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Abstract – In recent years, the chemical metaphor has emerged as a computational paradigm based on 

the observation of different researchers that the chemical systems of living organisms possess inherent 

computational properties. In this metaphor, artificial molecules are considered as data or solutions, while the 

interactions among molecules are defined by an algorithm. In recent studies, the chemical metaphor was 

used as a distributed stochastic algorithm that simulates an abstract reactor to solve the traveling 

salesperson problem (TSP). Here, the artificial molecules represent Hamiltonian cycles, while the reactor is 

governed by reactions that can re-order Hamiltonian cycles.  

In this paper, a multi-molecule reactor (MMR-n) that simulates chemical catalysis is introduced. The 

MMR-n solves in parallel three NP-hard computational problems namely, the optimization of the genetic 

parameters of a plant growth simulation model, the solution to large instances of symmetric and asymmetric 

TSP, and the static aircraft landing scheduling problems (ALSP). The MMR-n was shown as a computational 

metaphor capable of optimizing the cultivar coefficients of CERES-Rice model, and at the same time, able to 

find solutions to TSP and ALSP. The MMR-n as a computational paradigm has a better computational wall 

clock time compared to when these three problems are solved individually by a single-molecule reactor 

(MMR-1).  
 

Keywords – Artificial chemistry, combinatorial optimization, traveling salesperson problem, TSP 
 

I. INTRODUCTION 

Problems such as the traveling salesman problem 

(TSP), job-shop scheduling, vehicle routing, scheduling 

of aircraft landing, gene sequencing, and many others 

are problems whose solutions are of real-world 

importance. Because of the combinatorial nature of the 

problem, exact solutions have been proposed but these 

solutions were proven inefficient for large problem 

instances (i.e., they are NP-hard) [1]. Several heuristics 

have been developed to find time-restrained optimal and 

near optimal solutions for these problems. These 

heuristics can be classified into two: graph-based and 

distributed multi-agent- based. An example of graph-

based heuristic is branch and bound [2], while examples 

of distributed multi-agent-based algorithms are genetic 

algorithms (GA) [3], memetic algorithms [4–6], tabu 

search [7], simulated annealing (SA) [8], simulated 

jumping [9], neural networks [10], and swarm 

intelligence [11–13].  

In recent years, different researchers have shown 

that the chemical systems of living organisms possess 

inherent computational properties [14–16]. Because of 

these, the chemical metaphor has emerged as a 

computational paradigm [17–27]. Under this 

computational framework, abstract objects such as 

atoms or molecules are considered as data or solutions, 

while interactions (i.e., molecular collisions or 

reactions) among objects are defined by an algorithm.  

Using the chemical metaphor, a distributed 

stochastic algorithm was designed to simulate a reactor 

where the molecules are being represented either by a 

Hamiltonian cycle, a vector of coefficients for a plant 

growth simulation model, or a schedule for landing 

aircrafts. The chemical universe in the reactor is 

governed by reaction rules that can re-order 

Hamiltonian cycles, alter model coefficients, or 

program a landing schedule for aircrafts. This 

computational paradigm can be used to solve, in 

parallel, very hard real-world problems.  

In this effort, a multi-molecule reactor (MMR-n) 

was designed and implemented [25, 26, 28–30] to 

simulate chemical catalysis for the purpose of 

concurrently solving three NP-hard computational 

problems. These problems are:  
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1. Finding for the solutions to large instances of 

symmetric and asymmetric TSP;  

2. Optimization of cultivar coefficients in CERES-

Rice; and  

3. Static aircraft landing scheduling problem 

(ALSP). 

The MMR-n was used as a computational metaphor 

for finding the optimal combination of cultivar 

coefficients such that the difference between the 

CERES-Rice predicted growth factors and the observed 

growth factors are minimized. The MMR-n simulation 

of catalytic reactions combined better cultivar 

coefficients than those computed by GENCALC [31]. 

In addition, MMR-n was also used to find, in parallel, 

solutions to the TSP and the ALSP.  

II. DEVELOPMENT OF MMR-N 

This section briefly defines the three problems used 

in this study: the cultivar coefficient optimization, the 

TSP, and the ALSP. The development of the MMR-n is 

then discussed, while its underlying reaction algorithms 

defined, with a focus on solving the three problems in 

parallel.  

A. Traveling Salesperson Problem 

The TSP is formally defined as the problem of 

finding the shortest Hamiltonian cycle of a graph G(V, 

E) composed of a set of cities V = {v1 , v2 , ..., vn}, and a 

path set E = {(vi, vj): vi, vj ∈  V}. Associated with G is a 

cost matrix C where each element ci,j ∈  ℝ is the cost 

measure associated with path (vi, vj) ∈  E. A 

Hamiltonian cycle is a closed tour that visits each city vi 

∈  V once. The Hamiltonian cycle H = {hi | i = 1, 2, ..., 

n, 1} is a vector of indexes hi, where each hi encodes a 

number within the permutation between 1...n.  

A symmetric TSP is when ci,j = cj,i, while an 

asymmetric TSP is when ci,j ≠ cj,i. The solution to a n-

city TSP is a Hamiltonian tour with the minimum cost fv 

(Equation 1).  

fv = cn,1 + ∑i=1..n–1 ci,i+1   (1) 

B. CERES-Rice Cultivar Coefficients 

Simulating the plant growth in the CERES-Rice 

model f can be generally viewed as an evaluation of f 

over the time growth t:  

∫t=planting..harvesting f({Ψ1, Ψ2, ..., Ψn})dt = {O}. 

In this evaluation, {Ψ1, Ψ2, ..., Ψn} is a set of n real-

valued vectors that are inputs to f, while O = {o1, o2, ..., 

om} is a set of m real-valued vectors that describe the 

time-dependent model outputs [31]. The cultivar 

coefficients are contained in the input vector Ψ1 = (ψ1, 

ψ2, ..., ψk), where each real-valued ψ represents a 

quantitative value that is physiologically feasible for a 

given rice cultivar. All possible combinations of ψ 

define points in the (k+1)-dimensional space, where 

each coordinate axis corresponds to one of the ψ’s and 

the (k+1)th axis corresponds to the difference between 

the predicted (O) and the actual (Ω) growth and 

development characteristics. The (k+1)th dimension 

define the terrain of the search space where the lowest 

points dictates the most desirable combinations of ψ’s. 

It is not known whether Ψ1 is unique for each rice 

cultivar (i.e., Does there exists another Ψ
∗
 such that 

|O−Ω|=|O
∗
−Ω|?). Thus, the modality (the number of 

global optima) of the search space for cultivar 

determination is unknown. The Ceres-Rice cultivar 

coefficients [32] used in this paper are listed in Table 1.  

Table 1. List of cultivar coefficients used in CERES-Rice. 

Variable Description 

P1 Time period (expressed as growing degree days or GDD in 
◦
C above a base temperature of 9 

◦
C) 

from seedling emergence during which the rice plant is not responsive to changes in photoperiod.  
P2R Extent to which phasic development leading to panicle initiation is delayed (expressed as GDD in 

◦
C) for each hour increase in photoperiod above P20.  

P5 Time period in GDD (
◦
C) from beginning of grain filling (3 to 4 days after flowering) to 

physiological maturity with a base temperature of 9 
◦
C.  

P20 Critical photoperiod or the longest day length (in hours) at which the development occurs at 

maximum rate.  
G1 Potential spikelet number coefficient as estimated from the number of spikelets per gram of main 

culm dry weight (less lead blades and sheath plus spikes at anthesis).  
G2 Single gain weight (g) under ideal growing conditions.  
G3 Tillering coefficients relative to IR64 cultivar under ideal conditions.  

G4 Temperature tolerance coefficient.  
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C. Aircraft Landing Scheduling Problem 

The ALSP is the problem of deciding a landing time 

for a set of aircrafts P such that the total penalty cost fp 

for landing earlier or later than a target time is 

minimized. Given, for each aircraft pi ∈  P are:  

1. the earliest landing time ei;  

2. the latest landing time li;  

3. the target landing time ti;  

4. the penalty cost per unit time, gi, for landing before 

ti;  

5. the penalty cost per unit time, hi, for landing after ti;  

6. the required separation time between pi landing and 

pj landing sij (where pi lands before pj and pj∈P); 

7. the unknown landing time xi; and  

8. a dependency variable δij, where δij = 1 if pi lands 

before pj and 0 otherwise.   

 

The ALSP is formally defined in the mathematical 

programming formulation [33,34] shown in Equation 2.  

fp = ∑i=1..|P| { gi max(0, ti – xi) + hi max(0, xi – ti) }       (2) 

s.t. δij + δji = 1, j > i; i,j = 1, ..., |P| 

      xj ≥ xi | sij δij – (li – ei) δij, i=j; i,j = 1, ..., |P| 

      ei ≤ xi ≤ li, i = 1, ..., |P|. 

D. Multi-molecule Reactor 

The MMR-n is defined by a triple (M, R, A), where 

M is a set of artificial molecules, R is a set of reaction 

rules describing the interaction among molecules, and A 

is an algorithm driving the reactor. In this paper, the 

molecules in M are Hamiltonian tours, vector of 

coefficients, or aircraft landing schedules. The rules in 

R are reordering algorithms that create new molecules 

when two molecules collide. The algorithm A describes 

how the rules are applied to a vessel of artificial 

molecules simulating a well-stirred, topology-less 

reactor. A partitions the reactor into different levels of 

reaction activities. The level of reaction activity is a 

function of molecular mass.  

The set of all permutations Π(V) of the |V| cities in 

V) of the TSP, the set of all binary strings w of finite 

length L that encode all combinations of cultivar 

coefficients, and the set of all permutations Π(P) of the   

|P| aircrafts in P in the ALSP were considered as 

molecules. A permutation πV encodes a Hamiltonian 

cycle that solves the TSP, a string wi encodes a vector of 

coefficients, and a permutation πP encodes a landing 

schedule that solves the ALSP. The cost fv (Equation 1) 

of traversing a specific πV, the difference |O − Ω| 

brought about by a wi, and the cost fp (Equation 2) of 

scheduling a specific πP were considered as molecular 

mass.  

If two molecules m1 and m2 collide and they encode 

solutions to the same problem, they react following a 

zero-order catalytic reactions of the form  

m1 + m2 + C → m3 + m4, 

where mi are molecules (∀ i = 1, ..., 4) and C is a 

catalyst. The reaction can be mathematically thought of 

as a function  

R1 : M × M × M → M × M, 

where mi ∈  M. R1 performs reordering of solutions as 

described by the following algorithm (let n be the length 

of the number of cities in the TSP, or the vector of 

coefficients, or the number of aircrafts in the ALSP – 

atom is taken as either a city, a vector, or an aircraft):  

1. Let an integer l ∈  [1, n] be the index of the lth atom 

in any molecule m. Let i = 1.  

2. Take a random integer between 1 and n and assign 

it to l. Let l
0
 = l. 

3. Taking the reactant  mi, locate the lth atom and 

move it as the lth atom for mi+2.  

4. Take note of the lth atom in mi+2 and locate it in mi. 

Replace l with the value of the index of the atom in 

mi.  

5. Repeat steps 3 to 4 until the lth atom in mi+2 is the 

same as the l
0
th atom in mi.  

6. For all indexes l with no atoms yet in mi+2, move the 

lth atom from reactant mi as the lth atom in product 

mi+2.  

7. Repeat steps 2 to 6 for i = 2.  

 

If two molecules m5 and m6 collide and they encode 

solutions to different problems, they react following a 

zero-order catalytic reaction of the form  

m5 + m6  → m7 + m8. 

The reaction follows a mathematical function  

R2 : M × M → M × M 

and is described by the following algorithm:  

 

1. Let i = 5.  

2. Take molecule mi and mark the point of collision as 

l.  
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3. Take the lth atom in mi and swap it with the (l + 

1)th atom in mi. If l = n, swap the lth atom with the 

first atom, instead.  

4. The resulting molecule is the product mi+2  

5. Repeat steps 2 to 4 for i = 6.  

 

If a molecule m9 hits the bottom or walls of the 

reactor, a zero-order catalytic reaction of the form  

m9 + C  → m10 

happens. The reaction is a mathematical function  

R3 : M × M → M 

described by the following algorithm:  

 

1. Mark the point of collision in m9 as l. 

2. Take the lth atom in m9 and swap it with the (l + 

k)th atom. With a probability > 0.5, assign k = 1, 

else k = −1.  

3. If l = n, swap the lth atom with the first atom 

instead (for k = 1).  

4. If l = 1, swap the lth atom with the nth atom instead 

(for k = −1).  

 

The reactor algorithm A operates on a universe of 

molecules S = {m1 , ..., m|S|}, |S| ≪ |M|. The development 

of S is realized by applying the following algorithm:  

 

1. Initialize S with |S| molecules selected randomly 

from M.  

2. Using stochastic sampling with replacement, select 

two molecules m1 and m2 from S without removing 

them.  

3. Apply the reaction rule R1 if m1 and m2 encode 

solutions to the same problem. Otherwise, apply R2 

instead to get the products m3 and m4.  

4. Apply the reaction rule R3 for heavy molecules that 

collide with the reactor walls and bottom.  

5. Decay the heavier molecules by removing them out 

of S and replacing them with randomly selected 

molecules from M.  

6. Repeat steps 2 to 5 until S is saturated with lighter 

molecules.  

 

One iteration of A constitutes one epoch in the 

artificial reactor. The sampling procedure gives 

molecules with low molecular mass a higher probability 

to react or collide with other molecules. This mimics 

the level of excitation energy the molecule needs to 

overcome for it to react with another molecule. This 

means that the lighter the molecule, the higher the 

chance that it will collide with other molecules. Step 6 

of algorithm A requires a metric for measuring 

saturation of molecules. In this study, when the number 

of molecules in that level of excitation has reached 90% 

of the total molecules encoding the same problem, the 

MMR-n will stop applying the reaction rules for the 

same problem and will consider it solved while 

continuing the simulation for the remaining problems.  

III. RESULTS AND DISCUSSION 

Using the same datasets and parameters from results 

on published results on TSP [12], CERES-Rice cultivar 

coefficient optimization [35] and ALSP [34], the MMR-

1 [27] and the MMR-n were run to solve the three 

problems independently and in parallel, respectively. A 

single-processor x86 machine with 1.2GHz processing 

speed running on a multiprogramming operating system 

was used to run the MMR-n simulations. The MMR-n 

simulation was repeated 10 times while each of the 

problem’s metrics (i.e., the best minimum for each run) 

were recorded. The values recorded were averaged and 

the standard deviation computed. The results of the runs 

were compared to those of the recent literature as well 

as to runs with a single-molecule reactor (MMR-1).  

A. Symmetric and Asymmetric TSPs  

Table 2 compares the average tour lengths found by 

MMR-n, MMR-1 [27], SA [8], and self-organizing 

maps (SOM) on five sets of random instances of 

symmetric 50–city TSPs. The table shows the average 

value of 10 runs for MMR-n, MMR-1, SA, and SOM, 

and their respective standard deviations. For each 

problem, the values were statistically pairwise-

compared using the Duncan Multiple Range Test 

(DMR) at 5% significance level (i.e., statistics α=0.05). 

For all problems, the respective average tour lengths 

found by MMR-n are statistically better than thos found 

by the other three methods. In solving problem 1, 

MMR-n is best while MMR-1 and SA performed 

equally well. In solving problem 2, both MMR-n and 

SA had the best performance. In solving problems 3, 4, 

and 5, both MMR-based methods had the best 

performance. Among the four methods, SOM had the 

worst mean performance in solving the five sets of 

symmetric 50-city TSPs. 
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Table 2. Comparison of average tour length found by MMR-n, MMR-1 [27], SA [8], and SOM on five sets of 

random instances of symmetric 50-city TSPs.  

Problem MMR-n MMR-1 SA SOM 

1 5.81 c 

(0.0636) 

5.87 b 

(0.0564) 

5.88 b 

(0.0568) 

6.06 a 

(0.0604) 

2 5.99 c 

(0.0455) 

6.15 b 

(0.0682) 

6.01 c 

(0.0550) 

6.25 a 

(0.0873) 

3 5.55 c 

(0.0534) 

5.59 bc 

(0.0615) 

5.65 b 

(0.0859) 

5.83 a 

(0.0849) 

4 5.64 c 

(0.0553) 

5.67 c 

(0.0502) 

5.81 b 

(0.0803) 

5.87 a 

(0.0677) 

5 6.10 c 

(0.0562) 

6.15 c 

(0.0535) 

6.33 b 

(0.0705) 

6.70 a 

(0.0882) 

Note: Values are averaged over 10 runs for each problem and search technique combination. The average values in boldfaces are the 

lowest in each row, while means with the same letter are not statistically different from each other using Duncan's Multiple Range Test 

at α = 0.05. Figures in parenthesis are standard deviations. 

  

Table 3 compares the integer tour length found by 

MMR-n, MMR-1, GA and ant colony optimization 

(ACO) on four examples of asymmetric instances of 

TSP. Aside from the problems being asymmetric, the 

problem size is increasing: 30-, 50-, 75-, and 100-city 

TSPs. These problems are based on real-world road 

networks where the presence of one-way traffic 

provides the asymmetric constraints. The same DMRT 

at α=0.05 were conducted on pairwise comparison of 

mean integer tour length found by the four methods, 

Analysis shows that at low problem size (30 cities), all 

methods performed equally well. When the problem 

size was increased to 50 cities, MMR-n, MMR-1 and 

ACO statistically performed better than GA. When the 

problem size was increased 25 cities more (75-city 

TSP), MMR-n and GA performed best, while MMR-1 

had the second average integer tour length. When the 

problem size became 100 cities, only MMR-n had the 

best average integer tour length, followed by MMR-1, 

GA, and ACO, in this order.  

 

Table 3. Comparison of the best integer tour length found by MMR-n, MMR-1 [27], GA, and ACO on four 

examples of asymmetric instances of TSP. 

Problem Size MMR-n MMR-1 GA ACO 

30 421 a 421 a 421 a 421 a 

50 424 b 424 b 428 a 424 b 

75 545 c 550 b 545 c 555 a 

100 20,995 d 21,280 c 21,761 b 22,363 a 

Note: Values are averaged over 10 runs for each problem and search technique combination. The average values in boldfaces are the 

lowest in each row, while means with the same letter are not statistically different from each other using Duncan's Multiple Range Test 

at α = 0.05.  

B. CERES-Rice Cultivar Coefficients 

Using the cultivar coefficients generated from both 

the MMR-1 and the MMR-n runs, the main growth and 

development variables are shown in Table 4. Results of 

various model runs using the cultivar coefficients found 

by GENCALC, by MMR-1, and by MMR-n were 
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compared through a metric called mean normalized 

absolute error ε (Equation 3). In this equation, |X| is the 

cardinality of the set X of growth variables {x1, x2, ..., 

x|X|}, Oi is the ith growth variable as observed in the 

actual rice plant, and Pi is the ith growth variable as 

predicted by CERES-Rice. This metric provides a 

single value of comparison from all the different 

simulated and actual growth characteristics. This metric 

simply shows how far away was the simulated growth 

variables from the respective observed ones taking in 

consideration the different units of measure and scales 

of magnitude of the variables. Thus ε, is unit-less. Note 

here that statistical comparisons between methods were 

not performed because GENCALC is a deterministic 

algorithm which always outputs the same sets of 

cultivar coefficients from different runs, and therefore 

gathering a population of data for the purpose of 

representing the variabilities in the real-world is not 

possible (i.e., the variance is zero across all runs). In 

this analysis, the metric provided by Equation 3, which 

is the simplest among the many that exist, already 

suffices for comparative performance analysis purposes. 

ε = ∑i=1..|x| | Oi - Pi | / Oi (3) 

Based on ε, one can clearly see from Table 4 that, in 

particular, the MMR-n performance in predicting dates 

(flowering date and physiological maturity) having only 

a maximum error of one day (i.e., εi=0.01) is better 

compared to GENCALC's maximum error of three days 

(i.e., εi=0.05) and to MMR-1's maximum error of two 

days (i.e., εi=0.04). Similarly, MMR-n performed better 

than both GENCALC and MMR-1 in terms of most 

yield prediction variables (weight per grain, biomass 

and stalk at harvest maturity, and biomass, stalk and 

seed N). However, MMR-n's performance in predicting 

grain yield (i.e., εi=0.07) is not better than that of 

GENCALC's (i.e., εi=0.03) nor of MMR-1's (i.e., 

εi=0.01). In fact MMR-1 has the best performance in 

predicting grain yield with an absolute predictive error 

of only 49 Kg/ha compared to GENCALC and MMR-n 

with respective absolute predictive errors of 166 Kg/ha 

and 345 Kg/ha. With only εi=0.03 in predicting grain N, 

GENCALC on the other hand beats both MMR-1 and 

MMR-n with εi=0.08 and  εi=0.09, respectively. In 

general, however, MMR-1 performed better than 

GENCALC having  0.07 less ε than GENCALC, but 

MMR-n performed best among the three cultivar-

estimation methods having 0.10 and 0.03 less ε than 

GENCALC and MMR-1, respectively.  

 

Table 4. Comparison between the observed experimental values and the predicted values simulated using 

GENCALC-generated, MMR-1-generated, and MMR-n-generated cultivar coefficients. 

Growth Variable 
Actual 

Observed Data 

GENCALC MMR-1 MMR-n 

Predicted εi Predicted εi Predicted εi 

Flowering Date (Day) 57 60 0.05 55 0.04 57 0.00 

Physiological maturity (Day) 87 90 0.03 88 0.01 86 0.01 

Grain yield (Kg/ha) 5,073 4,907 0.03 5,122 0.01 5,418 0.07 

Weight per grain (g) 0.020 0.025 0.25 0.019 0.05 0.021 0.05 

Biomass at harvest maturity 

(Kg/ha) 
7,420 8,564 0.15 8,198 0.10 7,725 0.04 

Stalk at harvest maturity 

(Kg/ha) 
3,058 4,343 0.42 3,022 0.01 3,066 0.00 

Grain N  (Kg N/ha) 54.3 56.0 0.03 58.7 0.08 59.0 0.09 

Biomass N  (Kg N/ha) 72.3 85.0 0.18 84.9 0.17 84.0 0.16 

Stalk N  (Kg N/ha) 18.0 29.0 0.61 28.3 0.57 26.0 0.44 

Seed N (%) 1.17 1.32 0.13 1.30 0.11 1.26 0.08 

Mean Normalized Absolute Error, ε 0.19  0.12  0.09 



Asia Pacific Journal of Multidisciplinary Research 
P-ISSN 2350-7756 | E-ISSN 2350-8442 | Volume 2, No. 6 | December 2014 

__________________________________________________________________________________________________________________ 

139 
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com 

C. Scheduling Aircraft Landings 

Table 5 shows the performance of MMR-1 and 

MMR-n as compared to the optimal solutions of eight 

instances of ALSP at increasing number of aircrafts to 

be scheduled, four of which are the simplier one-

runway problems and four are the harder two-runway 

problems. From the data presented, it can be seen that 

both MMR-1 and MMR-n were able to find solutions 

that are near to the optimal ones for all eight problems, 

although the mean costs found by MMR-1 are 

numerically greater than the mean costs found by 

MMR-n. Statistically, the mean costs found respectively 

by MMR-1 and by MMR-n are not significantly 

different from each other for all one-runway problems 

at increasing number of aircrafts. However, for all the 

complex two-runway problems and at increasing 

number of aircrafts, the mean costs found by MMR-1 is 

statistically significantly different from the mean costs 

found by MMR-n. In particular, MMR-n's performance 

in solving problems 4 and 8 is significantly better than 

that of the MMR-1's for the two-runway, 20- and 50-

aircraft problem instances. Additionally, the 

performance of MMR-n in solving problems 2 and 6 is 

highly significantly better than the performance of 

MMR-1 for the two-runway, 10- and 30-aircraft 

problem instances. It is, thus, very easy to see that 

regardless of the number of aircrafts to schedule, MMR-

1 and MMR-n have statistically equal performance in 

solving the simpler one-runway problems, and that 

MMR-n is statistically a better solver than MMR-1 for 

the harder two-runway problems. 

 

Table 5. Comparison between the optimal cost of scheduling aircraft landings and the near-optimal costs /found by 

MMR-1 and MMR-n on eight instances of ALSP. The t-Test is a statistical comparison between the mean cost 

found by MMR-1 and the mean cost found by MMR-n. 

Problem 

Number 

Number of 

Aircrafts 

Number of 

Runways 

Optimal 

Solution 
MMR-1 MMR-n 

t-Test 

α > |t| 

1 10 1 700 721.4 720.5 0.3306
ns 

2 10 2 90 94.4 91.9 0.0007
** 

3 20 1 1,480 1,483.8 1,483.4 0.6051
ns 

4 20 2 210 219.5 215.9 0.0130
* 

5 30 1 24,442 24,536.4 24,535.8 0.9763
ns 

6 30 2 554 561.1 556.6 0.0005
** 

7 50 1 1,950 2,000.8 2,000.1 0.5202
ns 

8 50 2 135 139.9 138.1 0.0346
* 

Note: t-Test is the Pooled 2-tailed Student t-Test at α=0.05 with the assumption that MMR-1 and MMR-n are two samples with 

homoscedastic (i.e., equal) variances. The difference between the mean MMR-1 and mean MMR-n costs are (a) ** = highly significantly 

different from zero (i.e., α≤0.01), (b) * = significantly different from zero (i.e., 0.01<α≤0.05), and (c) ns = not significantly different from 

zero (i.e., α>0.05). 

D. Wall Clock Computation Time 

The plots in Figure 1 present the time-dependent 

saturation of the number of minimum-cost molecules in 

the reactor over all the total number of molecules that 

encode the cost. For comparison purposes, this number 

is represented as a percentage. For MMR-1, the 

percentage is for independently solving the TSP, 

CERES-Rice, and ALSP using separate MMR-1 runs. 

For MMR-n, however, the percentage is for solving the 

three problems concurrently using only one MMR-n 

run. The respective plots for both MMR-1 runs and 

MMR-n run show the improvement of the percentage 

over time. All plots exhibit a jagged sigmoid-like 

pattern that contains three parts: (1) the base where the 

percentage ranges up to 25%; (2) The inflection where 

the percentage shoots up to more than 50%; and (3) The 

head where the percentage does not go down 75%. 

Figure 1a shows these parts on a smooth sigmoid plot 

for visualization purposes. Figure 1b shows the jagged 



Asia Pacific Journal of Multidisciplinary Research 
P-ISSN 2350-7756 | E-ISSN 2350-8442 | Volume 2, No. 6 | December 2014 

__________________________________________________________________________________________________________________ 

140 
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com 

MMR-1 and the MRR-n plots for a representative TSP 

run. Figure 1c contains the respective representative 

jagged plots for the CERES-Rice runs, and Figure 1d 

are jagged plots that represent the runs for solving the 

ALSP. The random dynamic interactions between 

molecules in the MMRs brought the jaggedness to the 

resulting plots. For all plots, it is in the head part where 

the near-optimal solutions were found by both the 

MMR-1 and the MMR-n. The near-optimal solution 

was deemed found when the percentage did not exhibit 

significant improvement after an arbitrary time has 

elapsed. It can be seen from Figures 1b through 1d that 

the inflection occur earlier in all MMR-n runs than in 

MMR-1. This means that MMR-n had earlier percent 

saturation of molecules that encode the minimum costs 

than MMR-1. The near-optimal solutions were found in 

MMR-n earlier than in MMR-1, which intuitively show 

that MMR-n solves the problems faster together than 

MMR-1 which solves the problems separately.

 

 

  

  

Figure 1. Percent (%) saturation of molecules encoding the minimum cost solutions over 

wallclock time (s) for the (a) smooth sigmoid-like pattern showing the parts, and the 

jagged sigmoid-like patterns obtained by MMR-1 and by MMR-n solving (b) the TSP, 

(c) the CERES-Rice cultivar coefficients, and (d) the ALSP.  

IV. CONCLUSION 

A MMR-n that mimicked catalytic reactions was 

designed to simultaneously solve three unrelated 

problems. MMR-n was found to be better applicable 

than either MMR-1, SA, SOM, GA, and ACO in 

finding near-optimal solutions to TSPs, particularly at 

solving problem instances involving larger number of 

cities. The catalytic reactions of the MMR-n were able 

to construct a vector of cultivar coefficients with better 

qualities than those found by either the GENCALC 

deterministic algorithm or the MMR-1.  In addition, 

MMR-n is also better than MMR-1 in solving the 

ALSPs. As shown in this paper, the MMR-n does not 

only provide nearer optimal solutions but also solves 

the three unrelated problems faster together than MMR-

1 solves them separately.  

The work described in this paper can be extended as 

follows. In order to assess its efficiency, additional 

experiments are needed with the MMR-n simulating 

more than three problems simultaneously. This 

experiment will answer the question: “Up to how many 

problems will the MMR-n be still efficient?” Using a 

single-processor machine as the number of problems 

being solved simultaneously is increased, it is expected 

that the MMR-n will suffer considerably in terms of 

efficiency. Thus, further investigations on the use of 

multi-processor machines are needed to achieve better 

MMR-n performance.  
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