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Abstract - Protein identification using mass spectrometry is an indispensable tool for proteomics which in 
recent days has evolved to give better understanding of the biology of cell and its functioning. Proteomics 
has wide application in diagnosing diseases such as cancer, Alzheimer’s disease etc. The data obtained 
from the diagnostic tools like LC-MS is to be interpreted accurately so as to obtain the correct qualitative and 
quantitative information about the peptides present in the biological sample. Such interpretation requires and 
exhaustive knowledge and review about different tools that can be employed and their comparison. This 
article focuses on comparison of different proteomic tools available for the MS data processing and 
interpretation. The accuracy demanded during protein identification can be fulfilled by tag based 
approaches, than PMF or PFF systems. Although, there is a need of standardized matrices for the 
comparison of the protein identification tools, identifying the single best package for each application from 
the available literature is at present extremely difficult as each package has its own advantage over other.  
The datasets and thresholds used in these kinds of comparisons have a critical importance on the outcome 
of such experiments, and that the high variability in machine and experimental setups complicates analysis. 
The state of data standards and lack of benchmarks therefore makes it difficult to make an effective 
comparison. While the increasing availability of data in public repositories and tightening standards will no 
doubt ameliorate the problem, until this basic benchmarking problem is overcome, no single package or 
approach can conclusively be declared to outperform all others, expect, perhaps, in the specific 
circumstances used in particular studies.  
Key words: Review on approaches and algorithms, diagnostic tools, Protein identification tools. 
 
Introduction 
Early diagnosis many diseases are currently an 
essential requirement in the medical sector so as 
to provide patient an appropriate medication 
before the disease reaches its chronic stage. 
Ovarian cancer is one such disease whose early 
diagnosis is currently unavailable and the 
disease is diagnosed only when it reaches its 
chronic stage. Biomarkers are the biological 
compounds which allow us to diagnose the 
disease, presence of these biomarkers or 
presence in higher concentration above normal 
refers to the presence of the suspected disease 
in the patient. Discovery and identification of such 
biomarkers are very much important in diagnostic 
sector. These biomarkers can be any biological 
compounds like proteins, hormones, biochemical 
compounds etc which can be linked with the 
presence of a particular specific disease. Protein 
identification is a key and essential step in the 
field of proteomics. The examination of patterns 
of protein expression alone can, of course, lead 
to important discoveries, including, for example, 
classification of samples on the basis of a 
particular pattern. However, without identifying 
the proteins known to be critically involved in the 
system under investigation, it is not possible to 
develop into the biological explanation for these 
patterns to develop hypotheses as to the 
underlying biology of the system of interest. 
Thus, while protein identification may often be 

overlooked or taken for granted, it remains the 
key initial step in elucidating the biology of an 
organism by studying its protein expression. Our 
ability to maximize the benefit of proteomics to 
life science research is often dependent on our 
ability to accurately, quickly, and completely 
identify the full complement of proteins found in 
our samples of interest. Proteomic tools like 
LC/GC-MS are extensively used for biomarker 
discovery or diagnosis. The speed and accuracy 
of these machines make them amenable to the 
high-throughput applications required not just in 
proteomics, but also in many other areas of the 
life sciences, resulting in rapid developments in 
hardware, software, and data management in the 
last decade. When we consider the use of mass 
spectrometers for protein identification, these 
rapid developments have lead to a bewildering 
number of instrument configurations, analysis 
algorithms, and data formats. This insight into 
protein identification algorithms is important 
because often the results may be ambiguous, 
and the biases chosen to make the problem 
computationally tractable can radically affect the 
result. The data obtained by the equipment being 
very large as the biological samples may contain 
a very huge number of proteins (of orders of 109) 
and varies with the source of the sample 
collected. Despite the improvements in mass 
spectrometry hardware and the reliability of 
modern protein identification software, several 
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studies involving a range of mass spectrometers, 
datasets, and identification algorithms have 
shown in each case that fewer than half of the 
proteins in a complex proteomic sample can be 
identified. Given the critical role of protein 
identification in proteomic analysis, this review 
aims to explore this apparent upper limit on the 
effectiveness of current protein identification 
algorithms and to give relevant background 
information and practical suggestions to 
computational biologists and life scientists so the 
best possible protein identifications can be 
realized.  
 
Review of the tools used 
The overall process of computational diagnosis is 
done by collecting data obtained from the 
proteomic tools such as LC-MS, MS/MS, 
SELDI,MALDI etc. and subjecting the data for 
processing wherein the data is refined to reduce 
noise levels. Secondly the processed data is 
subjected to identification of the peptides 
fragments; the peptide information so obtained 
gives even quantitative information of the protein 
present in the sample after its quantification. The 
consistent and transparent analysis of LC/MS 
and LC/MS/MS data requires multiple stages. 
Overview of disease diagnosis steps involved, 
using proteomic tools indicated in the figure (1). 
Modules solving each one of these tasks should 
be integrated into a linear process like the Trans-
Proteome Pipeline, which allows smooth 
processing of the data through the different 
stages (4). These stages are explained below.  
1.    DATA PROCESSING  
2.    PEPTIDE IDENTIFICATION AND 
VALIDATION  
3.    PROTEIN IDENTIFICATION AND 
VALIDATION  
4.    QUANTIFICATION  
In this review we try to find on the efficiency of 
various scoring systems and approaches used 
during peptide/protein identification process.  
   
Peptide identification and validation  
Scoring system  
Scoring system is very important in protein 
identification. Mass spectrometric data of an 
unknown protein is compared with theoretical 
data of known protein, and a score is assigned 
on how well the two data compare. If the score is 
above an arbiter threshold then it is called “hit”, if 
it is below the threshold value then the protein 
remains unidentified. Scoring system has been 
developed by adapting preexisting statistical 
models such as Bayesian probability [1, 2], 
expectation maximization [3], and machine 
learning [4], to name just a few. Progressively 
more sophisticated scoring systems have since 
been built by improving and combining standard 
scoring systems and by introducing novel 
statistical and search methods [5, 6].  

The limiting factor on all protein identification 
tools is the tradeoff between false positives and 
false negatives. It is absolutely essential to keep 
false positives to a minimum during protein 
identification because identifying the wrong 
protein can lead to a costly waste of time and 
resources. At the same time, it is clearly 
desirable to identify as many proteins as possible 
to draw maximum benefit from the experimental 
data. The ability of the system to identify a 
protein is called sensitivity and ability to 
differentiate between correct true positive and 
false positive is called specificity. A researcher 
should bear in mind that the threshold value 
given determines a balance between specificity 
and sensitivity of the system.  
As may be expected, there is a tradeoff between 
the two, embodied in a numerical threshold often 
called the confidence level, above which proteins 
are classed as identified. This is important for the 
researcher to bear in mind, since the balance 
between sensitivity and specificity will have a 
bearing on the threshold above which they are 
prepared to accept a protein as ‘‘identified.’’ For 
example, Chen et al. [7] report results for the 
popular peptide fragment fingerprinting (PFF) 
package called Mascot in a large cross-species 
study identifying human proteins in Escherichia 
coli databases using data collected on a high 
performance LC-MS/MS LCQ ion trap mass 
spectrometer. They find correct proteins to have 
scores between 20 and 117, and incorrect 
proteins to have scores of up to 60. This 
demonstrates a fundamental property of protein 
identification software. As shown in Figure 1, the 
separation of true from false protein 
identifications based on a score is never perfect, 
and the general effectiveness of all protein 
identification algorithms should be viewed with 
this in mind.  
 
Mass based approaches  
In this approach every protein in the database is 
theoretically subjected to similar environment as 
the sample protein undergoes. The sample 
protein undergoes enzymatic digestion and 
secondary fragmentation this allows to obtain 
mass spectrum of all the protein fragments in the 
database. These theoretical mass spectra are 
compared with the experimental spectrum. In 
theory, any method of comparison between two 
spectra can be a candidate for a scoring system, 
and in practice a variety of methods are used. 
Most basic method for comparison, one can 
consider the shared peak count. The shared 
peak count, as the name implies, counts the 
number of peaks in the same position (shared) in 
both the experimental and theoretical spectra. 
The theoretical spectrum with the highest shared 
peak count is then said to be the closest match. 
Peptide mass fingerprinting this method uses 
theoretical spectra each comprising the list of 
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masses expected by an enzymatic digestion of 
each protein sequence in the reference 
database. The experimental spectrum consists of 
the masses of the digested protein fragments 
detected by the mass spectrometer. PMF is 
popular and works well because it is relatively 
fast to search using PMF data against a 
database. With high quality sampling, PMF can in 
many cases produce protein identifications with 
high confidence, especially in organisms with 
smaller genomes. . Unfortunately, sometimes a 
sample spectrum does not resemble any 
theoretical spectra in the protein database closely 
enough to make a confident identification. This 
can happen for many reasons, such as 
unexpected post-translational or chemical 
modifications, splice variants, individual 
sequence variants (single nucleotide 
polymorphisms [SNPs], etc), or omissions and 
errors in the database. As more sophisticated 
methods for scoring PMF have been developed, 
more proteins can now be identified with 
confidence. This corresponds to a better 
separation of true from false positives using the 
scoring system. The next step is to specify a 
threshold above which the protein is termed to be 
identified. Determination of a threshold value 
should be carefully done because if the threshold 
is set low then the false positives may be getting 
identified and the result will be corrupted, 
whereas a high threshold masks the correct 
protein from getting identified. Statistical methods 
have been developed so as to find a correct 
threshold value which can identify correct 
proteins [8, 9]. Limitation of PMF is that the 
database size affects the sensitivity of the 
method. Most of the software use PMF as a first 
screening method wherein if the method 
succeeds in identifying protein then the result is 
accepted and if not other method such as PFF is 
employed. Most popular packages are definitely 
easier to understand and use due to user friendly 
graphical interface used. Few of such popular 
packages are introduced below. Aldente [10] is 
hosted on the ExPASy Proteomics Server as one 
of a suite of bioinformatics tools. Released in 
2004, Aldente uses a robust Hough transform to 
speed searches and find straight lines hidden in 
the data, making this tool more robust to noise 
than other PMF packages. A number of 
additional constraints can be input by the user, 
such as isoelectric point and molecular weight to 
restrict the effective database size. Unlike most 
other PMF packages, the user is able to select 
the parameters contributing to the final score and 
their proportions in order to ‘‘fine-tune’’ the 
search engine to a particular experiment. The 
details of this tunable scoring scheme are 
available on the ExPASy Web site [11] along with 
supporting documentation. A threshold for 
identification is set after processing random 
sequences in the same parent mass range. The 

random sequence with the highest score 
becomes the threshold above which a protein is 
said to be identified. Mascot [2] uses a 
proprietary scoring algorithm but is known to be 
based on the MOWSE algorithm [12], first 
described in 1993. By calculating the distribution 
of tryptic peptide lengths across the entire search 
database, a probability can be calculated for 
each observed peak for this match being purely 
random. Perkins et al. [2] describe in general 
terms the basis of this probabilistic scoring 
system, giving the user of this package an insight 
into how to interpret data generated via Mascot: 
‘‘The fundamental approach is to calculate the 
probability that the observed match between the 
experimental data set and each sequence 
database entry is a chance event. The match 
with the lowest probability is reported as the best 
match. Whether this match is also a significant 
match depends on the size of the database. To 
take a simple example, the calculated probability 
of matching six out of ten peptide masses to a 
particular sequence might be 10_5. This may 
sound like a promising result but, if the real 
database contains 106 sequences, several 
scores of this magnitude may be expected by 
chance. A widely used significance threshold..... 
is p, 0.05.For a database of 106 entries, this 
would mean that those with significant matches 
were those with probabilities of less than 5 3 
10_8. .... we have adopted a convention often 
used in sequence similarity searches, and report 
a score which is 10Log10 (P), where P is the 
probability. A significant match is typically a score 
of the order of 70.’’ This means searches in 
smaller protein databases, such as bacterial 
databases, will generally have lower threshold 
scores for confidence than those conducted in 
larger databases for higher organisms. We can 
also infer that for noisy experimental spectra, for 
example those with contamination, these extra 
peaks contribute to the possibility of a random 
match, and thus raise the confidence score 
threshold for a given probability. Mascot 
automatically returns a score threshold with its 
results calculated to represent a confidence level 
of p, 0.05. MASCOT search for smaller 
databases such as bacterial databases will 
generally have lower threshold scores for 
confidence than those conducted in larger 
databases for higher organisms. Example of 
input data format is available at matrix science 
website [13]. MS-Fit [14] is also a probabilistic 
algorithm, again based on MOWSE, but runs 
over FASTA format [15] databases. MS-Fit first 
bins proteins according to the parent mass 
weight. Within each of these bins, a series of bins 
are created according to the tryptic peptide 
masses. This is done so that when calculating 
the probability of a random tryptic peptide match, 
it is calculated specifically for the distribution of 
these peptide masses for a given parent mass, 
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effectively reducing the size of the search 
databases MS-Fit also allows for the input of a 
number of possible contaminant masses. This 
allows the user to pre-filter any likely 
contaminants from the spectrum, thus increasing 
the quality of the spectrum against which a 
search is to be performed.  
Profound [10] uses a Bayesian probability scoring 
system to score hits, using additional information 
outside of the set normally used by PMF 
algorithms, such as enzyme cleavage chemistry 
information, provisions for the knowledge that 
particular amino acids are present (or absent) in 
the sample protein, and previous experiments on 
the sample protein. Each piece of information 
functions as an additional constraint upon the 
search space of database proteins, therefore 
reducing the effective size of the database 
against which the search is conducted. Profound 
uses Gaussian distributed measurement errors in 
the probability calculations to more closely model 
real error, as opposed to the simple bounded 
‘‘tolerance’’ error measurements used in other 
PMF algorithms. A recent study by Chamrad et 
al. [10] using matrix-assisted laser desorption–
ionization time-of-flight (MALDI-TOF) mass 
spectrometry data from a project mapping genes 
onto mouse chromosomes used expert 
interpretation of the spectra to identify 70% of the 
proteins, thus forming a reference set for PMF 
algorithm comparison. This study found the 
performance of Mascot and Profound to be 
similar, correctly identifying around 53% of 
proteins from the reference set at a 5% 
significance level, with MS-Fit identifying only 
32% using the same input parameters. This study 
also looked at the effects of various parameters 
for Mascot and Profound queries. Profound 
performs better over the entire range of 
parameter settings including taxonomy 
restriction, mass accuracy variation, variable 
modifications, and missed cleavages. Mascot 
showed a slightly better performance only in the 
case where mass accuracy was better than 25 
ppm. Overall, Profound identified slightly more 
proteins, showed a better separation between 
true and spurious identifications, and generated 
not a single random match above the 5% 
significance level throughout the experiment. A 
study in yeast using 266 spectra gathered on 
MALDI-TOF instruments from three different 
manufacturers [2] found Mascot to outperform 
Profound, with Mascot identifying 45% of proteins 
while Profound identified 33% of the proteins. 
However, Mascot did give a single false positive 
identification, while Profound did not. This 
suggests that lifting the threshold for a Mascot 
identification to avoid all false positives, thus 
making the results comparable with the Profound 
result, would reduce the percentage of proteins 
identified using Mascot. The claims for the 
highest rate of protein identifications belong to 

groups using consensus methods. These 
methods submit the query data independently to 
multiple search engines and combine the results. 
The rationale for this process is that marginal 
identifications may be corroborated or rejected by 
complementary packages. Experimentalists have 
been doing this independently for some time [16], 
usually in an ad hoc manner. However, recently, 
more rigorous statistical methods have been 
applied to the integration of the scores returned 
by each engine. One well-known example is 
ProteinScape [17]. This software is designed to 
accommodate a number of different proteomics 
workflows, including 2-D LC-MS/MS, LC–
eletrospray ionization, and LCMALDI. 
ProteinScape’s consensus method claims an 
increase of identified proteins of up to 10% by 
taking a meta-score of Profound, Mascot, MS-Fit, 
and/or other algorithms. Details of the algorithm 
are not in the public domain, and the vendor 
provides only a short description of the meta-
score as an ‘‘intelligent combination of scoring 
schemes.’’ Such consensus methods are now 
being adopted by large-scale projects [18], but 
are still not popular in smaller labs because these 
consensus programs are not free, and there are 
additional complexities in terms of running 
multiple PMF search engines. Growing 
advancements in mass spectrometry hardware, 
database size and computational advances 
necessitates the need of higher accuracy and 
sensitivity in protein identification. These needs 
resulted in emergence of the new high 
throughput technique called peptide fragment 
fingerprinting. Fig (2) shows an Example of a 
PFF spectrum from the HUPO Brain Proteome 
Project. The bold numbers associated with each 
peak give the m/z value, while the italic numbers 
associated with the peak show the intensity 
value. This ‘‘stick’’ spectrum has been processed 
from the raw output of the mass spectrometer. 
Available at 
http://www.ebi.ac.uk/pride/viewSpectrum.do?mz
DataAccession¼1717&spectrumReference¼324
94.  
Peptide fragment fingerprinting. Approaches 
using PFF data are the current mainstream of 
high-throughput protein identification. Proteins 
are first digested with an enzyme, and then 
individual peptides are selected to undergo 
further fragmentation to yield PFF spectra such 
as the one shown in Figure 2. The set of these 
spectra, along with information such as the 
parent mass of these fragmented peptides, are 
then used in the database search. There are 
many dozens of scoring systems described in the 
literature, but in most cases these consist of two 
steps: (1) attributing a score for each protein in 
the database and (2) calculating a measure of 
confidence that the top-ranking identified protein 
is not a false positive—such as in the case where 
the protein being investigated does not exist in 
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the database. PFF is the method of choice for 
high-throughput applications due to the additional 
information gained from secondary 
fragmentation. This information makes the 
protein identification process less sensitive to 
effects such as protein modifications and can 
generate higher statistical confidence in the 
correct identification than traditional PMF. Some 
of the more popular PFF packages are listed in 
Table 1. Sequest and Mascot are arguably the 
two most popular packages for protein 
identification using PFF. Mascot is 
probabilistically based while also using some 
heuristics to improve scoring, but, like Spectrum 
Mill, Protein Prospector, and the most recent 
commercial PFF package, Phenyx, the details of 
the scoring process have not been published. 
Mascot, however, is known to be based on the 
probabilistic MOWSE algorithm [12], which uses 
the parent mass and the relative abundance of 
peptide masses for that parent mass as 
constraints on the search space. More than a 
decade has passed since the MOWSE algorithm 
was published, and Mascot now includes 
parameters not related to the features described 
in the original paper, such as selecting the type of 
mass spectrometer the input data comes from. It 
is therefore impossible to describe in any detail 
the process by which Mascot scores are 
generated, and a comparison with other engines 
can only be made empirically by analysis of the 
benchmarking papers discussed in this review. 
Sequest uses a patented scoring algorithm 
utilizing a cross correlation approach. Figure (2) 
shows a simplified flowchart of the Sequest 
peptide identification process as described in 
U.S. patent 6,017,693. and fig (3) shows  
Simplified Flowchart for the Sequest Algorithm 
Showing the Process by which Sequest Provides 
Scores Used to Identify Peptides Flowchart 
shows process as described in United States 
patent 6,017,693 [19]. Note that information from 
the mass spectrum is used three times: (1) as a 
filter to select only peptides from the database 
sharing a similar parent ion mass with the 
unknown peptide; (2) during a preliminary Sp 
‘‘closeness-of-fit’’ filter to select the top 500 
peptide candidates; and (3) through a correlation 
function to produce the final scores.  
 
Tag based approaches  
Tag-based approaches begin with an attempt to 
extract peptide sequence information directly 
from the peptide fragmentation spectra. These 
methods are based on casting the problem into 
one of finding a maximum path length through a 
graph, a problem already known to have efficient 
solutions, and are based on a seminal paper by 
Dancik et al. [20]. The process of inferring protein 
sequence from MS/MS data is known as de novo 
sequencing. Due to the high complexity of most 
MS/MS spectra, de novo sequencing tools often 

return short, ambiguous sequences known as 
‘‘tags.’’ These tags are then searched against a 
database. Although many of these tags may 
randomly align with sections of protein sequence 
right across the genome, the correct protein 
identification is expected to have multiple 
alignments with sequence tags derived from the 
unknown protein. Tag based approaches have 
been successfully used to identify proteins from 
larger EST databases that are more inclusive 
than curated databases. They have also been 
used for finding homologous proteins in other 
species [21], an area where mass-based 
approaches, and particularly PMF, have been 
shown to have limited applicability [22]. Not 
surprisingly, tag-based approaches appeared as 
the first de novo sequencing methods were 
becoming available [23]. A number of popular 
packages available for de novo sequence 
interpretation and subsequent tag-based 
searching are listed in Table 2.    
GutenTag [24] is a popular tag-based package 
released in 2003 by the same group responsible 
for the popular PFF package Sequest, and is 
available free for nonprofit organizations. Lutefisk 
is available as source code in C, allowing the 
experimenter to tailor aspects of the scoring 
function or any other aspect of reporting and 
calculation. It works by first identifying 
‘‘significant’’ ions, followed by the collection of 
evidence for N- and C-terminal ions from the 
spectra. A list of candidate sequences is 
generated for passing onto a tag-based program 
for alignment of these candidate sequences with 
proteins in a database. InsPecT [25] is a recently 
introduced tag-based package based on a 
probability model for assessing the accuracy of 
candidate sequence tags. PEAKS are a 
proprietary package, and as such have not 
published details of its implementation. 
MSBLAST and FASTA do not infer de novo 
sequence but are popular alignment programs 
evolved from DNA alignment roots. De novo 
sequencing: PEAKS is currently a standard tool 
for any de novo sequencing task before its 
submission to protein sequencing. It is found to 
be more accurate than any software packages 
and can outperform Lutefisk. For quadrupole 
TOF (QTOF) data across a range of spectrum 
qualities, the authors claim 41% perfectly correct 
sequences and 94% of sequences to have six 
consecutive correctly sequenced amino acids. De 
novo sequencing quality is highly dependent on 
the precision of the mass spectrometer and the 
quality of the spectra. Advances in hardware 
accuracy and precision have a great effect on the 
ability of de novo algorithms to correctly and 
accurately infer longer stretches of protein 
sequence. Quality spectra as well as high 
precision greatly constrain the possible 
sequences capable of generating the observed 
spectrum. Thus, the short list of possible 
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peptides, to be later submitted to a tag-based 
search, may contain longer and therefore more 
specific sequences, resulting in more confident 
identifications. Preparatory methods to improve 
the quality of spectra intended for de novo 
sequencing is an active area of research [26-27]. 
Tag-based search algorithms: Most current tag-
based methods use a basic adaptation of the 
BLAST [28] or FASTA [29] algorithms. These are 
already in common use in the life sciences for 
gene and protein sequence alignments. For use 
in tag-based searching, the algorithms are 
modified for the much shorter peptide sequences 
usually generated by MS/MS, typically in the 
order of eight to 15 amino acids, and to handle 
the errors and ambiguities resulting from the 
alternate possible sequence interpretations when 
de novo sequencing [30]. Tag-based approaches 
are much faster than PFF searches; Tanner et al. 
[25] report a two order of magnitude speed-up 
over the commonly used Sequest through using 
their tag based method InsPecT, as well as 
demonstrating a much better scalability when 
scaled to include added modifications or protein 
mixtures. The speed-up is due to a more efficient 
and sensitive use of tags to exclude the vast bulk 
of potential protein matches considered in a first 
pass, although the authors note that performance 
for single protein identifications is not better than 
the PFF package X! Tandem in terms of speed 
and sensitivity, as this package has already 
incorporated a similar filtering system. Tag-based 
methods have been designed to function in 
environments where exact matches are not 
expected—for example, searching against 
databases of other species—and as such have 
different methods for determining the statistical 
significance of a result under these conditions.  
[21].  
Other available packages: There is a great 
number and variety of protein identification 
packages other than those listed in this review. 
Many of these packages have been tailored to 
provide identifications for particular classes of 
proteins, or even glycans [31], or use certain 
techniques and report superior performance to 
established general protein identification engines 
listed in this review for their specific application. A 
quick survey of other available tools and 
packages in many cases can turn up software 
ideal for a particular application. Brief 
descriptions and intended uses of all the 
packages listed in Tables 1–3 and others can be 
found in a review by Shadforth et al. [32]. An 
exhaustive list of protein identification tools can 
be found at 
http://www.molecularstation.com/bioinformatics/li
nk/Proteomics/Protein_Identification_Tools 
http://www.proteomesoftware.com/Proteome_soft
ware_link_software.html  
 
Quantificatoin  

Quantification is a further critical step in 
biomarker studies because the primary focus is 
on peptides (proteins) that show differences in 
expression between two sets of samples; 
peptides that are invariant present much less 
interest. Systematic quantification of all peptides 
across multiple data sets is actually a very 
demanding task that has not yet been fully 
resolved. Strategies emphasizing the quantitative 
aspect tend to decouple identification and 
quantification and perform two independent 
experiments.  Basically two main approaches 
have been applied. The first is based on stable 
isotope labeling and requires derivatization of the 
peptides from the various samples sets with 
different reagents that have different isotopic 
composition. The second approach, which is 
more relevant to larger biomarker studies (i.e. 
analysis of a larger sets of samples from normal 
(control) and disease (or treated) patients), 
analyzes each sample individually and then 
compares the multiple LC/MS runs subsequently. 
By performing all these steps we can identify 
cancer cells. Biomarker discovery projects (as 
well as many other proteomics studies) are often 
large experiments generating large data sets, 
and results might be obtained from concerted 
efforts of several laboratories. It is essential that 
data exchange and sharing becomes a 
transparent process. Standardization of data 
through wide use of common formats and use of 
transparent tools for data processing and 
analysis with well defined parameters is essential 
[33,34].  
 
Results  
Protein identification tools  
Many groups have devised metrics in order to 
gain better comparison within various protein 
identification tools such as (1) calculating 
expectation values for the number of hits 
expected for a given score [11-36]; (2) the hit-
ratio (i.e., the ratio of the peaks submitted in the 
experimental spectrum matched in the theoretical 
spectrum); and (3) sequence coverage (i.e., the 
proportion of the protein sequence covered by 
the peptides matched between experimental and 
theoretical spectra) [37]. However such metrics 
are not encouraged in literatures, even though 
there is no correct methodology on how to 
compare such protein identification tools. Finding 
this difficulty in comparison several journals have 
started to use standards [38-39] and other are 
tending to follow such standards. The metrics 
required to be presented along with protein 
identifications for these publishers include but are 
not limited to: (1) supporting information detailing 
the use of all processing steps, experimental 
design, scoring methods used, software and 
database versions, and all parameters used in 
the search; (2) sequence coverage and/or hit 
rate; (3) measures of certainty such as p-values; 
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(4) justifying evidence for identifications made on 
single peptides, for a particular protein within a 
protein family, or proteins identified in another 
species; and (5) multiple replicates for complex 
analyses. The problem of standardizing mass 
spectrometry–related data formats and 
vocabulary is being addressed by the HUPO 
Proteomics Standards Initiative [18]. This group 
has released a standard format for encapsulation 
of peak list data (mzData) and has an alpha 
version of the successor to this format under 
development. Known as mzML, this format will 
merge the competing mzXML and mzData 
formats. Details of the new format can be found 
on the mzML development page [40]. The same 
group is also developing a format known as 
AnalysisXML for the encapsulation of parameters 
and results from protein identifications. These 
formats are enjoying increasing support from 
instrument manufactures and software vendors, 
and are rapidly being adopted up by the 
proteomics community.  
 
Discussion  
A consistent message found in this review of 
protein identification algorithms is that the best 
results for protein identification are extracted 
through the use of consensus programs used to 
collect the results from various packages and 
distill their results. This is particularly the case in 
the mass-based approaches of PMF and PFF. 
Through such methods, the strengths of some 
packages can be exploited, while weaknesses in 
others are mitigated. The only difficulty of this 
method is the expense and difficulty in handling 
multiple search algorithms and scoring systems. 
However, the advantage of getting accurately 
identified protein encourages the use of 
consensus based programs. All of the methods 
require the use, at some point, of a reference 
sequence database for identifying the proteins 
expressed in the sample. This presents extra 
challenges for researchers working with less well-
characterized species. In this scenario, tag-based 
methods are preferred because of the reduced 
computational complexity of searching for 
diverged proteins. Mass-based methods require 
matching of peptide or peptide fragment masses 
to their theoretical equivalents derived from a 
sequence database. A single amino acid change, 
with the exception of a change between leucine 
and isoleucine, will change the mass of the 
peptide or peptide fragment with a resultant effect 
on the ability of the algorithm to correctly identify 
the protein. In contrast, with tag-based methods, 
particularly if the tag-matching process is tolerant 
of sequence variation, sequence changes have 
less of an impact on the ability to correctly match 
database entries. Thus, cross-species databases 
can be more effectively used to aid in protein 
identification. Identifying the single best package 
for each application from the available literature 

is at present extremely difficult due to a number 
of factors. Each package claims advantages over 
a number of others. These claims are often 
backed up with compelling results. While some of 
the comparative studies cited above have 
produced work of excellent scope and quality, 
many of these results show marginal differences 
between packages or show contradictory results 
to other studies. Furthermore, across all the 
studies, only a small fraction of the available 
packages have been considered and evaluated. 
Similarly contradictory results are reported not 
only in comparisons between various packages, 
but also between approaches, such as between 
mass-based and tag based approaches. This 
indicates the datasets and thresholds used in 
such comparisons have a critical importance on 
the outcome of such experiments, and that the 
high variability in machine and experimental 
setups complicates analysis. The state of data 
standards and lack of benchmarks therefore 
makes it difficult to make an effective 
comparison, implying the need for sustained 
directed research on the creation of suitable 
benchmarks. While the increasing availability of 
data in public repositories and tightening 
standards will no doubt ameliorate the problem, 
until this basic benchmarking problem is 
overcome, no single package or approach can 
conclusively be declared to outperform all others, 
expect, perhaps, in the specific circumstances 
used in particular studies. For such 
benchmarking work to be successful, it is 
important that it be broad, replicable, and routine, 
because each software package is constantly 
evolving, so a benchmark can at best produce a 
comparison likely to quickly become redundant 
as newer versions of packages are released. 
This, in turn, points to the need for an ongoing 
process of benchmark-based testing, in which 
new algorithms and techniques, or developments 
in existing packages, are regularly re-evaluated 
to measure performance and provide guidance to 
life-science researchers seeking to extract the 
most from their proteomic experiments.  
At present, the greatest focus in improving 
protein identification software is on the following: 
(1) developing better scoring metrics or including 
additional information [41–42]; (2) improving 
fragmentation models. The inclusion of new 
metrics [43] and use of new techniques [44] 
applied to fragmentation modeling allows for 
better prediction of theoretical spectra. This, in 
turn, leads to more discriminating scoring 
systems; (3) data representations for clustering 
or filtering to improve speed and efficiency [45, 
46]. These methods can massively speed 
searches by reducing the size of the database 
being searched through the use of statistical 
methods to cheaply reject the majority of 
nonmatching database entries, or by improving 
the speed at which comparisons can be made. 
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MOWSE: Molecular weight search 
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Fig. 1-Overview of disease diagnosis steps involved, using proteomic tools 

 

 
Fig. 2-Example of a PFF spectrum from the HUPO Brain Proteome Project 
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Protein sample    Mass spectrometer  Experimental spectrum 
 

 
Fig. 3- A Simplified Flowchart for the Sequest Algorithm Showing the Process by which Sequest Provides 
Scores Used to Identify Peptides Flowchart shows process as described in United States patent 6,017,693 
[13]. Note that information from the mass spectrum is used three times: (1) as a filter to select only peptides 
from the database sharing a similar parent ion mass with the unknown peptide; (2) during a preliminary Sp 
‘‘closeness-of-fit’’ filter to select the top 500 peptide candidates; and (3) through a correlation function to 
produce the final scores. 
 
 

Table 1- List of PFF packages available in internet 
PFF Package URL 

Sequest http://fields.scripps.edu/sequest/index.html  
Popitam http://expasy.org/tools/popitam  
Mascot http://www.matrixscience.com/search_form_select.html 
Sonar http://bioinformatics.genomicsolutions.com/ProteinId.html  
Protein Prospector http://prospector.ucsf.edu  

TANDEM http://prowl.rockefeller.edu/tandem/thegpm_tandemhtml 
Phenyx http://www.phenyx.ms.com  
Spectrum Mill http://www.chem.agilent.com/scripts/pds.asp?Ipage=7771  

 
Table 2 - Popular packages for De novo sequencing of MS data using Tag based approach 
Tag-Based Package URL 

Gnten Tag http://fields.scripps.edu/Guten Tag/index.html  
Inspect  http://peptide.ucsd.edu/inspect.html   
Lutefisk  http://www.hairyfatguy.com/lutefisk  
PEAKS http://bioinformaticssolutions.com:8080/peaksonline  

MS BLAST http://dove.embl-heidelberg.de/Blast2/msblast.html  
FASTA http://www.ebi.ac.uk/fasta33  

 
   


