Study of numerical algorithm used to solve the equation of motion for the planar flexural forced vibration of the cantilever beam

Prof. Vyankatesh S. Kulkarni
Department of Mechanical Engineering, Solapur University /BIT/Barshi/India

Abstract

This paper develops the numerical algorithm used to solve the equation of motion for the planar flexural forced vibration of the cantilever beam. The partial differential equation is first discretized in the spatial coordinate using Galerkin's weighted residual method. Then, the equation is discretized in the time domain using the Newmark technique and a numerical algorithm is used to calculate the nonlinear response of the beam.

Introduction

Finite Element Model

The equation of motion for the nonlinear planar flexural forced vibration of a cantilever beam was derived in the previous chapter. The equation of motion for the transverse displacement in the y direction is given by

$$
\begin{align*}
\rho A \ddot{v}+c_{v} \dot{v}+E I v^{i v} & =\rho A g\left[v^{\prime \prime}(s-l)+v^{\prime}\right]-E I\left\{v^{\prime}\left(v^{\prime} v^{\prime \prime}\right)^{\prime}\right\}^{\prime} \\
& -\frac{1}{2} \rho A\left\{v v^{5} \int_{l}^{\frac{\partial^{2}}{\partial t^{2}}}\left[\int_{0}^{s} v^{\prime 2} d s\right] d s\right\}^{\prime}+\rho A a_{b} \cos \Omega t \tag{1.1}
\end{align*}
$$

This equation can be written in the form

$$
\begin{equation*}
\rho A \ddot{v}+c_{v} \dot{v}+E I v^{n}-\rho A g f_{3}+E I\left\{v^{\prime} f_{1}\right\}^{\prime}+\frac{1}{2} \rho A\left\{v^{\prime} f_{2}\right\}^{\prime}-F=0 \tag{1.2}
\end{equation*}
$$

With the functions f_{1}, f_{2}, f_{3}, and F given by

$$
\begin{equation*}
f_{1}=\left(v^{\prime} v^{\prime \prime}\right)^{\prime}, f_{2}=\frac{\partial^{2 s s}}{\partial t^{2}} \iint_{l 0}^{v^{2}} d s d s, f_{3}=(s-l) v^{\prime \prime}+v^{\prime}, \quad F=\rho A a_{b} \cos \Omega t \tag{1.3}
\end{equation*}
$$

The functions f_{1}, f_{2}, and f_{3} originate from the curvature, inertial, and gravitational nonlinear effects, respectively. The function F is the force associated with the transverse displacement exciting the base of the beam. Equation (1.2) is a nonlinear integro-differential equation, for which a closed form solution is not available. Therefore, an approximate solution is sought by discretizing (1.2), first in the spatial coordinate using Galerkin's weighted residuals method, and then in the time domain using the Newmark technique. The discretization in the spatial coordinate is carried out in three steps: (1) mesh generation and function approximation, (2) element equation, and (3) assembly and implementation of boundary conditions. These steps are discussed in detail in the remaining of this section. The discretization in the time domain is the focus of section

Mesh Generation and Function Approximation

Figure 3.1 shows the cantilever beam divided into N cubic Hermite elements, each of length h.

Figure 1: Cantilever beam divided into N elements

Figure 2: Typical cubic Hermite beam element
The typical cubic Hermite element (Figure 2) has two nodes with two degrees of freedom per node (Zienkiewicz, 1977), namely translation $\left(q_{j}\right)$ and slope $\left(q_{j}^{\prime}\right)$. The displacement of any point inside the element is approximated as

$$
\begin{equation*}
\hat{v}^{e}(s, t)=\sum_{j=1}^{4} \psi_{j}(s) q_{j}^{e}(t) \tag{1.4}
\end{equation*}
$$

The shape functions $\psi_{j}(s)$ are given by (Reddy, 1993).

$$
\begin{gather*}
\psi_{1}=1-3\left(\frac{s}{h}\right)^{2}+2\left(\frac{s}{h}\right)^{3}, \quad \psi_{2}=h\left[\left(\frac{s}{h}\right)-2\left(\frac{s}{h}\right)^{2}+\left(\frac{s}{h}\right)^{3}\right], \\
\psi_{3}=3\left(\frac{s}{h}\right)^{2}-2\left(\frac{s}{h}\right)^{3}, \psi_{4}=h\left[-\left(\frac{s}{h}\right)^{2}+\left(\frac{s}{h}\right)^{3}\right] \tag{1.5}
\end{gather*}
$$

The vector q_{j}^{e} in (1.4) is the element nodal displacement vector. For the remaining of this derivation, the superscript e is dropped for the sake of simplicity. The numerical solution of the partial differential equation in (1.2) is a piecewise cubic polynomial comprised of the sum of the approximated displacement

$$
\tilde{v}^{e}(s, t) \text {, i.e., } v \cong \sum_{e} \tilde{v}^{e} .
$$

Element Equation

In order to obtain the element equation, the approximated displacement in (1.4) is substituted into the partial differential equation (1.2). When this is done, the left hand side is no longer equal to zero, but to a quantity R_{x} called the residual.

$$
\begin{align*}
\rho A \sum_{j=1}^{4} \psi_{j} \ddot{q}_{j} & +c_{v} \sum_{j=1}^{4} \psi_{j} \dot{q}_{j}+E I \sum_{j=1}^{4} \psi_{j}^{n} q_{j}-F-\rho A g f_{3} \\
& +E I\left[\left(\sum_{j=1}^{4} \psi_{j}^{\prime} q_{j}\right) f_{1}\right]^{\prime}+\frac{1}{2} \rho A\left[\left(\sum_{j=1}^{4} \psi_{j}^{\prime} q_{j}\right) f_{2}\right]^{\prime}=R_{x} \tag{1.6}
\end{align*}
$$

The weighted residual $W R$ is defined using Galerkin's method. In Galerkin's method, the shape function ψ_{i} is used as the weighting function. The weighted residual is forced to be zero over the element. Therefore $W R$ is given by

$$
\begin{equation*}
W R=\int_{\substack{h \\ 0}}^{\psi_{i} R_{x} d s=0} \tag{1.7}
\end{equation*}
$$

Multiplying both sides of (1.6) by the shape function Ψ_{i} and integrating over the length of the element results in

$$
\begin{align*}
& {\left[\rho A \sum_{j=1}^{4} \int_{0}^{h} \psi_{i} \psi_{j} d s\right] \ddot{q}_{j}+\left[c_{v} \sum_{j=1}^{4} \int_{0}^{h} \psi_{i} \psi_{j} d s\right] \dot{q}_{j}+\left[E I \sum_{j=1}^{4} \int_{0}^{h} \psi_{i} \psi_{j}{ }^{n} d s\right] q_{j}-\int_{0}^{h} \psi_{i} F d s} \\
& \quad-\rho A g \int_{0}^{h} \psi_{i} f_{3} d s+E I \int_{0}^{h} \psi_{i}\left[\left(\sum_{j=1}^{4} \psi^{\prime}{ }_{j} q_{j}\right) f_{1}\right]^{\prime} d s+\frac{1}{2} \rho A \int_{0}^{h} \psi_{i}\left[\left(\sum_{j=1}^{4} \psi^{\prime} q_{j} q_{j}\right) f_{2}\right]^{\prime} d s=0 \tag{1.8}
\end{align*}
$$

Finally, several terms in equation (1.8) are integrated by parts to obtain the weak form of the element equation

$$
\begin{align*}
& {\left[\rho A \sum_{j} \int_{0}^{h} \psi_{i} \psi_{j} d s\right] \ddot{q}_{j}+\left[c_{v} \sum_{j}^{h} \int_{0}^{h} \psi_{i} \psi_{j} d s\right] \dot{q}_{j}+\left[E I \sum_{j} \int_{0}^{h} \psi_{i}{ }^{\prime \prime} \psi_{j}{ }^{\prime \prime} d s\right] q_{j}-\int_{0}^{h} \psi_{i} F d s} \\
& \quad-\rho A g \int_{0}^{h} \psi_{i} f_{3} d s-\left[E I \sum_{j} \int_{0}^{h} \psi_{i}{ }^{\prime} \psi_{j}^{\prime} f_{1} d s\right] q_{j}-\left[\frac{1}{2} \rho A \sum_{j} \int_{0}^{h} \psi_{i}{ }^{\prime} \psi_{j}{ }^{\prime} f_{2} d s\right] q_{j} \\
& \quad+\left[\psi_{i} \sum_{i} \psi_{j}^{\prime} q_{j} E I f_{1}\right]_{0}^{h}+\left[\psi_{i} \sum_{i} \psi_{j}^{\prime} q_{j} f_{2}\right]_{0}^{h}+\left[\psi_{i} E I \sum_{i} \psi_{j}{ }^{\prime \prime \prime} q_{j}-\psi_{i}{ }^{\prime} E I \sum_{i} \psi_{j}{ }^{\prime \prime} q_{j}\right]_{0}^{h}=0 \tag{1.9}
\end{align*}
$$

This can be simplified to

$$
\begin{equation*}
M_{i j}^{e} \ddot{q}_{j}+c_{i j}^{e} \dot{q}_{j}+K_{i j}^{e} q_{j}-k c_{i j}^{e} q_{j}-k i_{i j}^{e} q_{j}-F_{i}^{e}-g_{i}^{e}+b_{i}^{e}=0 \tag{1.10}
\end{equation*}
$$

with the matrices, $M_{i j}^{e}, c_{i j}^{e}$, and $K_{i j}^{e}$ given by

$$
\begin{equation*}
M_{i j}^{e}=\rho A \int_{i}^{h} \psi_{i} \psi_{j} d s, \quad c_{i j}^{e}=c_{v} \int_{i}^{h} \psi_{j} \psi_{j} d s, \quad K_{i j}^{e}=E I \int_{i}^{h} \psi_{i}^{\prime \prime} \psi_{j}^{\prime \prime} d s \tag{1.11}
\end{equation*}
$$

These matrices are the element mass, damping and stiffness matrices, respectively. Equation (1.10) is written in indicial notation. Therefore, repeated indices denote summation. At this point it is convenient to introduce the matrix naming convention used in the remaining of the chapter. Matrices in capital letters are linear matrices, while matrices in lower case letters are nonlinear matrices. For instance, in (1.11) the matrices $M_{i j}{ }^{e}$ and, $K_{i j}{ }^{e}$ are linear matrices, while the matrix $c_{i j}{ }^{e}$ is a nonlinear matrix For a cubic Hermite beam element the matrices $M_{i j}{ }^{e}$ and, $K_{i j}{ }^{e}$ are given by (Reddy, 1993)

$$
\begin{gather*}
M_{i j}^{e}=\frac{\rho A h}{420}\left[\begin{array}{cccc}
156 & 22 h & 54 & -13 h \\
22 h & 4 h^{2} & 13 h & -3 h^{2} \\
54 & 13 h & 156 & -22 h \\
-13 h & -3 h^{2} & -22 h & 4 h^{2}
\end{array}\right] \tag{1.12}\\
K_{i j}^{e}=\frac{E I}{h^{3}}\left[\begin{array}{cccc}
12 & 6 h & -12 & 6 h \\
6 h & 4 h^{2} & -6 h & 2 h^{2} \\
-12 & -6 h & 12 h & -6 h \\
6 h & 2 h^{2} & -6 h & 4 h^{2}
\end{array}\right] \tag{1.13}
\end{gather*}
$$

where ρ, A, E, I, and h are the density, cross sectional area, Young's modulus, area moment of inertia and length of the element, respectively. Equation (1.10) has two additional stiffness matrices $k c_{i j}{ }^{e}$, and $k i_{i j}{ }^{e}$, resulting from the nonlinear effects in (1.2). These matrices are given by

$$
\begin{equation*}
k c_{i j}{ }^{e}=E I \int_{0}^{h} \psi^{\prime}{ }_{i} \psi^{\prime}{ }_{j} f_{1} d s, \quad k i_{i j}{ }^{e}=\frac{1}{2} \rho A \int^{h} \psi^{\prime}{ }_{i} \psi^{\prime}{ }_{j} f_{2} d s \tag{1.14}
\end{equation*}
$$

The matrix $k c_{i j}^{e}$ represents the curvature nonlinearity, while $\underset{i j}{k i^{e}}$ represents the inertia nonlinearity.

The vectors F^{e} and g_{i}^{e} are the force and gravitational effect vectors, respectively and are defined as

$$
F_{i}^{e}=\int \psi_{i} F d s, \quad g_{i}^{e}=\rho A g \int \psi_{i} f_{3} d s
$$

0

0
The vector b_{i}^{e} is the combination of the boundary terms in (1.9).

$$
\begin{equation*}
b_{i}^{e}=\left[\psi_{i} v^{\prime}\left(v^{\prime} \boldsymbol{V}+v^{\prime \prime} . \boldsymbol{H}\right)\right]_{0}^{h}+\left[\psi_{i} v^{\prime} \tilde{F}_{a}\right]_{0}^{h}+\left[\psi_{i} \boldsymbol{v}-\psi_{i}^{\prime} \cdot \boldsymbol{H}\right]_{0}^{h} \tag{1.16}
\end{equation*}
$$

The quantities \boldsymbol{V} and $\boldsymbol{\mathcal { M }}$ in (3.16) are the transverse shear force and bending moment of the beam. For a beam, the bending moment and shear force are given by (Rao, 1990)

$$
\begin{equation*}
\boldsymbol{\mathcal { M }}=E I v^{\prime \prime}, \quad \boldsymbol{V}=\left(E I v^{\prime \prime}\right)^{\prime} \tag{1.17}
\end{equation*}
$$

The force \mathscr{F}_{a} in (1.16) can be interpreted as part of the axial force required to maintain the inextensionality constraint. The origin of \mathscr{F} a is understood upon examination of the order two expressions for the Lagrange multiplier. The Lagrange multiplier is interpreted as the axial force required maintaining the inextensionality constraint (Malatkar, 2003). Recall from Chapter 2, the order two expression for the Lagrange multiplier is

$$
\lambda=-D_{\zeta} v^{\prime \prime \prime} v^{\prime}-D_{\eta} w^{\prime \prime \prime} w^{\prime}-\frac{1}{2} m \int_{l}^{s} \frac{\partial^{2}}{\partial t^{2}}\left[\int_{0}^{s}\left[\left(v^{\prime}\right)^{2}+\left(w^{\prime}\right)^{2}\right] d s\right] d s-\int_{l}^{s} Q_{u} d s
$$

For planar motion of the cantilever beam (1.18) becomes

$$
\begin{equation*}
\lambda=-E I v^{\prime \prime \prime} v^{\prime}-\frac{1}{2} \rho A \int_{l}^{s} \frac{\partial^{2}}{\partial t^{2}}\left[\int_{0}^{s} v^{\prime 2} d s\right] d s-\rho A g(s-l) \tag{1.19}
\end{equation*}
$$

This can be written as

$$
\begin{equation*}
\lambda=-\mathcal{F}_{e}-\mathcal{F}_{a}-\mathscr{W}_{a} \tag{1.20}
\end{equation*}
$$

with $\mathcal{F}_{e}, \mathscr{F}_{a}$, and \boldsymbol{W}_{k} given by

$$
\begin{equation*}
\mathcal{F}_{\epsilon}=E I v^{\prime \prime \prime} v^{\prime}, \quad \mathcal{F}_{a}=\frac{1}{2} \rho A \int_{l}^{s} \frac{\partial^{2}}{\partial t^{2}}\left[\int_{0}^{s} v^{\prime 2} d s\right] d s, \quad \mathscr{W}_{\sigma}=\rho A g(s-l) \tag{1.21}
\end{equation*}
$$

From (1.20) it is clear the Lagrange multiplier λ is the combination of three forces, namely the elastic force $\left(\mathscr{F}_{\mathcal{F}}\right)$, the inertial force $\left(\mathcal{F}_{a}\right)$ and the weight of the beam above point s along the neutral axis $\left(\mathcal{W}_{k}\right)$. Hence, \mathscr{F}_{a} is indeed part of the axial force required to maintain the inextensionality constraint.

Assembly and Implementation of Boundary Conditions

Assembly of the N element equations yields the global finite element equation

$$
\begin{equation*}
M_{i j} \ddot{q}_{j}+c_{i j} \dot{q}_{j}+k_{i j} q_{j}=f_{i}+b_{i} \tag{1.22}
\end{equation*}
$$

Which is a system of $2(N+1)$ ordinary differential equations, i.e., one for each nodal degree of freedom. The solution of this system is the vector q_{j}, which contains the nodal displacements and nodal rotations in the global coordinates S and Y (Figure 3.1). The global linear mass matrix $M_{i j}$ is calculated using (1.12). The nonlinear damping matrix is calculated using proportional damping (Cook, 1995). Therefore, is approximated as a linear combination of the mass and nonlinear stiffness matrices.

$$
\begin{equation*}
c_{i j}=\alpha_{1} M_{i j}+\alpha_{2} k_{i j} \tag{1.23}
\end{equation*}
$$

The nonlinear stiffness matrix $k_{i j}$ is the combination of the linear stiffness matrix, calculated using (1.13), and the two nonlinear stiffness matrices $k c_{i j}$ and $k i_{i j}$, calculated with (3.14).

$$
\begin{equation*}
k_{i j}=K_{i j}-k c_{i j}-k i_{i j} \tag{1.24}
\end{equation*}
$$

The nonlinear force vector f_{i} is the combination of the linear force vector and the gravitational effect vector, both calculated with (3.15).

$$
\begin{equation*}
f_{i}=F_{i}+g_{i} \tag{1.25}
\end{equation*}
$$

The boundary vector b_{i} is defined using the element boundary vector given by (1.16). The internal reactions \boldsymbol{v}, \mathcal{M}, and $\mathcal{F} a$ in (1.16) cancel out upon assembly for all nodes except for the first and last nodes. Therefore, the global boundary vector has non zero elements only at the fixed and free ends of the beam. The boundary conditions of the problem are used to evaluate b_{i}. From the previous chapter the boundary conditions are

$$
\begin{array}{ll}
v(0, t)=0, & v^{\prime}(0, t)=0 \tag{1.26}\\
v^{\prime \prime}(l, t)=0, & v^{\prime \prime \prime}(l, t)=0
\end{array}
$$

The elements of the boundary vector for the fixed end are given by

$$
\begin{align*}
& b_{1}=\psi_{1} v^{\prime}\left(v^{\prime} \boldsymbol{V}+v^{\prime \prime} \boldsymbol{\mathcal { M }}\right)+\psi_{1} v^{\prime} \mathcal{F}_{\boldsymbol{a}}+\psi_{1} \boldsymbol{V}-\psi_{1} \cdot \boldsymbol{\mathcal { M }} \tag{1.27}\\
& b_{2}=\psi_{2} v^{\prime}\left(v^{\prime} \boldsymbol{V}+v^{\prime \prime} \boldsymbol{\mathcal { M }}\right)+\psi_{2} v^{\prime} \mathscr{F}_{\boldsymbol{a}}+\psi_{2} \boldsymbol{V}-\psi_{2}{ }^{\prime} \boldsymbol{\mathcal { M }}
\end{align*}
$$

For the fixed end, v^{\prime} is zero according to the boundary conditions in (1.26). Therefore, the first two terms of b_{1} and b_{2} vanish and (1.27) becomes

$$
\begin{equation*}
b_{1}=\psi_{1} \boldsymbol{V}-\psi_{1} ' \mathscr{M}, \quad b_{2}=\psi_{2} \boldsymbol{V}-\psi_{2} ' \boldsymbol{M} \tag{1.28}
\end{equation*}
$$

The elements of the boundary vector corresponding to the free end are

$$
\begin{align*}
& b_{2(N+1)-1}=\psi_{3} v^{\prime}\left(v^{\prime} \boldsymbol{V}+v^{\prime \prime} \mathscr{\mathcal { M }}\right)-\psi_{3} \quad \mathfrak{\mathcal { M }}+\psi_{3} \boldsymbol{V}+\psi_{3} v^{\prime} \mathscr{F} \boldsymbol{a} \\
& b_{2(N+1)}=\psi_{4} v^{\prime}\left(v^{\prime} \boldsymbol{V}+v^{\prime \prime} \boldsymbol{\mathcal { M }}\right)-\psi_{4} \cdot \boldsymbol{\mathcal { M }}+\psi_{4} \boldsymbol{V}+\psi_{4} v^{\prime} \mathscr{F} \boldsymbol{a} \tag{1.29}
\end{align*}
$$

For the free end, both $v^{\prime \prime}$ and $v^{\prime \prime \prime}$ are zero from the boundary conditions. As a result, both the sheer force and bending moment are zero according to (1.17), causing the first three terms in (1.29) to vanish. Also, the inertial force \mathscr{F}_{a} is zero at the free end, according to (3.21). Therefore, both $b_{2(N+1)-1}$ and $b_{2(N+1)}$ are zero.

$$
b_{2(N+1)-1}=b_{2(N+1)}=0
$$

Since the displacement and rotation at the fixed end are both known from the boundary conditions, the first two equations in (1.22) do not need to be included as part of the system of equations to be solved. These equations are saved for post processing of the solution. Substituting the boundary vector into (1.22), and saving the first two equations of the system for post processing yields

$$
\begin{equation*}
M_{i j}^{r} \ddot{q}_{j}+c_{i j}^{r} \dot{q}_{j}+k_{i j}^{r} q_{j}=f_{i}^{r} \tag{1.31}
\end{equation*}
$$

The superscript r in (1.31) stands for reduced, since the first two equations are eliminated.

Newmark Technique

In this section, the linear global finite element equation of motion is used to illustrate the Newmark technique. The linear equation of motion is given by

$$
\begin{equation*}
M_{i j} \ddot{Q}_{j}+C_{i j} \dot{Q}_{j}+K_{i j} Q_{j}=F_{i} \tag{1.33}
\end{equation*}
$$

Figure 3: Interval for discretization in the time domain
And is obtained by omitting the nonlinear matrices $k c_{i j}$ and $k i_{i j}$, as well as the gravitational effect vector g_{i} in (1.31). The matrices $M_{i j}, C_{i j}, K_{i j}$ and the vector F_{i} are reduced matrices since the first two rows and columns are eliminated. However, the superscript r is dropped for simplicity. Equation (1.32) is discretized within the time interval $[-\mathrm{t}, \mathrm{t}]$, where t is the time step (Figure 1.3) and t is an arbitrary time. This interval is divided in two segments of length t each. Dividing the interval in this manner creates three discrete time points (Figure 3). For each one of these time nodes ${ }^{5}$ there is a displacement vector associated to it. The displacement vector for time t is $Q^{d}{ }_{j}{ }^{+1}$, while the displacement vectors for times 0 and $-t$ are $Q^{d}{ }_{j}$ and $Q^{d}{ }_{j}{ }^{-1}$, respectively.

The displacement vector at any time inside the interval in Figure 3 is approximated by ${ }^{6}$

$$
\begin{equation*}
Q_{j}=\Phi_{d-1} Q_{j}^{d}-1+\Phi_{d} Q_{j}^{d}+\Phi_{d+1} Q_{j}^{d}+1=\Phi_{k} Q_{j}^{k} \tag{1.33}
\end{equation*}
$$

where Φ_{d-1}, Φ_{d}, and Φ_{d+1} are the shape functions given by (Zienkiewicz, 1977)

$$
\begin{equation*}
\Phi_{d-1}=\frac{-v}{2}(1-v), \Phi_{d}=(1-v)(1+v), \Phi_{d+1}=\frac{v}{2}(1+v) \tag{1.34}
\end{equation*}
$$

The dimensionless time coordinate v in (1.34) is defined as

$$
\begin{equation*}
v=\frac{t}{\Delta t} \tag{1.35}
\end{equation*}
$$

The displacement vector Q_{j} in (1.33) is a quadratic polynomial in t. The force inside the interval $[-\mathrm{t}$, t$]$ is interpolated in a way similar to the displacement vector (Zienkiewicz, 1977). Therefore the force F_{i} is given by

$$
\begin{equation*}
F=\Phi_{i} \underset{d-1 i}{ } F_{d-1}^{d}+\Phi \underset{d i}{F^{d}}+\Phi \underset{d+1 i}{ } F_{k i}^{d+1}=\Phi F_{i}^{k} \tag{1.36}
\end{equation*}
$$

Substitution of (1.33) and (1.36) into (1.32) yields the residual R_{t}.

$$
\begin{equation*}
M_{i j} \ddot{\Phi}_{k} Q_{j}^{k}+C_{i j} \dot{\Phi}_{k} Q_{j}^{k}+K_{i j} \Phi_{k} Q_{j}^{k}-\Phi_{k} F_{i}^{k}=R_{t} \tag{1.37}
\end{equation*}
$$

with k ranging from $d-1$ to $d+1$. The weighted residual method is applied by multiplying (1.37) by a weighting function $\omega(t)$ and integrating from $-t$ to t. Equation (1.37) becomes then

$$
\begin{equation*}
\int_{-\Delta t}^{\Delta t} \omega(t)\left[M_{i j} \ddot{\Phi}_{k} Q_{j}^{k}+C_{i j} \dot{\Phi}_{k} Q_{j}^{k}+K_{i j} \Phi_{k} Q_{j}^{k}-\Phi_{k} F_{i}^{k}\right] d t=0 \tag{1.38}
\end{equation*}
$$

Substituting the shape functions (1.34) into (1.38) results in

$$
\begin{align*}
& \left\{M_{i j}+\gamma \Delta t C_{i j}+\beta \Delta t^{2} K_{i j}\right\} Q_{j}^{d+1}+\left\{-2 M_{i j}+(1-2 \gamma) \Delta t C_{i j}\right. \\
& \left.+(0.5-2 \beta+\gamma) \Delta t^{2} K_{i j}\right\} Q_{j}^{d}+\left\{M_{i j}-(1-\gamma) \Delta t C_{i j}+(0.5+\beta-\gamma) \Delta t^{2} K_{i j}\right\} Q_{j}^{d-1} \\
& \quad-\Delta t^{2}\left\{\beta F_{i}^{d+1}+(0.5-2 \beta+\gamma) F_{i}^{d}+(0.5+\beta-\gamma) F_{i}^{d-1}\right\}=0 \tag{1.39}
\end{align*}
$$

where the quantities γ and β are given by

$$
\begin{equation*}
V=\frac{\int_{-1} \omega(v)\left(v+\frac{1}{2}\right) d v}{\int_{-1}^{1} \omega(v) d v}, \beta=\frac{\frac{1}{2} \int_{-1} \omega(v)(1+v) v d v}{\int_{-1}^{1} \omega(v) d v} \tag{1.40}
\end{equation*}
$$

Notice the variable of integration in (1.40) has been changed from t to the dimensionless time coordinate v (1.35).Equation (1.39) can be simplified to

$$
\begin{equation*}
A 1_{i j} Q_{j}^{d+1}+A 2_{i j} Q_{j}^{d}+A 3_{i j} Q_{j}^{d-1}-\mathcal{F}_{i}=0 \tag{1.41}
\end{equation*}
$$

where the matrices $A 1_{i j}, A 2_{i j}, A 3_{i j}$ and the vector \mathscr{F}_{i} are defined as follows

$$
\begin{align*}
& A 1_{i j}=M_{i j}+\gamma \Delta t C_{i j}+\beta \Delta t^{2} K_{i j} \\
& A 2_{i j}=-2 M_{i j}+(1-2 \gamma) \Delta t C_{i j}+(0.5-2 \beta+\gamma) \Delta t^{2} K_{i j} \tag{1.42}\\
& A 3_{i j}=M_{i j}-(1-\gamma) \Delta t C_{i j}+(0.5+\beta-\gamma) \Delta t^{2} K_{i j} \\
& \mathscr{F}_{i}=\Delta t^{2}\left\{\beta F_{i}^{d+1}+(0.5-2 \beta+\gamma) F_{i}^{d}+(0.5+\beta-\gamma) F_{i}^{d-1}\right\} \tag{1.43}
\end{align*}
$$

Equation (1.41) is used to solve for the displacement vector Q_{j}^{d+1} in terms of the displacement vectors Q_{j}^{d} and Q_{j}^{d-1}.

$$
\begin{equation*}
Q_{j}^{d+1}=A 1_{i j}^{-1} A 2_{i l} Q_{l}^{d}-A 1_{i j}^{-1} A 3_{i l} Q_{l}^{d-1}+\Delta t^{2} A 1_{i j}^{-1} \mathscr{F} \tag{1.44}
\end{equation*}
$$

Q_{j}^{0}	$\Delta \mathrm{t} \quad Q_{j}^{1}$	Q_{j}^{2}	$Q_{j}^{T N-1}$
Q_{j}^{0}	\square	0	8
$\mathbf{t}=0$	$t=\Delta t$	$t=2 \Delta t$	$\mathrm{t}=\mathrm{TF}$

Figure 4: Time nodes in [0,TF]
The use of (1.44) to calculate the time history of the displacement vector Q_{j} in the interval [0, TF] is illustrated next. Here $T F$ is an arbitrary time. The time interval
[$0, \mathrm{TF}]$ has $T N$ time nodes with $T N$ given by (Figure 3.4)

$$
\begin{equation*}
T N=\frac{T F}{t}+1 \tag{1.45}
\end{equation*}
$$

The first time node corresponds to $d=1$, the second to $d=2$, and so on. The displacement vector for the second time node in $[0, \mathrm{TF}]$ is simply $Q^{1}{ }_{j}$. In order to calculate $Q^{1}{ }_{j}$, the vectors $Q^{0}{ }_{j}$ and Q_{j}^{-1} must be prescribed. This is done by using the initial conditions of the problem. For this problem it is assumed the beam starts from rest, which means the displacement vectors $Q^{0}{ }_{j}$ and Q_{j}^{-1} are equal to the zero vector.

$$
\begin{equation*}
Q_{j}^{0}=Q^{-}{ }^{1}=0 \tag{1.46}
\end{equation*}
$$

Substituting $d=0$ along with (1.46) into (1.44) yields

$$
\begin{equation*}
Q_{j}^{1}=\Delta t^{2} A 1_{i j}^{-1} \mathcal{F}_{i} \tag{1.47}
\end{equation*}
$$

To calculate $Q^{2}{ }_{j}$, the displacement vector for the next time node. In this manner (1.44) is used to calculate the displacement vectors for all time nodes in [0, TF]. The quantities γ and β in (1.40) vary depending on the choice for weighting function $\omega(v)$. For this problem, the values $\gamma=0.5$ and $\beta=0.25$ are used. This corresponds to an average acceleration scheme (Zienkiewicz,). These values of γ and β ensure the computation of the time history of the displacement vector using (1.44) is unconditionally stable, i.e., independent of the size of t (Bathe).

Numerical Algorithm

Figure 5: Algorithm used to calculate the time history of the displacement
Figure 5 illustrates the process used to calculate the time history of the nonlinear displacement vector q_{j}.
The linear displacement vector Q_{j} is calculated first. This linear displacement vector is then used to calculate a first guess of q_{j}. Finally, the iterative process is used to obtain the nonlinear displacement vector q_{j} for time t. This algorithm is implemented in the Matlab ${ }^{\circledR}$ program NLB ${ }^{7}$ in Appendix A

.Calculation of the Linear Displacement Q_{j}

The Newmark technique is used to calculate the linear displacement vector Q_{j} in the interval [0,TF], with $0<t<$ $T F$. This interval is divided in $T N$ time nodes with $T N$ defined by (1.45).

Figure 6: Displacement vectors used to calculate Q_{j} at time t
The linear displacement vector at time t is given by

$$
\begin{align*}
A 1_{i j} & =M_{i j}+\gamma t C_{i j}+\beta t^{2} K_{i j} \\
A 2_{i j} & =-2 M_{i j}+(1-2 \gamma) t C_{i j}+(0.5-2 \beta+\gamma) t^{2} K_{i j} \tag{1.49}\\
A 3_{i j} & =M_{i j}-(1-\gamma) t C_{i j}+(0.5+\beta-\gamma) t^{2} K_{i j}
\end{align*}
$$

The coefficients γ and β are taken as 0.5 and 0.25 , respectively. This corresponds to the average acceleration scheme (Zienkiewicz). The matrix Cij is the linear damping matrix and is calculated as a linear combination of the mass and stiffness matrices (Cook). Thus $C_{i j}$ is given by

$$
\begin{equation*}
C_{i j}=\alpha_{1} M+\alpha_{2 j} K_{i j} \tag{1.50}
\end{equation*}
$$

The coefficients α_{1} and α_{2} are obtained by solving the system

$$
\begin{equation*}
\xi_{1}=\frac{\alpha_{1}}{2 \omega_{1}}+\frac{\underline{\alpha}_{2} \underline{\omega}_{1}}{2}, \quad \xi_{4}=\frac{\alpha_{1}}{2 \omega_{4}}+\frac{\alpha_{2} \underline{\omega}_{4}}{2} \tag{1.51}
\end{equation*}
$$

The focus of this investigation is the time response of the cantilever beam when the base is excited at a frequency close to the third natural frequency. Therefore, the first and fourth natural frequencies and modal damping ratios are used in (1.51). The force vector in (1.48) is calculated as

$$
\begin{equation*}
\tilde{\mathcal{F}_{i}}=\Delta t^{2}\left\{\beta F_{i}^{d+1}+(0.5-2 \beta+\gamma) F_{i}^{d}+(0.5+\beta-\gamma) F_{i}^{d-1}\right\} \tag{1.52}
\end{equation*}
$$

where F_{i}^{d+1}, F_{i}^{d}, and F_{i}^{d-1} are the linear force vectors for times $t, t-\Delta t$, and $t-2 \Delta t$, Respectively (Figure 6)

Calculation of the Nonlinear Displacement $\mathbf{q}_{\mathbf{j}}$

The nonlinear displacement vector at an arbitrary time t in $[0, \mathrm{TF}]$ is given by

$$
\begin{equation*}
q_{j}^{d+1}=a 1_{i j}^{-1} a 2_{i l l}^{d}-a 1_{i j i l l}^{-1} a 3 q^{d-1}+t^{2} a 1_{i j i}^{-1} \not \subset \tag{1.53}
\end{equation*}
$$

where $q^{d}{ }_{j}, q^{d}{ }_{j}^{-1}$ are the nonlinear displacement vectors for times $t-t$, and $t-2 t$, Respectively (Figure 8).

Figure 7: Displacement vectors used to calculate q_{j} at time t
The matrices $a 1_{i j}, a 2_{i j}$ and $a 3_{i j}$ in (1.53) are calculated using the global linear mass matrix and the nonlinear
stiffness matrix $k_{i j}$ given by (1.24).

$$
\begin{align*}
a 1_{i j} & =M_{i j}+\gamma t c_{i j}+\beta t^{2} k \\
a 2_{i j} & =-2 M_{i j}+(1-2 \gamma) t c_{i j}+(0.5-2 \beta+\gamma) t^{2} k_{i j} \tag{1.54}\\
a 3_{i j} & =M_{i j}-(1-\gamma) t c_{i j}+(0.5+\beta-\gamma) t^{2} k_{i j}
\end{align*}
$$

The coefficients γ and β are taken as 0.5 and 0.25 , respectively. This corresponds to the average acceleration scheme (Zienkiewicz) In order to obtain the nonlinear stiffness matrix $k_{i j}$, the functions f_{1} and f_{2} defined and must be calculated. These functions are used with (1.14) to compute the nonlinear stiffness matrices $k c_{i j}$ and $k i_{i j}$, which are substituted into (1.24) to obtain $k_{i j}$. A detailed example of the procedure used to calculate $k i_{i j}$ is included in Appendix D. The matrix $k c_{i j}$ is calculated using a similar procedure. The matrix $c_{i j}$ is the nonlinear damping matrix and is calculated as a linear combination of the mass and stiffness matrices (Cook)

$$
\begin{equation*}
\underset{i j}{c}=\alpha_{1} M+\underset{2 i j}{ }+\alpha_{i j} \tag{1.55}
\end{equation*}
$$

The coefficients α_{1} and α_{2} are the same above. The force vector in (1.53) is calculated as

$$
\begin{equation*}
\underset{i}{\boldsymbol{f}}=\quad t^{2}\left\{\beta f_{i}^{d+1}+(0.5-2 \beta+\gamma) f_{i}^{d}+(0.5+\beta-\gamma) f_{i}^{d-1} \quad\right\} \tag{1.56}
\end{equation*}
$$

where f_{i}^{d+1}, f_{i}^{d}, and f_{i}^{d-1} are the nonlinear force vectors for times $t, t-\Delta t$, and $t-2 \Delta t$, Respectively The nonlinear force vector f_{i} is simply the combination of the linear force vector and the gravitational effect vector (1.25). The gravitational effect vector is calculated using a procedure similar to the one illustrated

Iterative Procedure

The iterative procedure used to obtain the nonlinear displacement vector at any given time t is illustrated in Figure 5. Once vectors Q_{j} and q_{j} are obtained as discussed, the error θ is calculated

$$
\begin{align*}
& \theta=\sum_{m=1}^{k} q_{j}^{m}-Q_{j}^{m} \\
& \theta \leq \text { TOL for convergence } \tag{1.57}
\end{align*}
$$

Where k is the total number of elements in each vector.
The error θ is compared to a maximum allowed error $T O L$. Once $\theta \leq T O L$, the solution is converged and the vector q_{j} is stored. However, if the error θ exceeds the maximum allowed error, q_{j} is assigned to Q_{j} and a new q_{j} is calculated (Figure 5). This procedure is repeated until convergence is achieved.

Conclusion

The vibration of a highly flexible cantilever beam is investigated in this paper the order three equations of motion, developed by Crespo da Silva and Glyn (1978), for the nonlinear flexural-flexural-torsional vibration of Inextensional beams can be used to investigate the time response of the beam subjected to harmonic excitation at the base. The equation for the planar flexural vibration of the beam can also be solved using the finite element method.

References

1 Anderson, T.J., et al., Nonlinear Resonances in a Flexible Cantilever Beam, Nonlinear Vibrations, ASME, Vol. 50, pp. 109-116, 1992
2 Anderson, T.J., et al., Observations of Nonlinear Interactions in a Flexible Cantilever Beam, Proceedings of the 33rd AIAA Structures, Structural Dynamics \& Materials Conference, AIAA paper no. 92-2332CP, Dallas, Tx, pp. 1678-1686
ANSYS ${ }^{\circledR}$ Theory Reference, Release 10.0 Documentation for ANSYS ${ }^{\circledR}$
4 Baher, H., Analog and Digital Signal Processing, John Wiley \& Sons, New York, 1990
5 Bathe, K.J., and Wilson, E.L., Stability and Accuracy Analysis of Direct Integration Methods, Earthquake Engineering and Structural Dynamics, Vol. 1, pp. 283-291, 1973
6 Blevins, R.D., Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold Company, New York, 1979
7 Borse, G.J., Numerical Methods with Matlab, PWS-Kent, Boston, 1997
8 Budynas, R.G., Advanced Strength and Applied Stress Analysis, McGraw-Hill, New York, 1999
9 Cook, R.D., and Young, W.C., Advanced Mechanics of Materials, Prentice Hall, New Jersey, 1999
10 Cook, R.D., Finite Element Analysis for Stress Analysis, John Wiley \& Sons, New York, 1995
11 Crespo da Silva, M.R.M., and Glynn, C.C., Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams. I. Equations of Motion, Journal of Structural Mechanics, Vol. 6, pp. 437-448, 1978 Crespo da Silva, M.R.M., and Glynn, C.C., Nonlinear Non-Planar Resonant Oscillations in Fixed-Free Beams with Support Asymmetry, International Journal of Solids Structures, Vol. 15, pp. 209-219, 1979
13 Crespo da Silva, M.R.M., and Glynn, C.C., Out-of Plane Vibrations of a Beam Including Nonlinear Inertia and Non-Linear Curvature Effects, International Journal of Non-Linear Mechanics, Vol. 13, pp. 261-271, 1979
14 Crespo da Silva, M.R.M., and Glynn. C.C., Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams. II. Forced Motions, Journal of Structural Mechanics, Vol. 6, pp. 449-461, 1978
15 Kim, M.G., et al. Non-planar Nonlinear Vibration Phenomenon on the One to One Internal Resonance of the Circular Cantilever Beam, Key Engineering Materials, Vols. 326-328, pp. 1641-1644, 2006
16 Kreyzig, E., Advanced Engineering Mathematics, John Wiley \& Sons, Massachusetts, 1999
17 Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York, 1944
18 Malatkar, P., and Nayfeh, A.H., On the Transfer of Energy Between Widely Spaced Modes in Structures, Nonlinear Dynamics, Vol. 31, pp. 225-242, 2003
19 Malatkar, P., Nonlinear Vibrations of Cantilever Beams and Plates, Ph.D. thesis, Virginia Polytechnic Institute and State University, 2003
Mase, G.E., Continuum Mechanics, McGraw-Hill, New York, 1970
21 Meirovitch, L., Fundamentals of Vibrations, McGraw-Hill, New York, 2001
22 Nayfeh, A.H., and Arafat, H.N., Nonlinear response of cantilever beams to combination and sub
combination resonances, Shock and Vibration, Vol. 5, pp. 277-288, 1998
23 Nayfeh, A.H., and Pai, P.F., Linear and Nonlinear Structural Mechanics, John Wiley \& Sons, New York, 2003
24 Nayfeh, S.A., and Nayfeh, A.H., Nonlinear Interactions Between Two Widely Spaced Modes- External Excitation, International Journal of Bifurcation and Chaos, Vol. 3, No.2, pp. 417-427, 1993
Rao, S.S., Mechanical Vibrations, Addison Wesley, New York, 1990
Hill, New York, 1993
Thomson, W.T., and Dahleh, M.D., Theory of Vibration with Applications, Prentice Hall, New Jersey, 1998
28 Török, J.S., Analytical Mechanics, John Wiley \& Sons, New York, 2000
29 Zienkiewicz, O.C., A New Look at the Newmark, Houbolt and Other Time Stepping Formulas. A Weighted Residual Approach, Earthquake Engineering and Structural Dynamics, Vol. 5., pp. 413-418, 1977
30 Zienkiewicz, O.C., The Finite Element Method, McGraw-Hill, London, 1977
31 Zill, D.G., et al., Differential Equations with Boundary Value Problems, Brooks/Cole Publishing Company, New York, 1997

