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Abstract- Urogenital schistosomiasis is frequently occurring parasitic disease in tropical countries, S. haematobium is main causative 
agent responcible for urogenital schistosomiasis; till date no effective invention made to against urogenital schistosomiasis. In this analy-
sis we a have predicted suitable antigenic peptides from Schistosoma haematobium 23-kDa transmembrane protein for peptide vaccine 
design against urogenital schistosomiasis based on cross protection phenomenon as, an ample immune response can be generated with 
a single protein subunit. We found MHC class II binding peptides of S. haematobium 23-kDa are important determinant against the dis-
eased condition. The analysis shows S. haematobium 23-kDa transmembrane protein having 218 amino acids, which shows 210 nonam-
ers. In this assay, we have predicted MHC-I binding peptides for 8mer_H2_Db allele (optimal score is 14.128), 9mer_H2_Db allele 
(optimal score is 20.065), 10mer_H2_Db allele (optimal score is 13.776), 11mer_H2_Db allele (optimal score is 31.213). We also predict-
ed the SVM based MHCII-IAb peptide regions, 152-DYGPNIPAS, 51-WQAAPIAII, 50-VWQAAPIAI, 142-FHCCGAKGP, 97-AELAAAIVA 
(optimal score is 14.911); MHCII-IAd peptide regions, 100-AAAIVAVVY, 71-LGCCGAIKE, 192-FGVCFFQLL, 186-IVACVAFGV (optimal 
score is 13.112); and MHCII-IAg7 peptide regions 42-QYGDNLHKV, 101-AAIVAVVYK, 28-VLIGAGAYV, 103-IVAVVYKDR, 203-
VIACCLGRQ (optimal score is 11.605) which shows potential binders from S. haematobium 23-kDa transmembrane protein. The method 
integrates prediction of MHC class I binding proteasomal C- terminal cleavage peptides and Six potential antigenic peptides at average 
propensity 1.094 having highest local hydrophilicity. Thus a small antigen fragment can induce immune response against whole antigen. 

This approach can be applied for designing subunit and synthetic peptide vaccines.  
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Introduction 

Schistosomiasis is one of the neglected tropical disease caused by 
a parasitic worm of Schistosoma spp. that primarily lives in the 
blood. The parasite is transmitted to humans by penetration of the 
skin in fresh water and cause severe damage including bleeding 
and cancer, which may cause the death of an individual. Schistoso-
miasis infection estimated in ~240 million people in the world. The 
classic sign of urogenital schistosomiasis is haematuria. Fibrosis of 
the bladder and ureter and kidney damage are common findings. 
S. haematobium is one the major causative agents of urogenital 

schistosomiasis in tropical and sub-tropical countries [1]. 

Pathogenesis 

The free living cercarial form of the S. haematobium penetrates 
human skin in fresh water. The cercariae travel through the tissue 
to the blood stream. Mature male and female worms over mating in 
the veins of the liver before moving to their final destination, the 
veins that drain to the bladder. The female adult worm produces 
200-2000 eggs per day. Eggs circulate in the blood vessels until 
they become lodged in various organs. The accumulation of eggs 
in the various tissues and organs of the body can cause severe 
damage including bleeding and cancer. An accumulated damage 
caused by the eggs rather than the parasites themselves that caus-
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es the majority of mortality and morbidity associated with the dis-

ease [2]. 

Strategy 

This approach is based on the phenomenon of cross-protection [3] 
hereby an individual infected with a mild strain of pathogen pos-
sess immunity against more severe strain of the same pathogen. 
Body proteins are necessary for production of immunity in or on all 
food commodities. Relief from the requirement of a tolerance is 

established for residues of the drugs or chemicals. 

MHC Class Binding Peptides 

The new paradigm in vaccine design is emerging, following essen-
tial discoveries in immunology and development of new MHC class 
I binding peptides prediction tools [4-6]. MHC molecules are cell 
surface glycoproteins, which take active part in host immune reac-
tions. The involvement of MHC class I in response to almost all 
antigens and the variable length of interacting peptides make the 
study of MHC class I molecules very interesting. MHC molecules 
have been well characterized in terms of their role in immune reac-
tions. They bind to some of the peptide fragments generated after 
proteolytic cleavage of antigen [7]. This binding act like red flags for 
specific antigen and to generate immune response against the 
parent antigen, thus an antigen subunit can induce immune re-
sponse against whole antigen. Antigenic peptides are most suitable 
for subunit vaccine development because with single epitope, the 
immune response can be generated in large population. MHC-
Peptide complexes will be translocated on the surface of antigen 
presenting cells (APCs). This theme is implemented in designing 
subunit and synthetic peptide vaccines [8-11]. One of the important 
problems in subunit vaccine design is to search for antigenic re-
gions in an antigen protein [12] that can stimulate T-cells called T-
cell epitopes. Fortunately, in literature a large amount of data about 
such peptides is available. Pastly and presently, a number of data-
bases have been developed to provide comprehensive information 

related to T-cell epitopes [13-17]. 

Materials and Methods 

Protein Sequence Analysis 

The antigenic protein sequence of Schistosoma haematobium 23-
kDa transmembrane protein was analyzed to study the antigenicity 
[18], solvent accessible regions and MHC class binding peptides, 
which allows potential drug targets to identify active sites against 

lymphatic filariasis. 

Antigenicity Prediction 

Antigenicity prediction program results those segments from Schis-
tosoma haematobium 23-kDa transmembrane protein that are 
likely to be antigenic by eliciting an antibody response. Antigenic 
epitopes are determined using the Gomase (2007), Hopp and 
Woods (1981), Welling (1985), Parker (1986), BepiPred Server 
(2006) and Kolaskar and Tongaonkar Antigenicity (1990) methods 

[19-24]. 

Protein Secondary Structure Prediction 

The important concepts in secondary structure prediction are iden-
tified as: residue conformational propensities, sequence edge ef-
fects, moments of hydrophobicity, position of insertions and dele-

tions in aligned homologous sequence, moments of conservation, 
auto-correlation, residue ratios, secondary structure feedback ef-

fects and filtering [25, 26]. 

MHC Binding Peptide Prediction  

The MHC binding peptides are predicted by using neural networks 
trained on C terminals of known epitopes. In this work predicted 
MHC-Peptide binding is a log-transformed value related to the IC50 
values in nM units. RankPep predicts peptide binders to MHC-I and 
MHC-II molecules from protein sequences or sequence alignments 
using Position Specific Scoring Matrices (PSSMs). Support Vector 
Machine (SVM) based method has been used for prediction of 
promiscuous MHC class II binding peptides. The average accuracy 
of SVM based method for 42 alleles is ~80%. For determination of 
potential MHC binders, an elegant machine learning technique 
SVM has been applied. SVM has been trained on the binary input 
of single amino acid sequence. In addition, we predicts those MHC
-I ligands whose C-terminal end is likely to be the result of proteo-

somal cleavage [27-33]. 

Result and Interpretation 

A Schistosoma haematobium 23-kDa antigenic sequence (gi-

2501225) is 218 residues long as- 

MATLGTGMRCLKSCVFVLNIICLLCSLVLIGAGAYVEVKFSQYG-
DNLHKVWQAAPIAIIVVGVIILIVSFLGCCGAIKENVCMLYMYAFFLI
ILLIAELAAAIVAVVYKDRIDSEIDALMTGALDKPTPEITEFMDLIQS
SFHCCGAKGPQDYGPNIPASCRGETTVYHEGCVPVFGAFLKRNL

VIVACVAFGVCFFQLLSIVIACCLGRQIKEYENV 

Antigenic Peptides Prediction 

In this assay we predicted the antigenic determinants by finding the 
area of highest local hydrophilicity. We studied methods BepiPred 
Server, Kolaskar and Tongaonkar antigenicity, Parker, Emini Sur-
face Accessibility methods [Fig-1], [Fig-2], [Fig-3], [Fig-4], [Table-1] 
and Hopp & Woods hydrophobicity method which predict the loca-
tions of antigenic determinants in antigen protein, assuming that 
the antigenic determinants would be exposed on the protein sur-
face and thus would be located in hydrophilic regions [Fig-5], its 
values are derived from the transfer-free energies for amino acid 
side chains between ethanol and water.  

Fig. 1- Bepipred Linear Epitope Prediction plot showing antibody 

recognized B-cell epitopes of the S. haematobium 23-kDa 
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Welling hydrophobicity plot gives value as the log of the quotient 
between percentage in a sample of known antigenic regions and 
percentage in average proteins [Fig-6]. The predicted antigenic 
fragments can bind to MHC molecule is the first bottlenecks in 

vaccine design. 

Fig. 2- Kolaskar and Tongaonkar antigenicity plot showing anti-

body recognized antigenicity for the S. haematobium 23-kDa. 

Fig. 3- HPLC / Parker et al. (1986) hydrophobicity plot of S. hae-

matobium 23-kDa  

Fig. 4- Emini Surface Accessibility Prediction plot of S. haematobi-

um 23-kDa  

Fig. 5- Hopp and Woods (1981) hydrophobicity plot of S. haemato-

bium 23-kDa  

Fig. 6- Welling et al. (1985) hydrophobicity plot of S. haematobium 

23-kDa  

Secondary Alignment 

The Robson and Garnier method has been applied for the predic-
tion of Schistosoma haematobium 23-kDa transmembrane protein 
secondary structure. Each residue is assigned values for alpha 
helix (Shown in Red), beta sheet (Shown in Blue) and coils (Shown 
in Pink) using a window of 7 residues [Fig-7]. Using these infor-
mation parameters, the likelihood of a given residue assuming 
each of the four possible conformations alpha, beta, reverse turn, 
or coils calculated, and the conformation with the largest likelihood 

is assigned to the residue.  

Fig. 7- Secondary structure plot of the S. haematobium 23-kDa 

transmembrane protein. 

*Red: helix, Blue: Sheet, Pink: Coil 
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Prediction of MHC Binding Peptides 

These MHC binding peptides are sufficient for producing the de-
sired immune response. The prediction is based on support vector 
machine, using amino acids sequence. In this test, we found the 
MHC-I and MHC-II binding regions [Table-2], [Table-3]. MHC mole-
cules are cell surface glycoproteins, which actively take part in host 
immune reactions and involvement of MHC-I and MHC-II in re-
sponse to almost all antigens. In this study we predicted the bind-
ing affinity of Schistosoma haematobium 23-kDa protein, having 
218 amino acids, which show several potential nonamers [Table-2], 
[Table-3]. For development of MHC binding prediction method, an 
elegant machine learning technique Support Vector Machine 
(SVM) has been used. SVM has been trained on the binary input of 
single amino acid sequence. In this assay we predicted the binding 
affinity of S. haematobium 23-kDa protein sequence having 218 

amino acids, which shows 210 nonamers.  

Table 2- Prediction of MHC class I peptides, from S. haematobium 
23-kDa transmembrane protein having C-terminal ends are proteo-

somal cleavage sites 

Table 2- Continue 

*Optimal Score for given MHC binder in Mouse 

We Predicted the SVM based MHCII-IAb peptide regions, 152-
DYGPNIPAS, 51-WQAAPIAII, 50-VWQAAPIAI, 142-FHCCGAKGP, 
97-AELAAAIVA (optimal score is 14.911); MHCII-IAd peptide re-
gions, 100-AAAIVAVVY, 71-LGCCGAIKE, 192-FGVCFFQLL, 186-
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Table 1- Antigenic epitopes of S. haematobium 23-kDa transmembrane protein 

No. Start Position End Position Peptide Peptide Length 

1 7 41 GMRCLKSCVFVLNIICLLCSLVLIGAGAYVEVKFS 35 

2 47 110 LHKVWQAAPIAIIVVGVIILIVSFLGCCGAIKENVCMLYMYAFFLIILLIAELAAAIVAVVYKD 64 

3 136 148 DLIQSSFHCCGAK 13 

4 156 161 NIPASC 6 

5 166 179 TVYHEGCVPVFGAF 14 

6 181 210 KRNLVIVACVAFGVCFFQLLSIVIACCLGR 30 

MHC-I Allele POS. N SEQUENCE C MW (Da) SCORE % OPT. 

9mer_H2_Db 140 LIQ SSFHCCGAK GPQ 921.06 7.709 15.31% 

9mer_H2_Db 15 KSC VFVLNIICL LCS 1015.32 7.326 14.55% 

9mer_H2_Db 82 ENV CMLYMYAFF LII 1170.48 6.696 13.29% 

9mer_H2_Db 200 FQL LSIVIACCL GRQ 916.21 6.17 12.25% 

9mer_H2_Db 69 LIV SFLGCCGAI KEN 852.04 5.707 11.33% 

9mer_H2_Db 28 CSL VLIGAGAYV EVK 844.02 5.508 10.94% 

9mer_H2_Db 204 SIV IACCLGRQI KEY 958.21 3.66 7.27% 

9mer_H2_Db 21 LNI ICLLCSLVL IGA 958.29 3.505 6.96% 

9mer_H2_Db 184 KRN LVIVACVAF GVC 916.19 3.465 6.88% 

9mer_H2_Db 12 RCL KSCVFVLNI ICL 1004.25 3.421 6.79% 

9mer_H2_Db 87 LYM YAFFLIILL IAE 1094.42 3.365 6.68% 

9mer_H2_Db 84 VCM LYMYAFFLI ILL 1162.47 2.922 5.80% 

9mer_H2_Db 168 TTV YHEGCVPVF GAF 1032.19 2.69 5.34% 

9mer_H2_Db 171 YHE GCVPVFGAF LKR 878.06 2.561 5.08% 

9mer_H2_Db 62 IVV GVIILIVSF LGC 942.21 2.295 4.56% 

9mer_H2_Db 83 NVC MLYMYAFFL IIL 1180.5 2.292 4.55% 

9mer_H2_Db 176 VPV FGAFLKRNL VIV 1047.27 1.085 2.15% 

9mer_H2_Db 13 CLK SCVFVLNII CLL 989.24 1.021 2.03% 

9mer_H2_Db 48 DNL HKVWQAAPI AII 1008.22 0.67 1.33% 

9mer_H2_Db 73 FLG CCGAIKENV CML 918.09 0.638 1.27% 

9mer_H2_Db 111 YKD RIDSEIDAL MTG 1013.13 0.582 1.16% 

10mer_H2_Db 148 CGA KGPQDYGPNI PAS 1070.17 13.776 23.41% 

10mer_H2_Db 153 PQD YGPNIPASCR GET 1059.22 5.726 9.73% 

10mer_H2_Db 82 ENV CMLYMYAFFL IIL 1283.64 5.404 9.18% 

10mer_H2_Db 125 GAL DKPTPEITEF MDL 1158.28 4.829 8.20% 

10mer_H2_Db 2 M ATLGTGMRCL KSC 1004.22 4.647 7.90% 

10mer_H2_Db 122 LMT GALDKPTPEI TEF 1022.17 4.57 7.76% 

10mer_H2_Db 110 VYK DRIDSEIDAL MTG 1128.22 4.038 6.86% 

10mer_H2_Db 41 VKF SQYGDNLHKV WQA 1142.23 3.966 6.74% 

10mer_H2_Db 38 YVE VKFSQYGDNL HKV 1152.27 1.785 3.03% 

10mer_H2_Db 170 VYH EGCVPVFGAF LKR 1007.18 0.568 0.97% 

11mer_H2_Db 74 LGC CGAIKENVCML YMY 1162.44 31.213 39.26% 

11mer_H2_Db 187 LVI VACVAFGVCFF QLL 1144.42 21.342 26.85% 

11mer_H2_Db 14 LKS CVFVLNIICLL CSL 1231.62 13.338 16.78% 

11mer_H2_Db 82 ENV CMLYMYAFFLI ILL 1396.8 12.78 16.08% 

11mer_H2_Db 25 CLL CSLVLIGAGAY VEV 1048.27 11.875 14.94% 

11mer_H2_Db 15 KSC VFVLNIICLLC SLV 1231.62 7.887 9.92% 

11mer_H2_Db 13 CLK SCVFVLNIICL LCS 1205.54 6.595 8.30% 

11mer_H2_Db 189 IVA CVAFGVCFFQL LSI 1215.5 5.816 7.32% 

11mer_H2_Db 192 CVA FGVCFFQLLSI VIA 1255.55 5.771 7.26% 

11mer_H2_Db 1   MATLGTGMRCL KSC 1135.41 5.508 6.93% 

11mer_H2_Db 56 AAP IAIIVVGVIIL IVS 1104.48 4.487 5.64% 

11mer_H2_Db 81 KEN VCMLYMYAFFL IIL 1382.77 3.235 4.07% 

11mer_H2_Db 121 ALM TGALDKPTPEI TEF 1123.27 2.928 3.68% 

11mer_H2_Db 147 CCG AKGPQDYGPNI PAS 1141.25 2.278 2.87% 

11mer_H2_Db 61 IIV VGVIILIVSFL GCC 1154.5 1.969 2.48% 

11mer_H2_Db 84 VCM LYMYAFFLIIL LIA 1388.79 1.612 2.03% 

11mer_H2_Db 198 CFF QLLSIVIACCL GRQ 1157.5 1.505 1.89% 

11mer_H2_Db 176 VPV FGAFLKRNLVI VAC 1259.56 1.473 1.85% 

MHC-I Allele POS. N SEQUENCE C MW (Da) SCORE % OPT. 

8mer_H2_Db 150 AKG PQDYGPNI PAS 884.95 14.128 26.91% 

8mer_H2_Db 124 TGA LDKPTPEI TEF 894.04 11.679 22.25% 

8mer_H2_Db 52 KVW QAAPIAII VVG 777.97 9.638 18.36% 

8mer_H2_Db 51 HKV WQAAPIAI IVV 828.02 8.25 15.72% 

8mer_H2_Db 60 AII VVGVIILI VSF 807.08 6.37 12.13% 

8mer_H2_Db 173 EGC VPVFGAFL KRN 831.03 6.357 12.11% 

8mer_H2_Db 78 GAI KENVCMLY MYA 981.19 6.245 11.90% 

8mer_H2_Db 29 SLV LIGAGAYV EVK 744.89 6.162 11.74% 

8mer_H2_Db 49 NLH KVWQAAPI AII 871.08 5.716 10.89% 

8mer_H2_Db 190 VAC VAFGVCFF QLL 871.07 5.676 10.81% 

8mer_H2_Db 146 HCC GAKGPQDY GPN 816.87 5.4 10.29% 

8mer_H2_Db 31 VLI GAGAYVEV KFS 746.82 4.94 9.41% 

8mer_H2_Db 77 CGA IKENVCML YMY 931.17 4.036 7.69% 

8mer_H2_Db 54 WQA APIAIIVV GVI 777.02 3.746 7.14% 

8mer_H2_Db 85 CML YMYAFFLI ILL 1049.31 3.215 6.12% 

8mer_H2_Db 205 IVI ACCLGRQI KEY 845.05 2.062 3.93% 

8mer_H2_Db 36 GAY VEVKFSQY GDN 981.12 1.98 3.77% 

8mer_H2_Db 185 RNL VIVACVAF GVC 803.03 1.535 2.92% 

8mer_H2_Db 18 VFV LNIICLLC SLV 886.18 1.467 2.79% 

8mer_H2_Db 193 VAF GVCFFQLL SIV 908.13 1.134 2.16% 

8mer_H2_Db 17 CVF VLNIICLL CSL 882.17 1.044 1.99% 

8mer_H2_Db 70 IVS FLGCCGAI KEN 764.96 0.48 0.91% 

9mer_H2_Db 192 CVA FGVCFFQLL SIV 1055.31 20.065 39.84% 

9mer_H2_Db 172 HEG CVPVFGAFL KRN 934.17 13.666 27.13% 

9mer_H2_Db 16 SCV FVLNIICLL CSL 1029.35 12.346 24.51% 

9mer_H2_Db 70 IVS FLGCCGAIK ENV 893.13 10.577 21.00% 

9mer_H2_Db 179 FGA FLKRNLVIV ACV 1083.38 10.175 20.20% 

9mer_H2_Db 22 NII CLLCSLVLI GAG 958.29 10.086 20.03% 

9mer_H2_Db 3 MA TLGTGMRCL KSC 933.14 9.834 19.53% 

9mer_H2_Db 19 FVL NIICLLCSL VLI 973.26 9.563 18.99% 

9mer_H2_Db 191 ACV AFGVCFFQL LSI 1013.23 9.532 18.93% 

9mer_H2_Db 189 IVA CVAFGVCFF QLL 974.21 9.521 18.90% 

9mer_H2_Db 76 CCG AIKENVCML YMY 1002.25 9.469 18.80% 

9mer_H2_Db 10 GMR CLKSCVFVL NII 993.29 9.12 18.11% 
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IVACVAFGV (optimal score is 13.112); and MHCII-IAg7 peptide 
regions 42-QYGDNLHKV, 101-AAIVAVVYK, 28-VLIGAGAYV, 103-
IVAVVYKDR, 203-VIACCLGRQ (optimal score is 11.605); which 
represents predicted binders from S. haematobium 23-kDa trans-
membrane protein [Table-3]. The predicted binding affinity is nor-
malized by the 1% fractil. The MHC-Peptide binding is predicted 
using neural networks trained on C terminals of known epitopes. In 
this analysis predicted MHC-Peptide binding is a log-transformed 
value related to the IC50 values in nM units. These MHC binding 
peptides can decently elicit the desired immune response. Predict-
ed MHC binding regions in an antigen sequence and these are 
directly associated with immune reactions, in analysis we found the 

MHC-I and MHC-II binding region.  

Table 3- Peptide binders to MHCII molecules of S. haematobium 

23-kDa transmembrane protein 

*Optimal Score for given MHC II peptide binder in Mouse. 

Discussion and Conclusion 

Gomase method (2007), BepiPred Server, Hopp and Woods, Well-
ing, Parker, Kolaskar and Tongaonkar antigenicity scales were 
designed to predict the locations of antigenic determinants in S. 
haematobium 23-kDa transmembrane protein. It shows beta sheets 
regions, which have higher antigenic response than helical region 
of this peptide and shows high antigenicity [Fig-1], [Fig-2], [Fig-3], 
[Fig-4], [Fig-5], [Fig-6]. In this assay we predicted the binding affini-
ty of S. haematobium 23-kDa transmembrane protein having 218 
amino acids, which shows 210 nonamers. We predicted MHC-I 
binding peptides for 8mer_H2_Db allele (optimal score is 14.128), 
9mer_H2_Db allele (optimal score is 20.065), 10mer_H2_Db allele 
(optimal score is 13.776), 11mer_H2_Db allele (optimal score is 
31.213) [Table-2]. MHC molecules are cell surface glycoproteins, 
which take active part in host immune reactions and involvement of 
MHC I and MHC II in response to almost all antigens [Table-2], 
[Table-3]. Kolaskar and Tongaonkar antigenicity predicted epitopes 
are the sites of molecules those are recognized by the immune 
system antibodies for the S. haematobium 23-kDa protein, analysis 
shows epitopes present in the S. haematobium 23-kDa protein are 
adequate to induce desired immune response. The region of maxi-
mal hydrophilicity is likely to be an antigenic site, having hydropho-
bic characteristics, because C- terminal regions of S. haematobium 
23-kDa transmembrane protein are solvent accessible and unstruc-
tured; antibodies against those regions are also likely to recognize 
the native protein. During prediction of antigenic determinant site of 
S. haematobium 23-kDa protein, we found Six antigenic determi-
nant sites in the sequence. The highest pick is recorded between 

sequence of amino acid in the region are  7-
GMRCLKSCVFVLNIICLLCSLVLIGAGA YVEVKFS-41 (35AA) and 
47-LHKVWQAAPIAIIVVGVIILIVSFLGCC GAIKENVCMLYMYAF-
FLIILLIAELAAAIVAVVYKD-110 (64AA) [Table-1]. The average 
propensity for the S. haematobium 23-kDa protein found is 1.094 
[Fig-2]. All residues having above 1.0 propensity are always poten-
tially antigenic [Table-1]. The predicted segments in transmem-
brane protein are 7-GMRCLKSCVFVLNIIC LLCSLVLIGAGAYVEV-
KFS-41, 47-LHKVWQAAPIAIIVVGVIILIVSF LGCCGAIKENVCML 
YMYAFFLIILLIAELAAAIVAVVYKD-110, 136-DLIQSSFHCCGAK-
148, 156-NIPASC-161, 166-TVYHEGCVPVF GAF-179, 181-
KRNLVIVACVAFGVCFFQLLSIVIACCLGR-210. Fragments identi-
fied through this approach seem to be high-efficiency binders, 
which is a much percentage of their atoms are directly involved in 

binding as compared to larger molecules. 

Future Perspectives 

This method will be applicable in cellular immunology, Vaccine 
design, immunodiagnostics, immunotherapeutics and molecular 
understanding of autoimmune susceptibility. S. haematobium 23-
kDa transmembrane protein sequence contains multiple antigenic 
components to direct and empower the immune system to protect 
the host against lymphatic filariasis disease. MHC molecules are 
cell surface proteins, which take active part in host immune reac-
tions and involvement of MHC class in response to almost all anti-
gens and it give impacts on specific sites. Predicted MHC binding 
regions acts like red flags for specific antigen and generate im-
mune response against the parent antigen. So a small fragment of 
antigen can induce immune response against complete antigen. 
The method integrates prediction of peptide MHC class binding; 
proteosomal C terminal cleavage and potential antigenic epitope 
prediction. This theme is implemented in designing subunit and 

synthetic peptide vaccines. 
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