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Abstract – The solution to the problem of disambiguating named entities in online social networks is 

introduced in this paper. The problem is solved via a two-step reduction process: A reduction to the Maximal 

Common Subgraph Problem (MaxSubgraph), and then a further reduction to the Maximal Clique Problem 

(MaxClique). An analysis of this process provides an upper bound of the runtime of the solution which was 

found to run in O(|V |
k
 k

2
), where |V| is the maximum cardinality of vertices of the social networks and k is 

the size of the clique.  
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I. INTRODUCTION 

The advent of the so-called Social Web over the 

Internet has impacted the way people live in the digital 

age. The reason for this is that the social web has 

become a ubiquitous tool for people to meet, 

communicate, and collaborate with other people. Some 

examples of these social webs are the social networking 

sites Instagram [1] and Facebook [2], and the social 

media sites Digg [3] and Flickr [4]. Figure 1 shows one 

of the many visualizations of the inferred conceptual 

framework of the current social web as utilized by and 

in the point of view of an account owner. Because of the 

exponential proliferation of social web sites offering 

varied services and tools for meeting, communicating, 

and collaborating with other people, most social web 

users are tempted to create accounts in some of these 

sites. For example, a person P who created an account 

a1 in Google+ [5] may create an account a2 in 

Facebook, and another account a3 in Twitter [6], often 

under different names or aliases. Generally, P may have 

n named entities a1, a2, ..., an in n social networks SN1, 

SN2, ..., SNn, respectively. Thus, in the context of social 

networking, named entity disambiguation is the 

problem of determining whether P, identified under the 

account a1 in an online social network SN1, is also the 

same person under account a2 in another social network 

SN2.  

The problem of disambiguating named entities 

(NEDP) has already been defined and given solution in 

the field of information retrieval and data mining, 

particularly in advanced, large, and distributed 

databases. 

 

 
Figure 1. A popular visualization of the conceptual 

framework of the Social Web by Hayes [7] out of the 

many visualizations that exist. 

 

When non-unique values such as names are used as 

the identifier of entities, confusion may occur due to the 

values’ inherent homonyms, particularly when part of 

the names are used. For example, if only the first and 

last names are used as a combined identifier for a 

person, one cannot distinguish “Benigno Aquino, Jr.,” 

the martyred senator, from “Benigno Aquino, III,” the 

current President of the Philippines. Given a list of m 

documents D = {d1, d2, ..., dm} with all sharing an 

identical author name P but might actually be referring 

to different persons, the task is to assign each document 
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di to some cluster Cj, 1 ≤ j ≤ m, where each cluster 

contains documents written by the same person. 

Theoretically, by viewing D as a vector of multiple 

dimensions and each di ∈  D as a point in the multi-

dimensional space, one can obtain a straightforward 

solution by using clustering methods to solve this 

problem. However, as speculated by Wang, et al. [8], 

such simple solution does not work well with this task 

because points in the multi-dimensional space is sparse 

(i.e., m is low). Thus, several approaches have been 

proposed for name disambiguation in various databases 

such as the scientific citation data [9–12], the WWW 

pages data [13, 14], the e-mail data [15], and the movie 

data [16]. Most of these approaches use machine 

learning and computational intelligence techniques 

which are suited for sparse, noisy, multi-modal, and 

multi-dimensional data, but however are space- and 

time-tractable approximation procedures that only find 

near-optimal solution sets. These solutions use co-

references and co-occurrences of features of documents 

di and dj to either learn or infer similarities between the 

named entities Pi ∈  di and Pj ∈  dj, i≠j. 

Finding similarities between two structures, wherein 

such structures are represented mathematically as 

graphs, may be solved by graph similarity (GS) 

techniques. GS has long been applied by various 

researchers to solve real-world problems. For example, 

in Chemistry, chemical compounds have a natural graph 

structure wherein vertices represent atoms and edges 

represent inter-atomic bonds. When experimental 

chemists develop a new compound, they compare its 

molecular structure to a database of compounds and 

look for those which are structurally identical [17–20]. 

In this kind of problem, the obvious computational 

solution is via GS. In biology, on the other hand, the 

mapping of metabolic networks into enzyme graphs has 

become a useful model for understanding the nature of 

life. In the enzyme graph, biological enzymes are 

represented as vertices while catalytic reactions are 

represented by edges. Biologists use these kind of 

mathematical model to explore different paths through 

the network in order to predict a behavior or explain 

some experimental data [20–26]. In computer vision, 

images that are being processed are represented as an 

attributed graph. Using GS techniques, an image 

processing procedure may be able to identify interesting 

similar features between two images [27], which later 

could be used in automated systems such as in optical 

character recognition or in biometric identification. 

This paper presents an exploration of the utility of 

GS as an alternative solution to NEDP, particularly for 

named entities in social networks. By leveraging the 

inherent structure of the social network where the 

named entity belongs, various graph theoretic 

techniques may be used to augment the current machine 

learning and computational intelligence techniques. 

Given two graphs G1 and G2 that respectively represent 

the structure of the social networks SN1 and SN2, the 

NEDP is transformed to a similar problem of finding a 

common subgraph of G1 and G2 known in the graph 

theory discipline as the Maximum Common Subgraph 

Problem (MaxSubgraph). MaxSubgraph is solved by 

transforming it further to the problem of searching the 

largest clique of a compatibility graph associated with 

G1 and G2, otherwise known as the Maximum Clique 

Problem (MaxClique). The worst-case running time 

analysis of MaxClique provided a solution that runs no 

worse than O(n
k
 k

2
).  

This paper is organized as follows: NEDP is first 

described as encountered in the area of large-scale 

databases and text mining in Section 2. It is argued that 

the most common methods may be improved if the 

topology of the social network where the named entity 

belongs is exploited to augment the disambiguation 

process. Then the paper proceeds to define the NEDP 

for named entities in social networks in Section 3. In 

Section 4, a worst-case analysis of the algorithm for 

solving MaxClique, which gives the upper bound for 

solving MaxGraph, is provided. Finally, conclusion is 

given in Section 5.  

II. NAMED ENTITY DISAMBIGUATION 

PROBLEM 

In the area of database and text mining, a problem is 

encountered when records are identified with identifiers 

that do not uniquely tie with the entities. This problem 

is called the record deduplication problem (RDP) where 

one needs to decide whether two records in a database 

D refer to the same entity or not. RDP is a widespread 

problem in any large-scale database, specifically in the 

area of text mining where creation of records are done 

automatically. A special case of RDP is a problem called 

author disambiguation problem, or more generally 

named entity disambiguation problem (NEDP). NEDP 

is a widespread problem in digital publication libraries, 

such as CiteSeer, DBLP, Rexa, and Google Scholar. 

NEDP is a difficult problem to solve because of the 

inherent abbreviations, misspellings, and extraction 

errors brought about by automated text mining crawlers 

and web spiders. For example, the abbreviated name 

“B. Aquino” is a cause of ambiguity because one can 

not identify whether the name refers to “Benigno 
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Aquino, Jr.,” “Benigno Aquino, III,” or a less-popular 

“Boy Aquino.” Also, one cannot be sure whether the 

name “Aqunio” is just a misspelled “Aquino,” or there 

really exists such a less-known name as “Aqunio.” 

Similarly, one cannot be sure either whether the name 

“Aquinas” was just a result of an extracting error by an 

optical character recognition software, or really such a 

name exists. Indeed, the problem becomes much more 

difficult if the existence of the other name does not 

provide any doubt to the existence of its owner (e.g., 

“Boy Aquino” is a name of a real person). In this kind 

of decision-making process, the “benefit of the doubt” 

is usually given to the less obvious names.  

Most solutions to NEDP that are available in the 

literature [8, 28–33], specifically those that apply 

supervised machine learning techniques, have more or 

less the following general procedure:  

1. Using a database of positive and negative examples 

of name duplicates, train a 0-1 classifier to 

differentiate whether a given pair of named entities 

are duplicates;  

2. Apply the classifier to each pair of named entities 

perceived to be ambiguous; and, 

3. Combine the classification predictions to cluster the 

records into duplicate sets.  

These approaches are quite accurate with respect to 

most datasets in this problem domain, while they are 

generally attractive to researchers because they are built 

upon existing machine learning technologies. These 

technologies are that of the known classification and 

clustering techniques. However, because the core of 

these approaches are classifiers over record pairs 

namely that of the feature vector and the classification, 

most of these approaches fail to consider an important 

feature of the named entity itself, particularly, those 

entities who belong to various social networks. This 

important feature that one must consider is the topology 

of the social networks where the entity belongs.  

 

III. SOCIAL NETWORKS AS GRAPHS 

The social network SN is abstractly represented as a 

graph G(V, E) composed of social members, such as 

humans, represented as a set V of n vertices v0, v1, ..., 

vn−1. The relationship of a member vi to any other 

member vj, ∀ i ≠ j, is represented as an edge (i, j). The 

relationship of all members with the other members is a 

set E of edges, and can be mathematically represented 

as an n × n adjacency matrix M. The matrix element Mi,j 

= 1 if vi is related in someway to vj. Otherwise, Mi,j = 0. 

Note that the relationship is symmetric such that vi 

having a relationship with vj also means vj having a 

relationship with vi. Thus, Mi,j = Mj,i. Without loss of 

generality, the diagonal elements of the matrix Mi,i = 0, 

∀ i. For relationships whose degrees r can be quantified, 

the edge (i, j) is labeled as r, while 0 ≤ Mi,j ≤ 1, where 

Mi,j = r > 0 if vi is related to vj to some degree, otherwise 

Mi,j = 0. In this case, the relationship is no longer 

symmetric. Under these degreed relationships, however, 

measuring r is quite difficult to achieve objectively for 

most real world SN's. In this paper, it is assumed that 

Mi,j is binary. The more general 0 ≤ Mi,j ≤ 1 will be 

considered in the future.  

The degree ∆i of a vertex vi counts the number of 

humans that member vi has a relationship with. Thus, ∆i 

= ∑j=1..n Mi,j. Recently, the frequency distribution ρ(∆) of 

the degree in SN has been found by various researchers 

[34–36] to asymptotically follow the power law 

distribution of the form ρ(∆) = α × ∆
φ
. For social 

networks, and all other biological networks, the power 

usually takes the value −3 ≤ φ ≤ −2. Having ρ(∆) ∼ α × 

∆
φ
 makes SN scale-free [35].  

Given a named entity P identified as an account holder 

a1 in social network SN1, and given another account a2 in 

social network SN2, the problem is to determine whether 

a2 also belongs to P. Given the numerous existence of 

social networking sites nowadays, one can generally ask 

the question that given a list of account names A = {a1, a2, 

..., an} from respective social networks SN1, SN2, ..., SNn, 

do the accounts in A belong to a single named entity P? 

The solution to this problem has many real-world 

applications. For example, in the area of automated social 

network aggregation, an aggregator can automatically 

suggest to a potential user which particular accounts from 

which particular social network may be aggregated. In the 

point of view of maintaining a social network site from 

duplicate accounts, two accounts from the same person 

may be easily deduplicated. Another very important 

application is in the area of law enforcement where a 

software can be used to automatically relate a suspect’s 

known social network to his other unknown social 

networks in an effort to discover evidences. The topology 

of the social network of P can easily be measured because 

most social networking sites offer API to query its 

respective databases. Thus, if a graph G1 represents the 

topology of the immediate neighbors of P in SN1, and 

another graph G2 for SN2, one can use GS measures to 

determine whether an account in SN2 also refers to P. 

 

IV. WORST CASE ANALYSIS  

In this section, the time complexity of MaxGraph 

based on the reduction introduced by Kann [37], and 

later utilized by Raymond and Willett [18], is discussed. 

Time complexity is an analysis that classifies solutions 

to problems according to the solutions' inherrent 
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difficulty in terms of the number of steps they will take 

to solve the problem. Reduction is the transformation of 

a problem to another problem whose time complexity is 

already known. The reduction of MaxGraph into 

MaxClique is likewise discussed here. For the sake of 

the readers who are not familiar with the terminologies, 

some preliminaries were discussed first such as defining 

the Vertex Cover Problem (VCP) and the Clique 

Problem (CP). For all the discussions, a graph G(V, E) 

is considered. 

 

Definition 1. Define G[V′] as the induced subgraph of G if it consists of V′ ⊆ V and those edges of G 

with both vertices in V′.   

Definition 2. Two graphs G1(V1, E1) and G2(V2, E2) are isomorphic if there exists a one-to-one 

correspondence f: V1 → V2 such that for every (v1)1, (v2)1 ∈  V1, {(v1)1, (v2)1} ∈  E1 if and 

only if {f((v1)1), f((v2)1)} ∈  E2. The one-to-one correspondence f is also called a 

bijection function and is an isomorphism.  

Definition 3. A common subgraph of G1 and G2 is a set of ordered pairs {((v1)1, (v2)1 ), ((v1)2, (v2)2), . . 

. , ((v1)k, (v2)k)} such that the function f : {(v1)1, (v1)2, ..., (v1)k} → {(v2)1, (v2)2, ..., (v2)k} 

defined by f((v1)i) = (v2)i (1 ≤ i ≤ k) is an isomorphism between G1[V1′] and G2[V2′] (note 

that V1′ = {(v1)1, (v1)2, ..., (v1)k} and V2' = {(v2)1, (v2)2, ..., (v2)k}).  

Definition 4. VCP-k is a problem of finding if G has a vertex cover of k vertices.  

Definition 5. CP-k is a problem of finding if G has a clique of k vertices.  

The VCP-k requires one to find a subgraph in G, called a cover C, with k vertices such that every edge in G has 

at least one end in C. In Figure 2a for example, the VCP-3 of G is C = ({v1, v2, v6}, {(v1, v2), (v2, v6)}) because every 

edge E = {(v1, v4), (v1, v2), (v2, v4), (v2, v5), (v2, v3), (v2, v6)} has at least one end in the vertex set of C. Given a graph 

G with n = |V| vertices, it has been shown by Chen, et al. [38] that the algorithm for solving the VCP-k runs in time 

O(kn + 1.286
k
).  

 

(a) vertex cover 

 

(b) clique 

 

Figure 2. Given an example graph G = ({v1, v2, ..., v6}, {(v1, v4), (v1, v2), (v2, v4), (v2, v5), 

(v2, v3), (v2, v6)}), then (a) a vertex cover C of G with k = 3 are the red-colored 

vertices, while (b) a clique of G with k = 3 are the green-colored vertices. 

 

The CP-k, on the other hand, requires one to find a 

subset of k vertices in G such that there is an edge in G 

between any two of these k vertices. In other words, CP 

is finding a set of k vertices that induce a complete 

subgraph of G (Figure 2b). Based on the enumeration of 

all the vertex subsets of size k, the running time of an 

algorithm that solves CP must not be worse than O(n
k
).  

Given two graphs G1(U, E1) and G2(V, E2), a new 

graph G3(W, E3) is derived using the following steps. 

Let W = U ×V be a set of vertex pairs. Call any two 

pairs <u1, v1> and <u2, v2> as compatible if (u1,u2) ∈ U 

and (v1,v2) ∈ V (i.e., if they preserve the edge relation) 

or (u1,u2) ∈U and (v1,v2) ∈ V. Preserving the edge 

relations means that there is an edge between u1 and u2 

if and only if there is an edge between v1 and v2. Then 

let E3 be the set of compatible edges (Figure 3a). A k-

clique in G3 is a matching between two induced 

subgraphs G1[U ′] and G2[V ′], each of size k. The two 

subgraphs are isomorphic since the compatible pairs 

preserve the edge relations. The new graph G3 is called 
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the modular product of G1 and G2. The induced 

subgraph in G3 provides all possible solutions to the 

NEDP. 

Without loss of generality, it is assumed that n = |V1| 

= |V2|. When G3 is constructed, the cardinality of V3 is 

constrained to n
2
. By observing the structure of G3, one 

can infer that G3 is an n-partite graph (Figure 3b). Here, 

the vertices are partitioned in n disjoint partitions, with 

each partition having n vertices. Thus, one can use a 

matrix M to denote the n
2
 pairs of vertices of the n-

partite graph as follows: The n pairs of vertices of the 

first row <(v1)1, (v2)i>, ∀ 1 ≤ i ≤ n, belong to partition 

one of the n-partite graph. Likewise, the n pairs of 

vertices of the second row <(v1)2, (v2)i>, ∀ 1 ≤ i ≤ n, 

belong to partition two of the n-partite graph. Thus, in 

general, the n pairs of vertices of the jth row <(v1)j, 

(v2)i>, ∀ 1 ≤ i ≤ n, belong to partition j of the n-partite 

graph, ∀ 1 ≤ j ≤ n. Notice here that there is no edge 

between any two vertices within the same partition. 

Edges are only present between two vertices that belong 

to two different partitions. Thus, at most, one vertex 

from each partition (among the n vertices) could be in a 

clique of the graph. To find CP-k via exhaustive 

enumeration, there will be n
k
 possible ways. Each 

possible way needs O(k
2
) time to check if it constructs a 

k-clique. Thus, this gives an algorithm a time 

complexity of O(n
k
k

2
) for MaxGraph. 

 

 

 

(a)  W = U ×V 

 

(b) G3 

 

Figure 3. (a) An example modular product of G1(U,E1) and G2(V,E2) resulting to 

G3(W,E3), where U = {u1, u2, u3}, V = {v1, v2, v3} and W = U ×V. Notice that G3 

is a row-based and column-based 3-partite graph. (b) The resulting G3 is a 

disconnected graph with two components. The first component on the left has 

two cliques: {u1v1, u2v2, u3v3} and {u1v3, u2v2, u3v1}. The first clique means that 

the named entity u1 is a match for the named entity v1, u2 for v2, and u3 for v3. 

 

A. Case when k = n 

The case when the maximum clique size k is equal to 

n is studied in detail by Sze, et al. [39] where a fast and 

yet exact divide-and-conquer approach to solving CP-n 

was developed. Their idea is to subdivide the n-partite 

graph into several n0-partite subgraphs, n0 < n, and 

solve each smaller subgraphs independently using a 

branch-and-bound approach. The approach works 

perfectly well as long as the number of cliques n0 in 

each subproblem is not too high. The worst case, 

however, has the same bound as above.  

A. Case when k = n – 1  

The analysis for k = n − 1 was discussed in detail by 

Sze, et al. [39]. Suppose the n-partite graph has a clique 

of size k − 1. One phantom vertex is added to each of 

the n partitions, and then edges from the phantom 

vertex to any non-phantom vertices are that are in the 

different partition are added. Here, a new graph G3 

which is an n-partite graph with n + 1 vertices in each 
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partition is obtained. Graph G3 has a clique of size n if 

and only if the original n-partite graph has a clique of 

size n − 1. The vertices of this new clique include the 

vertices of the original clique plus one phantom vertex. 

The same procedure discussed above will need a time 

O((n + 1)
n
 n

2
) to find the clique for G3. After the clique 

is found, the phantom vertices is removed from the 

clique.  

A. Case when k = n – c 

When k = n − c, where integer c > 1, similar analysis 

as above is used. Here, c phantom vertices are added in 

each partition and these vertices are connected to any 

non-phantom ones in different partitions. The worst 

case running time when applying this algorithm is O((n 

+ c)
n
 n

2
).  

 

V. SUMMARY AND CONCLUSION 

In this paper, the problem of named entity 

disambiguation in social networks is introduced. It is 

argued that the most common solution to name 

disambiguation problem using machine learning and 

computational intelligence techniques may be improved 

by exploiting the inherent topology of the social 

network where the named entity belongs. It is said that 

the immediate neighbors of a named entity in the social 

network may be considered as a graph, and similarly the 

immediate neighbors of an ambiguous name from 

another social network may also be considered as a 

graph. Thus, a graph similarity measure may be used to 

augment the current disambiguation process. The 

MaxGraph problem was used to describe the NEDP in 

social networks. MaxGraph was solved by a reduction 

to MaxClique. Then an analysis of the upper bound of 

the procedure was provided and found that the running 

time must not be worse than O(|V|
k
 k

2
), where |V| is the 

maximum cardinality of vertices of the social networks 

and k is the size of the clique.  
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