Fuzzy approach to solve multi-objective capacitated transportation problem

Lohgaonkar M. H. and Bajaj V. H.*
*Department of Statistics, Dr. B. A. M. University, Aurangabad, MS, vhbajaj@gmail.com, mhlohgaonkar@gmail.com

Abstract

The linear multi-objective capacitated transportation problem in which the supply and demand constraints are equality type, capacity restriction on each route are specified and the objectives are non commensurable and conflict in nature. The fuzzy programing technique (Linear, Hyperbolic and Exponential) is used to find optimal compromise solution of a multi-objective capacitated transportation problem has been presented in this paper. An example is illustrate the methodology. Also comparision is taken out, using same example. Keyword: Multi-criteria Decision Making, Capacitated Transportation Problem, Linear Membership Function, Non-linear Membership Function.

1. Introduction

A transportation problem with capacity restriction is a linear programming problem. A basic solution to a capacitated transportation problem may contain more than $m+n-2$ positive values due to the capacity constraints which are additional to the $m+n-2$ independent equations. Fuzzy linear programming occurs when fuzzy set theory is applied to linear multicriteria decision making problem. In fuzzy set theory, an element x has a degree of membership in a set A, denoted by a membership function (X). The range of the membership function is $[0,1]$. Degree of the membership function for each objective represents its satisfaction level. If the membership function of an objective is one or zero then objective is fully achieved or not at all achieved, respectively. If the membership function of the objective lies in $(0,1)$ then the objective is partially achieved. Zadeh [13] introduced the concept of fuzzy set theory. Zimmermann [14] first applied the fuzzy set theory concept with some suitable membership function to solve Multi-objective linear programming problems. He showed that solutions obtained by fuzzy linear programming efficient. Ringuest and Rinks [11] have mentioned the existing solution procedures for Multi-objective transportation problem. Bit [1,2] have shown the application of fuzzy programming with linear membership function to the multicriteria decision making solid transportation problem and classical transportation problem . Leberling [10] has developed algorithms for obtaining compromise solution in multicriteria problems using the minoperator. In this paper, we present fuzzy programming with linear, hyperbolic and exponential membership function for solving multi-objective capacitated transportation problem.

2. Multi-objective capacitated transportation problem

Consider m origins ($\mathrm{i}=1,2, \ldots, \mathrm{~m}$) and n destinations ($j=1,2, \ldots, n$) at each origin O_{i},
let a_{i} be the amount of a homogeneous
product which we want to transport to n destinations D_{j} to satisfy the demand for b_{j} units of the product there. A penalty $c_{i j}^{p}$ is associated with transportation of a unit of the product from source i to destination j for the p th criterion. The penalty could represent transportation cost, delivery time, quantity of goods delivered, under used capacity. A variable X_{ij} represents the unknown quantity to be transported from origin O_{i} to destination D_{j}. Let $r_{i j}$ be the capacity restrictions on route i, j for capacitated transportation problem.

A multi-objective capacitated transportation problem can be represented as:
Mrimize $Z_{p}=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} \mathrm{x}_{\mathrm{ij}}$
Subject to

\[\)| $\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{ij}}=1,2 \ldots, \mathrm{P}$ | |
| :--- | :--- |
| $\mathrm{a}_{\mathrm{i}},$ | $\mathrm{i}=1,2, \ldots, \mathrm{~m}$ |
| $\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{x}_{\mathrm{ij}}=\mathrm{b}_{\mathrm{j}}$ | $\mathrm{j}=1,2, \ldots, \mathrm{n}$ |
| $0 \leq \mathrm{x}_{\mathrm{ij}} \leq \mathrm{r}_{\mathrm{ij}}$ | forall i, j |

\]

Where the subscript on Z_{p} and superscript on $c_{i j}^{p}$ denote $p-t h$ penalty criterion; $\mathrm{a}_{\mathrm{i}}>0$ for all $\mathrm{i} \mathrm{b}_{\mathrm{j}}>0$ for all $\mathrm{j}, \quad \mathrm{r}_{\mathrm{ij}} \geq 0$ for all i, j And $\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}$ as balanced condition. This balanced condition is necessary condition for the problem to have a feasible solution, however, this is not sufficient because of the condition (4).
For $p=1$, problem become to a single objective capacitated transportation problem. It may be considered as a special case of linear programming problem.
3. Fuzzy programming technique for the multi-objective capacitated transportation problem
Step 1:
Solve the multi-objective capacitated transportation problem as a single objective capacitated transportation problem P times, by taking one of the objectives at a time.
Step 2:
From the results of step 1, calculate the values of all the P objective functions. Then a pay off matrix is formed. The diagonal of the matrix constitutes individual optimum minimum values for the p objectives.

Step 3:
From step 2, we find for each objective, the lower bound (Lp) and upper bound (Up) corresponding to the sets of p solutions, where,
$\mathrm{U}_{\mathrm{p}}=\operatorname{nax}\left(\mathrm{Z}_{\mathrm{p}}, Z_{2 \mathrm{p}}, \ldots, \mathrm{Z}_{\mathrm{pp}}\right)$ and $\quad \mathrm{L}_{\mathrm{p}}=Z_{\mathrm{pp}} \quad \mathrm{p}=1,2 \ldots, \mathrm{P}$
An initial fuzzy model of the problem (1)-(4) can be stated as: -
cabestels
Firol $X \quad i=1, m j=12 n$

Sljetto (4)(t)
Step 4: Case (i) Define Hyperbolic membership function

(7)

Case (ii) Define Linear membership function for the $\mathrm{p}^{\text {th }}$ objective function as follows:
$\mu_{p}(X)= \begin{cases}1 & \text { if } Z_{p}(X) \leq L_{p} \\ \frac{U_{p}-Z_{p}(X)}{U_{p}-L_{p}} & \text { if } L_{p}<Z_{p}<U_{p} \\ 0 & \text { if } Z_{p} \geq U_{p}\end{cases}$
Step 5:
Find an equivalent crisp model by using a linear membership function for the initial fuzzy model

Mximize λ
$\lambda \leq \frac{\mathrm{U}_{\mathrm{p}}-\mathrm{Z}_{\mathrm{p}}(\mathrm{X})}{\mathrm{U}_{\mathrm{p}}-\mathrm{L}_{\mathrm{p}}}$
subject to (2)(4)
Step 6: Solve the crisp model by an appropriate mathematical programming algorithm.
Mximize λ
Subjecto
$\sum_{i=1}^{m} \sum_{j=1}^{n} C_{i j}^{p} X_{i j}+\lambda\left(U_{p}-L_{p}\right) \leq U_{p} \quad p=1,2, \ldots, P$
Subjecto(2)(4)

$$
\sum_{j=1}^{n} X_{i j}=a_{i} \quad i=1,2, \ldots, m
$$

$$
\sum_{i=1}^{m} X_{i j}=b_{j} \quad j=1,2, \ldots n
$$

$$
0 \leq x_{i j} \leq r_{i j} \quad \text { for all } i, j
$$

The foregoing linear programming problem that can be solved by linear programming algorithm to find an optimal compromise solution.
Case iii) Now, by using exponential membership function for the p th objective function and is defined as

Where, $\Psi_{\mathrm{p}}(\mathrm{X})=\frac{\mathrm{Z}_{\mathrm{p}}-\mathrm{L}_{\mathrm{P}}}{\mathrm{U}_{\mathrm{p}}-\mathrm{L}_{\mathrm{p}}} \quad \mathrm{p}=1,2, \ldots, \mathrm{P}$
S is a non zero parameter, prescribed by the decision maker
Then an equivalent crisp model for fuzzy model can be formulated as
Maximize λ
Subject to
$\lambda \leq \frac{\mathrm{e}^{-\mathrm{S} \psi_{\mathrm{p}}(\mathrm{x})}-\mathrm{e}^{-\mathrm{s}}}{1-\mathrm{e}^{-\mathrm{S}}}$

$$
p=1,2,--, P
$$

subject to (2)-(4)

6. Numerical Example:

Mnime $Z_{1}=5 X_{11}+3 X_{12}+2 X_{13}+6 X_{21}+4 X_{22}+7 X_{23}+2 X_{31}+8 X_{32}+6 X_{33}$
Minie $Z_{2}=4 X_{11}+4 X_{12}+5 X_{13}+7 X_{21}+8 X_{22}+X_{23}+5 X_{31}+2 X_{32}+3 X_{33}$
(12)

Mrinie $Z_{3}=9 X_{11}+9 X_{12}+7 X_{13}+3 X_{21}+9 X_{22}+3 X_{23}+\mathrm{XX}_{31}+9 \mathrm{X}_{32}+10 \mathrm{X}_{33}$

$\mathrm{X}_{\mathrm{ij}} \geq 0 \quad \mathrm{i}=1,2,3 . \quad \mathrm{j}=1,2,3$.
(13)

Capacity restrictions of the routes are given as:
$0 \leq x_{11} \leq 45, \quad 0 \leq x_{12} \leq 60, \quad 0 \leq x_{13} \leq 100$
$0 \leq x_{21} \leq 90, \quad 0 \leq x_{22} \leq 100,0 \leq x_{23} \leq 80 S$
$0 \leq x_{31} \leq 125,0 \leq x_{32} \leq 85,0 \leq x_{33} \leq 130$
(14)

Step1 and step 2 . Optimal solutions for minimizing the first objective Z_{1}
Subject to constraints (2) and (4) are as follows
$\mathrm{x} 11=20, \mathrm{x} 12=60, \mathrm{x}_{13}=40, \mathrm{x}_{21}=25$,
$\mathrm{x} 22=40, \mathrm{x}_{23}=80, \mathrm{x}_{31}=35, \mathrm{x}_{33}=60$
and other decision variable are zero
and $Z_{1}=1660$
Optimal solutions for minimizing the second objective Z_{2}
Subject to constraints (2) and (4) are as follows $\mathrm{x} 11=45, \mathrm{x} 12=35, \mathrm{x}_{13}=40, \mathrm{x}_{21}=35$,
$\mathrm{x} 22=30, \mathrm{x}_{23}=80, \mathrm{x}_{32}=35, \mathrm{x}_{33}=60$
and other decision variable are zero
and $Z_{2}=1805$
Optimal solutions for minimizing the third objective Z_{3}
Subject to constraints (2) and (4) are as follows
$\mathrm{x} 11=20, \mathrm{x} 12=60, \mathrm{x}_{13}=40, \mathrm{x}_{21}=60$,
$\mathrm{x} 22=5, \mathrm{x}_{23}=80, \mathrm{x}_{32}=35, \mathrm{x}_{33}=60$
and other decision variable are zero
and $Z_{3}=2380$
Now for $X^{(2)}$ we can find out
$Z_{1}, \quad Z_{1}\left(X^{(2)}\right)=1935$
Now for $X^{(3)}$ we can find out
$Z_{1}, \quad Z_{1}\left(X^{(3)}\right)=1940$
Now for $\mathrm{X}^{(1)}$ we can find out
$Z_{2}, \quad Z_{2}\left(X^{(1)}\right)=1570$
Now for $\mathrm{X}^{(3)}$ we can find out
$Z_{2}, \quad Z_{2}\left(X^{(3)}\right)=2190$
Now for $\mathrm{X}^{(1)}$ we can find out
$Z_{3}, \quad Z_{3}\left(X^{(1)}\right)=2670$
Now for $X^{(2)}$ we can find out
$Z_{3}, \quad Z_{3}\left(X^{(2)}\right)=2530$
The pay off matrix is

$\mathrm{U}_{1}=1940, \quad \mathrm{U}_{2}=2190, \quad \mathrm{U}_{3}=2530$
$L_{1}=1660, \quad L_{2}=1805, \quad L_{3}=2380$

Find $\left\{x_{i j}, i=1,2,3 ; j=1,2,3\right\}$ so as satisfy
$\mathrm{Z}_{1} \leq 1660, \mathrm{Z}_{2} \leq_{\sigma}^{\infty} 1805, \mathrm{Z}_{3} \leq_{\sigma / h} 2380$ and constraints (1), (2)
Step4. With
$\alpha_{p}=\frac{6}{U_{p}-L_{p}}, \alpha_{1}=\frac{6}{U_{1}-L_{1}}=\frac{6}{280}, \alpha_{2}=\frac{6}{U_{2}-L_{2}}=\frac{6}{385}$
$\alpha_{3}=\frac{6}{U_{3}-L_{3}}=\frac{6}{150}, \frac{\mathrm{U}_{1}+\mathrm{L}_{1}}{2}=1800$,
$\frac{\mathrm{U}_{2}+\mathrm{L}_{2}}{2}=1997.50, \frac{\mathrm{U}_{3}+\mathrm{L}_{3}}{2}=2455$
We get the membership functions $\mu_{1}^{H}\left(Z_{1}\right), \mu_{2}^{H}\left(Z_{2}\right), \mu_{3}^{H}\left(Z_{3}\right)$ for the objectives Z_{1}, Z_{2} and Z_{3} respectively, are as follows:

Case (i): Hyperbolic membership function

$$
\left.\begin{array}{l}
\mu_{1} \mathrm{H}_{\left(\mathrm{Z}_{1}\right)}=\left\{\begin{array}{cl}
1, & \text { if } \mathrm{Z}_{1}(\mathrm{x}) \leq 1660 \\
\frac{1}{2} \tanh \left[\left(1800-\mathrm{Z}_{1}(\mathrm{x})\right) \frac{6}{280}\right]+\frac{1}{2}, & \text { if } 1660 \leq \mathrm{Z}_{1}(\mathrm{x}) \leq 1940 \\
0, & \text { if } \mathrm{Z}_{1}(\mathrm{x}) \geq 1940
\end{array}\right. \\
\mu_{2}{ }^{\mathrm{H}}\left(\mathrm{Z}_{2}\right)=\left\{\begin{array}{cl}
1, & \text { if } \mathrm{Z}_{2}(\mathrm{x}) \leq 1805 \\
\frac{1}{2} \tanh \left[\left(1997.5-\mathrm{Z}_{2}(\mathrm{x}) \frac{6}{385}\right]+\frac{1}{2},\right. & \text { if } 1805 \leq \mathrm{Z}_{2}(\mathrm{x}) \leq 2190 \\
0, & \text { if } \mathrm{Z}_{2}(\mathrm{x}) \geq 2190
\end{array}\right. \\
\mu_{3}{ }^{\mathrm{H}}\left(\mathrm{Z}_{3}\right)=\left\{\begin{array}{cl}
1, & \text { if } \mathrm{Z}_{3}(\mathrm{x}) \leq 2380 \\
\frac{1}{2} \tanh \left[\left(2455-\mathrm{Z}_{3}(\mathrm{x})\right) \frac{6}{150}\right]+\frac{1}{2}, & \text { if } 2380 \leq \mathrm{Z}_{3}(\mathrm{x}) \leq 2530
\end{array}\right. \\
0, \\
\text { if } \mathrm{Z}_{3}(\mathrm{x}) \geq 2530
\end{array}\right]
$$

Maximize $\mathrm{X}_{3 \times 3+1}$
Subject to
$\alpha_{1} \mathrm{Z}_{1}(\mathrm{X})+\mathrm{X}_{\mathrm{mn}+1} \leq \alpha_{1}\left(\frac{\mathrm{U}_{1}+\mathrm{L}_{1}}{2}\right)$
$\frac{6}{280}\left(5 \mathrm{X}_{11}+3 \mathrm{X}_{12}+2 \mathrm{X}_{13}+6 \mathrm{X}_{21}+4 \mathrm{X}_{22}+7 \mathrm{X}_{23}+2 \mathrm{X}_{31}+8 \mathrm{X}_{32}+6 \mathrm{X}_{33}\right)+\mathrm{X}_{\mathrm{mn}+1} \leq \frac{6}{280}(1800)$
$\mu_{3}(X)= \begin{cases}1, & \text { if } \quad Z_{3}(X) \leq 2380 \\ \frac{2530-Z_{3}(X)}{2530-2380}, & \text { if } \quad 2380<Z_{3}(X)<2530 \\ 0, & \text { if } \quad Z_{3}(X) \geq 2530\end{cases}$

Now,
$\alpha_{2} Z_{2}(\mathrm{X})+\mathrm{X}_{\mathrm{mn}+1} \leq \alpha_{2}\left(\frac{\mathrm{U}_{2}+\mathrm{L}_{2}}{2}\right)$
$\frac{6}{355}\left(4 X_{11}+X_{12}+5 X_{13}+I X_{21}+5 X_{22}+\left(X_{23}+5 X_{31}+2 X_{32}+4 X_{33}\right)+X_{1 m+1} \leq \frac{6}{355}(1997.5)\right.$
$24 X_{11}+20 X_{2}+2 X_{13}+4 X_{21}+48 X_{22}+3 X_{23}+3 X_{31}+2 X_{32}+18 X_{3}+355 X_{1 m+1} \leq 1095$
And
$\alpha_{3} Z_{3}(\mathrm{X})+\mathrm{X}_{\mathrm{mn}+1} \leq \alpha_{3}\left(\frac{\mathrm{U}_{3}+\mathrm{L}_{3}}{2}\right)$
$\frac{6}{150}\left(9 X_{11}+9 X_{12}+1 X_{13}+3 X_{21}+9 X_{22}+3 X_{23}+7 X_{31}+Y X_{32}+1\left(X_{33}\right)+X_{n n+1} \leq \frac{6}{150}(245)\right.$

The problem was solved by using the linear interactive and discrete optimization (LINDO) software, the optimal compromise solution is
$\mathrm{x}_{\mathrm{mn}+1}=0.1034$
$\left.\begin{array}{c}x^{*}=\left\{\begin{array}{l}x_{11}=20, x 12=60, x_{13}=40, x_{21}=41.896553, x_{22}=23.103449 \\ x_{23}=80, x_{31}=18.103449, x_{32}=16.896551 \\ x_{33}=60\end{array}\right\} \\ z_{1}^{*}=1789.3493 ; \quad z_{2}^{*}=1715.3103 \text { and } z_{3}^{*}=2448.7931\end{array}\right\}$
$\lambda=0.55$
ii) Linear Membership Function

$$
\begin{aligned}
& \mu_{1}(X)= \begin{cases}1, & \text { if } \quad Z_{1}(X) \leq 1660 \\
\frac{1940-Z_{1}(X)}{1940-1660}, & \text { if } \\
0, & \text { if } \quad Z_{1}(X) \geq 1940\end{cases} \\
& \mu_{2}(X)= \begin{cases}1, & \text { if } \quad Z_{2}(X) \leq 1805 \\
\frac{2190-Z_{2}(X)}{2190-1805}, & \text { if } \\
0, & \text { if } \quad Z_{2}(X) \geq 2190\end{cases}
\end{aligned}
$$

Find an equivalent crisp model Maximize λ,

$$
\begin{aligned}
& \mathrm{Z}_{1}(\mathrm{X})+280 \lambda \leq 1940 \\
& 5 \mathrm{X}_{11}+3 \mathrm{X}_{12}+2 \mathrm{X}_{13}+\mathrm{X}_{21}+4 \mathrm{X}_{22}+7 \mathrm{X}_{23}+2 \mathrm{X}_{31}+8 \mathrm{X}_{32}+6 \mathrm{X}_{33}+280 n \leq 1940
\end{aligned}
$$

and
Maximize λ,
$\mathrm{Z}_{2}(\mathrm{X})+385 \lambda \leq 2190$
$4 X_{11}+6 X_{12}+5 X_{13}+7 X_{21}+8 X_{22}+6 X_{23}+5 X_{31}+2 X_{32}+3 X_{33}+382 \lambda \leq 2190$
Maximize λ,

$$
\left.\begin{array}{l}
9 X_{11}+9 \mathrm{X}_{12}+7 \mathrm{X}_{13}+3 \mathrm{X}_{21}+9 \mathrm{X}_{22}+3 \mathrm{X}_{23}+7 \mathrm{X}_{31}+9 \mathrm{X}_{32}+10 \mathrm{X}_{33}+1502 \leq 2530 \\
\mathrm{Z}_{3}(\mathrm{X})+150 \lambda \leq 2530 \\
\mathrm{X}^{*}=\left\{\begin{array}{c}
\mathrm{x}_{11}=20, \mathrm{x} 12=60, \mathrm{x}_{13}=40, \mathrm{x}_{21}=41.896553, \mathrm{x}_{22}=23.103449, \\
\mathrm{x}_{23}=80, \mathrm{x}_{31}=18.103449, \mathrm{x}_{32}=16.896551 \mathrm{x}_{33}=60
\end{array}\right\} \\
\mathrm{z}_{1}^{*}=1789.3493 ; \quad \mathrm{z}_{2}^{*}=1715.3103 \text { and } \mathrm{z}_{3}^{*}=2448.7931
\end{array}\right\}
$$

$$
\lambda=0.5172
$$

iii) Exponential Membership Function

Then an equivalent crisp model for fuzzy model can be formulated as

Maximize λ
Subject to

$$
\begin{aligned}
& \mu^{E} Z_{1}(x)=\left\{\begin{array}{cl}
1, & \text { if } Z_{1} \leq 1660 \\
\frac{e^{-1 \Psi_{1}(X)}-e^{-1}}{1-e^{-S}}, & \text { if } 1660<Z_{1}<1940 \\
0, & \text { if } Z_{1} \geq 1940
\end{array}\right. \\
& \mu^{E} Z_{2}(x)=\left\{\begin{array}{cl}
\begin{array}{c}
1, \\
e^{-1 \Psi}{ }_{2}(\mathrm{X}) \\
\frac{\text { if } Z_{2}}{} \leq 1805 \\
1-e^{-S} \\
0,
\end{array}, & \text { if } 1805<Z_{2}<2190 \\
0, & \text { if } Z_{2} \geq 2190
\end{array}\right. \\
& \mu^{E} Z_{3}(x)=\left\{\begin{array}{cl}
1, & \text { if } Z_{3} \leq 2380 \\
\frac{e^{-1 \Psi_{3}^{(X)}}-e^{-1}}{1-e^{-S}}, & \text { if } 2380<Z_{3}<2530 \\
0, & \text { if } Z_{3} \geq 2530
\end{array}\right.
\end{aligned}
$$

$\lambda \leq \frac{e^{-1 \psi_{p}(x)}-e^{-1}}{1-e^{-1}}, \quad p=1,2,----, P$ and
subject to (7)-(9)
$\Psi_{1}(X)=\frac{Z_{1}-L_{1}}{U_{1}-L_{1}}=\frac{Z_{1}-1660}{1940-1660}=\frac{Z_{1}-1660}{280}$
$\Psi_{2}(\mathrm{X})=\frac{\mathrm{Z}_{2}-\mathrm{L}_{2}}{\mathrm{U}_{2}-\mathrm{L}_{2}}=\frac{\mathrm{Z}_{2}-1805}{2190-1805}=\frac{\mathrm{Z}_{2}-1805}{385}$
$\Psi_{3}(\mathrm{X})=\frac{\mathrm{Z}_{3}-\mathrm{L}_{3}}{\mathrm{U}_{3}-\mathrm{L}_{3}}=\frac{\mathrm{Z}_{3}-2380}{2530-2380}=\frac{\mathrm{Z}_{3}-2380}{150}$
$\Psi_{1}(\mathrm{X})=$
$\left(5 X_{11}+3 X_{12}+2 X_{13}+X_{21}+4 X_{22}+7 X_{23}+2 X_{31}+3 X_{32}+6 X_{33}-166\right) / 280$
$\Psi_{2}(\mathrm{X})=$
$\left(4 \mathrm{X}_{11}+6 \mathrm{X}_{12}+5 \mathrm{X}_{13}+7 \mathrm{X}_{21}+8 \mathrm{X}_{22}+\mathrm{X}_{23}+5 \mathrm{X}_{31}+2 \mathrm{X}_{32}+3 \mathrm{X}_{33}-385\right) / 385$
$\Psi_{3}(\mathrm{X})=$
$\left(9 \mathrm{X}_{11}+9 \mathrm{X}_{12}+7 \mathrm{X}_{13}+3 \mathrm{X}_{21}+9 \mathrm{X}_{22}+3 \mathrm{X}_{23}+7 \mathrm{X}_{31}+9 \mathrm{X}_{22}+1\left(\mathrm{X}_{33}-2350\right) / 150\right.$
Then the problem can be simplified as
\Rightarrow Maximize λ
$e^{-\Psi_{1}(X)}{ }_{\left(1 e^{-1}\right)} \lambda \geq e^{-1} \Rightarrow e^{-\Psi_{1}(X)}{ }_{(1-10388) \geq 0268 \Rightarrow e^{-\Psi_{1}(X)}}^{-(06211)} \geq 0388$
$e^{-\Psi_{1}(X)}\left(1 e^{-1}\right) \eta \geq e^{-1} \Rightarrow e^{-\Psi_{2}(X)}(10388) \geq 0368 \Rightarrow e^{-\Psi_{2}(X)}-(0621) \geqslant 0038$
$e^{-\Psi_{1}(X)}-\left(1 e^{-1} n \geq e^{-1} \Rightarrow e^{-\Psi_{3}(X)}-\left(10368 n \geq 0268 \Rightarrow e^{-\Psi_{3}(X)}-(0621) n \geq 0368\right.\right.$

The problem is solved by the (LINGO) software
$\mathrm{x}^{*}=\left\{\begin{array}{l}\mathrm{x}_{12}=20, \mathrm{x}_{13}=100, \mathrm{x}_{21}=65, \mathrm{x}_{23}=80, \mathrm{x}_{31}=15, \\ \text { rest all } \mathrm{x}_{\mathrm{ij}} \text { are zero's }\end{array}=80.\right\}$
$z_{1}^{*}=1880 \quad ; \quad Z_{2}^{*}=1790$ and $z_{3}^{*}=2140$
$\lambda=0.8070$
And Ideal solution is $\{1660,1805,2380\}$
Also set of non-dominated solutions \{1660, 1570, 2520\}; \{1935, 1805, 2530\}; \{1940, 2190, 2380\}.

7. Conclusion

We have obtained same optimal compromise solution by our proposed algorithm and fuzzy algorithm with membership functions (Bit et al [1]) for the multi-objective capacitated transportation problem. For a multi-objective capacitated transportation problem with p objective functions, the fuzzy programming with hyperbolic, linear and exponential membership function gives p non-dominated (efficient) solutions and an optimal compromise solution. The fuzzy programming algorithm with hyperbolic membership functions is applicable to multi-objective capacitated solid transportation problems and the vector
minimum problems. This algorithm can be applied to the variants of multi-objective transportation problems similar linear multiobjective programming problems. This paper is to be seen as a first step to introduce nonlinear membership functions to a multiobjective capacitated transportation problem. The value of membership function of an objective represents the satisfaction level of the objective.

8. References

[1] Bit A. K. (2004) OPSEARCH 41, 106-120.
[2] Bit A.K., Biswal M.P. and Alam S. S. (1993) Fuzzy sets and systems 50, 135-141.
[3] Charnes A. and Cooper W. W. (1954) Management science 1, 49-59.
[4] Dantzig G. B. (1951) Application of the simplex method to a transportation problems, Chapter XXII in Activity Analysis of Production and allocation (T. C. Koopmans, Ed.), Wiley, New York.
[5] Diaz J. A. (1978) Ekonomickomatematicky Obzor 14, 267-274.
[6] Diaz J. A. (1979) Ekonomickomatematicky Obzor 15, 62-73.
[7] Dhingra A.K. and Moskowitz H. (1991) European journal of Operational Research 55, 348-361.
[8] Hitchcock F. L. (1941) Journal Of Mathematics and Physics 20, 224 230.
[9] Isermann H. (1979) Naval Research Logistics Quarterly 26, 123-139.
[10] Leberling H. (1981) Fuzzy sets and systems 6, 105-118.
[11] Ringuest J. L. and Rinks D. B. (1987) European Journal Of operational Research 32, 96-106.
[12] Verma Rakesh, Biswal M.P. and Biswas A. (1997) Fuzzy sets and systems 91, 37-43.
[13] Zadeh, L. A. (1965) Information and Control 8, 338-353.
[14] Zimmermann H. J. (1978) Fuzzy sets and system 1, 45-55.

