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ABSTRACT

Cellular Automata (CA) are simple mathematical systems which provide models for a variety of physical
processes. They show how minute changes and simple rules lead to enormous changes in the behaviour of a
system. They can also be used as computer graphics  tools to produce a rich reservoir of interesting figures. In
recent years, CA have attracked the attention of many scientists. Today, CA are used in many fields from
ecology to image processing. In this paper, it is shown that a large number of complex and interesting patterns
can be created with relatively simple CA rules.

Key Words: Cellular automata, Computer graphics

HÜCRESEL OTOMATA VE BİLGİSAYAR GRAFİKLERİ

ÖZET

Hücresel Otomata (CA) çeşitli fiziksel işlemler için model temin eden basit matematik sistemleridir. Önemsiz
veya küçük değişikliklerin ve basit kuralların sistemlerin davranışlarında nasıl çok büyük değişikliklere
yolaçtığını gösterirler. İlginç şekillerin zengin bir kaynağı olarak bilgisayar grafikleri aracı olarak da
kullanılmaktadırlar. Son yıllarda CA birçok bilim adamının dikkatini çekmiştir. Günümüzde CA ekolojiden
görüntü işlemeye kadar birçok alanda kullanılır. Bu makalede oldukça basit CA kuralları ile çok sayıda karmaşık
ve harika modelin yaratılabileceği gösterilmektedir.

Anahtar Kelimeler : Hücresel otomata, Bilgisayar grafikleri

1. INTRODUCTION

A dynamic system is a process which evolves with
time. Some dynamic systems exhibit irregular
behaviour. Minute changes in inputs of such systems
may result in enormous differences in the outputs.
The term ‘chaos’ is used to describe this kind of
unstable behaviour. Cellular Automata (CA) are
useful to demonstrate the chaotic behaviour of
dynamic systems.

CA are great models to analyse many natural
phenomena which exist in many fields. For example,
the interaction among ants to form a colony or the
interaction  of  water  molecules to form a  fluid can
be modelled with CA. Most importantly, CA are
suitable to define natural processes in computational
terms, because, they consist of a finite grid of cells

with a finite number of states which evolve in
discrete time steps, that is CA are discrete dynamical
systems (Gutowitz, 1995).

CA have roots back in science. Pascal’s triangle is
considered to be the first CA. CA’s recent
development is related to the invention of computing
machines. Konrad Zone, Stanishlaw Ulam, John
Von Neumann and Stephan Wolfram are the first
scientists to handle CA with today’s view
(Peitgen et all., 1992).

Today, CA have become a very important modelling
and simulation tool in science and technology from
physics, chemistry and biology, to computational
fluid dynamics in airplane and ship design,
philosophy and society. Because of their
discreteness  property, CA are suitable to design
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parallel algorithms. Their parallel evolution provides
performance improvements in simulations. For
example, a traffic simulation takes only a few
minutes with the use of CA models. On the other
hand, simulations that use classical methods based
on counting the number of cars may take many days
(Wagner, 1995).

Mathematical properties of CA are popular research
subjects among mathematicians. CA exhibit traits of
self organisation, periodic stability and self
replication. These features have applications in
computer graphics. Simple rules which provide the
evolution of CA result in complex and beautiful
pictures (Peitgen  and  Saupe, 1989).

This paper is related to applications of CA in
computer graphics. In Section 2, we surveyed the
CA systems. Section 3 is on the applications of  CA
in computer graphics. The implementation is given
in Section 4. Section 5 is the conclusion.

2. BACKGROUND

2. 1. Cellular Automata

A cellular automaton (CAn) is an array of cells
which interact with each other. A CAn is defined by
its state, a set of rules, its neighbourhood and an
initial configuration. The state of a cell can be a
number or a property. For instance, if each cell of a
CAn represents a part of a street, the state may
represent the number of cars at that location. Rules
define how cells interact with each other to change
their states. Neighbourhood is a group of cells in
interaction. Initial configuration of a CAn is the
initial state of its cells (Green, 1993).

CA are deterministic, local and dynamic systems.
A CAn is deterministic, because given the initial
configuration and a rule, future states can be
uniquely determined. A CAn is local, The state of a
cell at time t+1 is determined by a rule which is a
function of its own state and the states of its
neighbourhood at time t. A CAn is  dynamic because
it evolves in discrete time steps. The rule is applied
to all cells in synchrony. The state of cells are
updated simultaneously and independently from one
another.

A CAn occupies a position in space and it is
organised according to a specific geometry. A CAn
can be 1, 2 or 3 dimensional. 1 dimensional
configurations are organised as an array of cells. It is
possible to draw the succeeding steps of a 1
dimensional CA one below another and to obtain
layered forms. 2 dimensional CA are arranged as a

grid of cells. 3 dimensional solid forms are not as
common as 1 or  2 dimensional organisations. Other
arrangements such as honeycomb forms are also
sometimes used (Peitgen et al., 1992).

Many rules can be chosen from a large set of rules.
For example, for a 2-state 1 dimensional CA with a
neighbourhood template that includes a cell and its
immediate left and right cells, there will be  23 = 8
neighbourhood states (000, 001,….., 111) and a
choice of two states to map to for each of those,
yielding  a total of  22^3 = 28 = 256 possible rules. Let
the following rule be chosen from the rule set, as
given in Table 1.

Table 1. Look up Table for CA in Figure 1
Neighbourhood Leads to

000 0
001 1
010 1
011 0
100 1
101 1
110 0
111 0

Assuming the future evolutions are drawn one below
the other, the CAn in Figure 1 is obtained.

Time 0:  .  .  .  .  .  .  .  .  .  .  1  .  .  .  .  .  .  .  .  .  .
Time 1:  .  .  .  .  .  .  .  .  .  1 1 1  .  .  .  .  .  .  .  .  .
Time 2:  .  .  .  .  .  .  .  .  1  .  .  .  1 .  .  .  .  .  .  .  .
Time 3:  .  .  .  .  .  .  .  1 1 1  .  1 1 1 .  .  .  .  .  .  .
Time 4:  .  .  .  .  .  .  1  .  .  .  1  .  .  . 1 .  .  .  .  .  .
Time 5:  .  .  .  .  .  1 1 1  .  1 1 1  . 1 1 1 .  .  .  .  .
Time 6:  .  .  .  .  1  .  .  .  1  .  .  .  1 .  .  . 1 .  .  .  .

Figure 1. CA for the rule set given in Table 1. Here
zero is denoted by “.”.

For a 2-state 2 dimensional template that includes a
cell and its orthogonal neighbours, there will be 25

neighbourhood states and a choice of two states to
map to for each of those, leading to  22^5 = 232= 4
billion possible rules. Assume one of the possible
rules has been chosen and presented in the following
look up Table 2. The corresponding CA is given in
Figure 2.

Table 2. Look up Table for the CA Given in
Figure 2.
CSWNE C CSWNE C CSWNE C CSWNE C
00000 0 01000 1 10000 1 11000 1
00001 0 01001 1 10001 1 11001 1
00010 0 01010 1 10010 1 11010 1
00011 0 01011 1 10011 1 11010 1
00100 1 01100 0 10100 1 11011 1
00101 1 01101 0 10101 1 11100 1
00110 1 01110 0 10110 1 11101 1
00111 1 01111 0 10111 1 11111 1
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Figure 2. CA for the look up table given in Table 2.

2. 2.  Properties of Cellular Automata

CA systems have the following properties (Green,
1993):

1) Self organisation: To simulate the behaviour of
a cellular automaton; an initial configuration is
chosen and CA rules are applied in discrete
steps. If the resulting sequence of steps is
observed, it is seen that iteration leads to an
equilibrium behaviour which is independent of
the choice of the initial configuration. Even if
the system starts with a random arrangement of
states, the rules force patterns to emerge.

2) Life like behaviour: Studies show that even the
simplest linear CA behave in ways similar to
complex biological systems. For example, the
fate of any initial configuration of a CAn is
either
a. to die out,
b. to become stable or cycle with fixed periods,
c. to grow indefinitely at a fixed speed,
d. to grow and contract irregularly.

3) Thermal behaviour: In general, models that
force a change of state for few configurations,
tend to freeze into fixed patterns, whereas
models that change the cells’ states in most
combinations tend to behave in a more active
gaseous way.

4) Parallel evolution: At each time step, the cells
change their states simultaneously; meaning that
CA evolve in a parallel manner. This property
provides performance improvements in
simulations. CA are useful in designing parallel
processing algorithms due to their parallel
evolution property.

Properties of CA can easily be observed in a very
popular CA called the Game of  Life, invented in the
1970s by John Horton Conway. Game of Life is a 2
dimensional analogue of basic process in living
systems. A cell in a 2 dimensional grid is either dead
(0) or alive (1). The state of each cell changes from
one generation to the next  depending on the state of
its immediate neighbours and its own state. The
rules governing these changes are designed to mimic
population change. Life like behaviour of the Game
of Life can easily be seen by examining its
evolution. A cell which is alive at one step will
remain alive in the next step when precisely 2 or 3
cells among its 8 neighbours in a square lattice are
alive. If more than 3 neighbours are alive, the cell
will die from overcrowding. If fewer than 2
neighbours are alive, the cell will die from
loneliness. A dead cell will come to life when
surrounded by exactly 3 live neighbours. All cells
change their states simultaneously, which means that
Game of Life has a parallel evolution. Starting from
an arbitrary initial pattern, the rules produce patterns
quickly.  This is the proof of the self organisation in
Game of Life. Configurations either disappear
entirely or break up into isolated patterns that are
either static or cycle between different forms with a
fixed period, being the indicator of the thermal
behaviour of  Game of  Life (Green, 1993).

Some interesting patterns are observed  throughout
the evolution of Game of Life. Those are namely,
blinkers, starships and guns. Blinkers are a group of
cells which reproduces themselves periodically.
Gliders move in certain directions. Starships leave a
trace of blinkers. Guns periodically eject gliders
(Peitgen et all., 1992).

3. CELLULAR AUTOMATA AND
COMPUTER GRAPHICS

The increasing prominence of computer graphics has
led to the rapid development of CA systems.
Computer graphics is important for CA studies for
two reasons: First CA are perfect tools for
simulating natural phenomena and evolution of CA
systems can easily be demonstrated with graphic
tools. For example, reaction diffusion studies has
progressed rapidly with CA simulations using
computer graphics. The second reason is that CA
represent appealing and mathematically interesting
patterns. CA show how simple mathematical rules
lead to a huge number of images which contain
symmetry and stochasticity. Some CA are
reminiscent of carpet designs, ceramic tile mosaics
and brick patterns from Mosques.
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CA figures contain mathematically interesting
properties. Scaling symmetry is one of those
properties. CA patterns are invariant under changes
of scale. When examined carefully, it is noticed that
the same basic shape is found at another place in
another size. Scaling symmetry is also observed in
many natural phenomena such as condensed matter
physics, diffusion and polymer growth. That is why
CA serve as visual and physical models for this type
of structures.  In addition to scaling symmetry, CA
patterns contain infinite details, traits of self
organization, periodic stability, etc.

With the growing popularity of CA in both computer
graphics and the modeling of physical systems, an
easy-to-use system for CA programming was
needed. Dana Eckart from Radford University
developed a CA programming language: Cellang.
Cellang compiler generates code for both
uniprocessor and shared memory multiprocessor
systems. The entire system is written in C and the
compiler produces  C as an intermediate code,
making the system highly portable. Cellang works
under both UNIX and DOS operating system and
currently supports the viewing of automata with
either X Windows (UNIX), IRIS Graphics Library
(UNIX),VGA(DOS) (Eckart, 1997).

4. IMPLEMENTATION

In this section, some CA rules are introduced and
the  corresponding  CA  are  given  in  Figure 4.  The
rules are implemented on a PC with C language.

The growth process can easily be observed and a
different figure is obtained at each time step. The
initial configuration is a random distribution of alive
cells for the CA in Figure 4a. For other examples,
the initial configuration is given in Figure 3. In the
examples, 1s correspond to alive cells whereas 0s
correspond to dead cells.

0  0  0  0  0
0  0  0  0  0
0  0  1  0  0
0  0  0  0  0
0  0  0  0  0

Figure 3. Initial configuration for examples
displayed in Figure 4b-4f

In Figure 4a, if five or more neighbours are alive,
the cell becomes or remain alive. Otherwise, it will
die or remain dead. Starting from a random
distribution of alive cells, the system evolves as a
stable pattern after some time steps. In the CA in
Figure 4b, a cell becomes alive if only one of its

orthogonal neighbours is 1. One important
characteristics of the system is that no cells die.

In Figure 4c, two rules are applied in order
throughout the evolution of  CA. Let n denote the
number of time steps passed. The states of cells are
determined at the (n + 1) th step according to the
following rules.

1. A cell becomes alive if only one of its
orthogonal neighbors is alive for even n.

2. A cell becomes alive if only one of its eight
neighbors is alive for odd n .

The rule applied in Figure 4d is the same as the rule
applied in Figure 4c except that the conditions that n
mod 6 = 0 and n mod 6 != 0 determine the evolution
of the pattern.

In the CA given in Figure  4e, a cell becomes alive if
only one of its neighbours is alive. Otherwise, it is
unchanged.

In Figure 4f, a cell and its orthogonal neighbors are
taken  into account. If the number of alive cells
among these 5 cells is an even number,  the cell dies
or remain dead. Otherwise the cell becomes or
remains  alive. CAs in Figure 5 are obtained from
the combinations of rules of  Figures 4b, 4c, 4e, 4f.
The difference between the two patterns is due to
using the rules in different orders with different
numbers of iterations.

Figure 4. Examples of different CA rules

The initial state of CAn is random distribution of
alive cells.
A CAn where no cells are allowed to die.
A CAn obtained by applying two rules  in order.
Same CAn as given in (c) with the exception that the
evolution of the pattern is determined by n mod 6.
A CAn where a cell becomes alive if only one of its
neighbours is alive.
A CAn that takes different shapes at each time step.

          (a)           (b)                         (c )

( d)                         (e)                  (f )
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Figure 5. CA examples with different combinations
of rules

5. CONCLUSIONS

CA provide a rich reservoir of beautiful and
complex patterns. In contrast to the simplicity of
rules, a large number of intricate figures are
obtained. For example, for a system with  two states
and eight neighbors for a cell, 922 ∧ = 10154 rules can
be defined.

CA portraits contain beauty and complexity which
mathematicians were not able to fully appreciate
before the age of computers (Pickover,1989).
Growth process can be easily observed by running
CA on a high speed personal computer. CAn can be
run for a specified length of time. During the growth
process, many different patterns for a single CAn
may be obtained at each step. In Figure 6, the
growth of the CAn given in Figure 4f is shown for
time steps 1, 5, 7, 10, 15, 20, 24, 27, 30, 32, 37, 40,
43, 47, 50, 55, 58.

Figure 6. Growth of  the CAn given in Figure 4f

In Section 3, it is stated that CA patterns contain
scaling symmetry and infinite details. Existence of
scaling symmetry and infinite details is the main
characteristic of fractals. Therefore, it can be
concluded that CA are examples of fractals.

Another important feature of CA is their parallel
evolution. At each time step, all cells change their
states simultaneously according to their own states
and the states of their neighbours at the previous
step. Therefore, parallel programming environments
speed up the evolution of CA patterns.  Parallel CA
programming is very promising for time consuming
simulations of natural phenomena. Our study is
continuing along this direction.
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