundance of mRNA of a gene under specific 
condition. 

Fig. 1- Generation of Gene Expression Matrix from DNA Microarray 

Gene expression matrices have been extensively analyzed by two 
dimensions: the gene dimension and condition dimension. These 
analysis correspond, respectively, to analyze the expression pat-
terns of samples by comparing the rows in the matrix, and to ana-
lyze the expression patterns of samples by comparing the columns 
in the matrix. For generating results we worked on gene dimen-
sions, where rows are genes and columns are the environmental 
conditions. If A is a gene expression matrix with M rows and N col-
umns, then the goal is to find a sub-matrix A’ with M’ rows and N’ 

columns form A. 

A(M,N) A’(M’,N’) where M’ are some selected rows in M and N’ are 
some selected columns in N. These M’ and N’ are the genes and 
conditions resp. selected together which shows some relation or 
pattern in between them. The pattern which we are looking are 
explained in [Fig-2]. All such genes are co-expressed genes under 
certain same conditions. We try to find such sub-matrices which will 

be responsible for some important clue for molecular biology. 

Problem Definition 

To get sub-matrix from original gene matrix, so that significant bio-
logical information can be gained is the only objective of our proce-

dure. The goals can be further listed as follows: 

 Find out the groups of all co-expressed genes. 

 Observe the behavior of all group of genes as per conditions. 

 List out the significant observations 

To Contribute to the Mining of Genes 

We consider a data matrix A called as gene data matrix having X 
rows and Y columns, Here, X = {x1,x2,…xn}, and Y = {y1,y2…yn}. The 
submatrix AIJ = (I, J) is, a subset of rows I={i1,i2,…ik} (I ⊆ X and k ≤ 
n), and a subset of columns J = {j1, j2,..js} (J ⊆ Y and s ≤ m). A (I, 
J) can be defined as a k by s submatrix from the matrix A. Our aim 
is to find such A (I, J) meaningful submatrices which contributes to 

the biological knowledge. 
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The objective of an algorithm is to extract coherent and maximum 
size biclusters, i.e., a maximum group of genes with a maximum 
groups of conditions where the genes exhibit highly correlated activ-

ities over a range of conditions. 

Literature Survey 

Traditional technique used for finding out co-expressed genes from 
gene expression matrix was clustering. The detailed discussion of 
clustering can be found in Raut, et al [1,2]. There are some draw-
backs in the application of clustering on gene expression matrix as 
follows. Clustering methods can be applied to either the rows or the 
columns of the data matrix, separately and hence can derive a glob-
al model which finds either group of genes with all conditions or 
group of conditions with all genes. But, the fact according to biologi-
cal findings is most of the patterns [Fig-2] are common to the group 
of genes only under specific experimental conditions and remain 
independent for the rest of conditions. These local patterns need to 
be identified as they help to solve many biological problems. Clus-
tering cannot find these local patterns and hence needed bicluster-
ing so that some group of genes with some group of conditions, 
which are highly co-related, can be estimated from the given gene 
matrix. Vast literature is available on usage of biclustering for ex-
traction of information on gene expression matrix. According to [3], 
all biclustering methods/ algorithms are designed to find certain 

patterns from gene expression matrix, they can be specified as: 

1. Biclusters with constant values [Fig-2](a). 

2. Biclusters with constant values on rows or columns [Fig-2](b) & 

(c). 

3. Biclusters with coherent values (Additive) [Fig-2](d). 

4. Biclusters with coherent values (Multiplicative) [Fig-2](e). 

5. Biclusters with coherent evolution [Fig-2](f). 

 (a)    (b)        (c) 

 (d)    (e)        (f) 

Fig. 2- Types or pattern of Gene Expression  

Earlier research papers develop algorithms which are able to find 
one or more patterns out of five, but not all. Some considering [Fig-

2](a-e) are the patterns of one type and [Fig-2](f). is of another type. 
Hence, the algorithms develop either considers all patterns i.e. from 
[Fig-2](a-e) or an algorithm which considers only pattern [Fig-2](f). 
Hartigan [4], Tibshirani, et al [5], Getz, et al [6], Segal, et al [7,8], 
Sheng, et al [9], Lazzeroni and Owen [10], Kluger, et al [11], Tang 
et al [12], Ayadi, et al [13], Xiangchao Gan et al [14] and the most 
important Cheng and Church [15] discussed their algorithms to find 
pattern of [Fig-2] and many more gave excellent contribution for 
discovering patterns for gene expression matrix. 

Our Contribution and Algorithmic Strategy 

We tried to find significant clusters using two algorithms. In first 
algorithm, as the size of matrix is large, we transform the values of 

matrix as transform values and examine it as coherent values. The 
output of the first algorithm is group of some genes with some con-
ditions. In second algorithm, we take the input as all those groups 
formed by first algorithm and find exact biclusters from the those 

groups. The detailed method is as follows: 

Algorithm-I 

The input for the first algorithm is gene expression matrix A having 

number rows I and number of columns J. 

aij is the expression of gene I for condition J. Synthetic data is noise 
prune, but, real time data always has some noise, hence instead of 
considering matrix as a real numbers, we transform the input matrix 
of real numbers into discrete matrix having only three values 1, 0, -

1. The rules to convert given matrix values are as follows: 

where, A (I,J) is the input matrix and B (I',J') is the transformed ma-
trix for ex. [Fig-3](a) shows original matrix while [Fig-3](b) shows its 

transform equivalent matrix. 

There is a necessity of calculation of S for each generated biclus-
ters, as each bicluster may not be substantial bicluster. We calcu-
late S as per Ayadi, et al [13], and find its validity. In our experi-
ment, for synthetic as well as for real dataset we fix the value of 
acceptable S is 0.8. So, if the generated bicluster is having calculat-
ed score equal or more than 0.8, that bicluster considered to be 
valid for further processing. The output of the first algorithm is col-

lection of all such valid biclusters.  

(a)     (b) 

Fig. 3 (a)- Sample Data Matrix; (b)- Processing on Sample Data 

Matrix 

Algorithm II 

All the biclusters which are with valid S as Spearman’s ratio will be 
selected, but these are raw biclusters, to select more significant 
biclusters, we are using actual values of C i.e. original expression 
matrix values as input for second algorithm. In the second algo-
rithm, we take all valid biclusters having original (not transformed 
i.e. not 0, 1 & -1) values and find significant group of genes with 
group of conditions as an output. The algorithmic steps are as fol-

lows: 

Input: C, which are intermediate set of Biclusters. 

Output: Significant Biclusters S. 

 for each C1 in C do 

   for each j in J of C1 do 

 subtract/divide rest of columns in J of C1 to get IM(X,Y). 

  end for 

 find constant/additive/multiplicative subclusters 

 for IM to form final S1. 

 S= U S1. 

 end for 
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Three separate functions are written to identify constant(includes 
[Fig-2](a) & (b), additive [Fig-2](c) & (d) and multiplicative [Fig-2](e) 

pattern exists for input biclusters. 

Fig. 4 (a)- Sample Data Matrix; (b)- Processing on Sample Data 

Matrix 

[Fig-4](a) & (b) are the examples of constant biclusters, so for con-
stant biclusters, if we subtract column from other rest of columns we 

always get constant values as a output. 

Fig. 5(a)- Sample Data Matrix; (b)- Processing on Sample Data 

Matrix 

[Fig-5](a) are the input biclusters, [Fig-5](b) is the output of Algo-
rithm II. As group of genes have same value for group of conditions, 

these can be formed to an cluster. 

(a)     (b) 
Fig. 6(a)- Sample Data Matrix; (b)- Processing on Sample Data 

Matrix 

In [Fig-6](a), pattern is multiplicative then by dividing column from 
other rest of columns we get group of genes with similar group of 

conditions and hence can be group as a cluster[Fig-6](b). 

Experimental Study 

We applied our designed algorithms on both real and simulated 

data. 

Simulated Data 

We have used two simulated data, first of dimension 420 X 70 and 
second of dimension 50 X 20. Both datasets are randomly generat-
ed and embedded with constant, additive as well as multiplicative 
non-overlapping biclusters. As the algorithm I working, is based on 
greedy strategy, all the embedded rows for the specified biclusters 
are traced correctly but in groups, i.e. suppose a bicluster is having 
number of rows as 2,4,5,8,9,10,13,14,15 and number of columns as 
3,4,5,8,12,15,17,19 then instead of one cluster i.e. all rows to be in 
one biclusters we get two biclusters with number of columns. Then 
these all biclusters are submitted to algorithm II, to get exact rows 
and columns. By the end of algorithm II, we get biclusters (may be 
single bicluster divided into number of groups with group of col-
umns). Then, finally by the close observation of all the biclusters we 

may regroup splitted biclusters. 

We are able to extract all the biclusters that are embedded with 

both the simulated datasets.  

Real Dataset 

We have used Yeast Cell Cycle dataset as a real dataset [15]. It 
contains 2884 genes and 17 conditions. The Yeast Cell Cycle is 
6000 X 17 dataset but we have considered publicly available [15] 
i.e. 2884 X 17 as a dataset for generating the output of our algo-
rithm. To find the biological relevance, we use web tool, FuncAsso-
ciate 2.0 [16], complete GO:0000001 to GO:2000911 are annotated 
for Yeast Cell Cycle. The file is quite big, hence we show the output 
with respect to GO:0000002 (attached as File-I). We apply our both 
algorithms on above Yeast Cell Cycle, the output of algorithm is 
attached with the paper(as supplementary File-III attached). We 
further explain our outcomes with reference to GO:0000002. The 
observations are mentioned after analyzing output of second algo-
rithm (as supplementary File-IV attached). In the dataset in place of 
actual gene name we have numbers from 1,2,3,….,2884. The map-

ping of actual genes to numbers is in a file as supplementary File-II. 

Discussion 

For real dataset we have choosen Yeast Cell Cycle dataset as it is 
publicly available. The first algorithm is applied on the dataset of 
size 2884 X 17, this dataset is transformed into three discrete val-
ues like -1,0,1.  The algorithm is of greedy nature and hence biclus-
ters are generated as split up form. The meaning is if a bicluster is 
having 30 genes and 10 conditions, the first algorithm output shows 
3-4 biclusters, having 30 genes pervade on these biclusters. But all 
the genes are correctly selected in all those 3-4 biclusters. Now as 
the input is transformed may be all relevant genes as per trans-

formed values can group to form the biclusters.  

Fig. 7- Pictorial representation of an Algorithm 
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We find Spearman’s rho value for each bicluster, to select only the 
valid biclusters and delete all irrelevant biclusters. Now, we send all 
the valid and tested biclusters as an input to second algorithm. The 
second algorithm take the intermediate biclusters generated by first 
algorithm and generates final biclusters. Hear also we use 
Spearman’s rho to find only relevant biclusters. The flow of the 
complete procedure can be shown as pictorial diagram in [Fig-7]. 
The detailed discussion of result are explained in supplementary 
files, File-I, File-II, File-III, and File-IV. 

The problem with applied algorithm is its greedy nature, and thus in 
place of receiving single bicluster for meaningful output, we receive 
2-4 biclusters and later by post processing we have to combine all 2
-4 biclusters to be one. Hence, in future we like to improve the algo-
rithm so that only one meaningful bicluster will be generated for 
single meaningful output. 
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