
P A M U K K A L E Ü N İV E R S İT E S İ M Ü H E N D İ S L İK F A K Ü L T E S İ
P A M U K K A L E U N I V E R S I T Y E N G I N E E R I N G C O L L E G E

M Ü HE N D İSL İK B İL İM LE R İ D E RG İS İ
J O U R N A L O F E N G I N E E R I N G S C I E N C E S

YIL
CİLT
SAYI
SAYFA

: 2000
: 6
: 1
: 57-63

57

xPROT : OBJECT-ORIENTED PROTOTYPING MODEL

A. Nuri BAŞOĞLU
Boğaziçi Üniversity, Dept. of Management Information Systems, İstanbul

Geliş Tarihi : 06.05.1998

ABSTRACT

Even relational database management systems have now become the standard for data processing applications;
object oriented database systems are being developed to meet the complex data modeling requirements. In this
paper an object-based system, xPROT, is introduced which could be used for rapid program development.
System includes some pre-defined methods and classes as Menu, Report, View, Table. In xPROT the schema as
well as the data manipulation is expressed by the same command-based language. Expressiveness, easiness and
flexibility in terms of data modeling power is investigated.

Key Words : Data modelling, Software engineering, Prototyping, Object-Orientation, Database systems

xPROT : NESNE-YÖNELİMLİ PROTOTİPLEME MODELİ

ÖZET

İlişkisel veri tabanları bilgiişlem uygulamalarında standart olmaya başlamasına rağmen, karmaşık veri
modellemesinin gereklerini yerine getirmek için nesne yönelimli sistemler geliştirilmektedir. Bu makalede, hızlı
program geliştirmek için kullanılabilecek, nesne-tabanlı bir sistem, xPROT tanıtılmaktadır. Sistem bazı önceden
tanımlanmış metod ve Menu, Report, View, Table gibi sınıfları içermektedir. xPROT’da veri şeması olduğu
kadar, veri işleme de aynı komut bazlı dil ile ifade edilmektedir. Sistemin ifade yeterliliği, kolaylığı ve esnekliği,
veri modelleme gücü açısından incelenmektedir.

Anahtar Kelimeler : Veri modelleme, Yazılım mühendisliği, Prototip, Nesne-yönelim, Veri tabanı sistemleri

1. INTRODUCTION

Relational database management systems (RDBMS)
have been the standard for business data processing.
Its success has greatly been due to flexibility and
ease of use (Ullman, 1988, Date, 1990). However an
application of medium size may contain tens of
tables and hundreds of columns. Data modelling
capabilities of RDBMS are too limited. It's difficult
to build complex, large-scale and data intensive
applications using RDBMS.

Relational systems are mainly based on calculus-
based languages (SQL, QUEL) or other non-
procedural languages that can define and manipulate
data (Ahad and Yao, 1993). Besides in some cases
procedural languages are in use. Various extensions
of SQL and Quel-Ingres are reported by Dar,
Snodgrass and Su: SQL/TC, Quel*, POSTQUEL,

TQuel, Traversal Recursion, µ Calculus, α-extended
Relational Algebra, Aggregate Closure (Dar and
Agrawal, 1993; Snodgrass et all., 1993; Su and Lam
1993; Ahad and Yao, 1993).

The object-oriented concept was first introduced in
SIMULA, and made it very popular through the
language SMALLTALK. They allow richer
structural constructs and behavioural properties of
objects to be specified at the logical level
independent of their physical implementations
(Hughes, 1991; Bekke, 1992). There is a strong
trend in the research community toward extending
object-oriented languages in the direction of
databases (Dewitz, 1996). More recently several
object-oriented databases are proposed. The partial
list compiled from Mohan, Su, Yoo, Gray and
Hughes includes GEMSTONE, GEM, Iris, Ariel,
ODE, EXODUS, ALLTALK, POSTGRES,

Xprot : Object-Oriented Prototyping Model, A. N. Başoğlu

Mühendislik Bilimleri Dergisi 2000 6 (1) 57-63 58 Journal of Engineering Sciences 2000 6 (1) 57-63

PGRAPHITE, Trellis/Owl, Vbase, OQL, O2,
ONTOS, ORION, OASIS, PROBE, ENCORE,
OSAM*, SSONET, FORM (Parsaye et all., 1989;
Hughes, 1991; Gray et all., 1992; Mohan and
Kashyap 1993, Su and Lam, 1993, Yoo and Sheu,
1993).

In this paper an object-based system is introduced
which could be used for rapid program development.
System includes some pre-defined classes as Menu,
Report, View, Table, etc., and pre-defined methods
as AddNewRecord, DeleteRecord, SearchByIndex,
Filter, ReportGenerate,etc. Formal prototyping
languages with a fair degree of client orientation
have been developed: JSD, ERAE, INFOLOG, USE,
SF, PGRAPHITE, VIZLA, CQL (Hughes, 1991;
Berztiss, 1993). Major motivation behind this
project is to develop a system that will meet the
below and other requirements: (Lieberherr and
Xio,1993; Gyssens, 1994).

• Easy to write and read
• Flexible and adaptive to changes
• Rapid program development
• Power to express a variety of different

situations.

2. OBJECTS

Object is a real-world entity that includes a unique
identifier. The components of an object are attributes
and methods, where attributes describe the object
and methods represent the operations that can be
applied to an object. Class is collection objects with
same attributes and methods. Classes are
hierarchically structured based on the is_a
association. Subclasses inherit attributes and
methods from their superclasses. When a class is
permitted to have more than one superclass, we
speak of multiple inheritance. The Classes Menu,
Report, View, Table, Composite and Atomic are
introduced below, where some people may prefer
using the word metaclass instead of class (Parsaye
et all., 1989).

Table 1 shows the system pre-defined standard
classes and Table 2 presents related built-in methods
and properties.

Table 1. Standard Database Classes
Atomic Objects : Non-decomposable unit of objects
Composite
Objects

: Composition of atomic and
composite objets

Table Objects : Physical data object, composed of
columns

View Objects : A joined and/or filtered set of table
objects

Report Objects : Reporting objects
Menu Objects : Branching mechanisms

2. 1. Abstract Data Objects (ADO)

Abstract Data objects are the simplest objects where
basic data structures and their internal methods are
defined using the system primitive types (char, num,
date, ...) and user-defined data objects. Value of
these objects is volatile and they are used to model
the complex data. Each object may have some pre-
defined properties and a free vector. There are two
kinds of ADO’s. Atomic (AO), Composite(CO).

2. 2. Atomic Objects (AO)

AO is a data object with a non-decomposable data
unit and some properties. An atomic object may also
be defined referring to an existing AO where
properties may inherit from ancestor (Figure1). For
definition of an AO, a unique name as an identifier
and Type are mandatory. This hierarchy may repeat
many times.

AO Comm TYPE char LENGTH 10 ;
 PICTURE ‘’@R (###)### ####”

AO Phone TYPE Comm EXP “Phone”
AO Fax TYPE Comm EXP “Fax”
AO Shift TYPE num EXP “Working Shift” ;

 POSTACT (1 ≤ Shift .and. Shift ≤ 3)
AO Time TYPE Char LENGTH 4 ;

 PICTURE “@R ##:##” POSTACT ValidTime(x)
AO xTime TYPE Time HEAD “Start Time”
AO Pcode TYPE Char LENGTH 7 PICTURE ;

 “P!!####” EXP “Product Code” HEAD “P code ”
AO Ccode TYPE Char LENGTH 5 PICTURE “@!” ;

 EXP “Customer Code” HEAD “C code “

There are several data objects defined above.
Objects Phone and Fax are of type object Comm.
Object xTime is of type Time where also the
behavioural features inherit. Object Shift’s value is
restricted to keep between 1 and 3 by a post edit
action method.

2. 3. Composite Objects (CO)

CO is a composition of many atomic AOs or COs.
While defining an atomic or composite object,
inherited properties may be modified, dropped or
pre-defined properties may be assigned an
expression. For the terminals of object hierarchy tree
of AO and CO, Length (+Decimal) is mandatory for
objects whose type is character or numeric. This
hierarchy may repeat many times (Figure 1). Object
Process is a composition of objects sDate, Stime,
Etime, Shift. Columns which are common in
different tables may be also be defined as AO.
Objects Pcode and Ccode will be refered from many
objects.

CO Process
COMPOSITION

sDate TYPE date INITVALUE Today()
STime TYPE xTime POSTACT sVAR[Shift0] ≤ Stime ;
 .and. Stime ≤ eVAR[Shift0]

Xprot : Object-Oriented Prototyping Model, A. N. Başoğlu

Mühendislik Bilimleri Dergisi 2000 6 (1) 57-63 59 Journal of Engineering Sciences 2000 6 (1) 57-63

Etime TYPE xTime POSTACT STime ≤ Etime .and. ;
 Etime ≤ eVAR[wShift]

Shift0 TYPE Shift EXP “Current Shift “ HEAD “Shift”
METHOD

- - - -
ENDOBJECT

Property Process has four embedded AO, where
their name is not declared explicitly. One component
of Object production is STime that is defined as
member of the CO-Process. Property of Stime
inherits from object xTime that borrows those from
object Time. Reference name to any column on TO
(Table Object) will be taken from last AO name
while descending on the object hierarchy tree. TO
and CO can not hold two member objects that has
same reference name, that is, object identity.

Table 2. List of Basic Properties of AO, CO and
TO’s is Given Below

TYPE Primitive types or user-defined ADO’s
LENGTH Numerical value within appropriate ranges
DECIMAL Numerical value
PICTURE Character or code block
EXP Description. (character)
HEAD Heading in a table format display.

(character)
INITVALUE İnitial value.

Expression or code block which return a
value of type of objects’ type

PREACT Code block which is invoked before edit of
object

INACT Code block or help routine
POSTACT Code block which is invoked after edit of

object
COLOR Code block which determines its color
VECTOR A list with indefinite length keeping various

types of data
NONULL Can not be left empty
FULL For each digit of edited field, there should be

non-space value
MULTIVAL
UE

This will give a lists of possible item, among
which user may makes a selection

Additional properties as Size, style, pattern and other
specification of display may be added.

2. 4. Class Hierarchy and Inheritance

The database classes have different paths of
inheritance, that are demonstrated below (Figure 1)

class may inherit from

primitive types : p -

Atomic Object : AO p

Composite Object : CO p, AO

Physical Data Object : TO: p, AO, CO

View Object : VO TO

Report Object : RO TO, VO

Menu Object : MO TO, VO, RO

Figure 1. Class hierarchy and inheritance

In a CO, inheritance from another CO would be very
useful, but it may bear some presentation problems.
A different definition of object Process is displayed
and discussed below.

CO WorkPeriod
COMPOSITION
 STime TYPE xTime POSTACT (sVAR[Shift0] ≤ ;
 Stime .and. Stime ≤ eVAR[Shift])

 Etime TYPE xTime POSTACT (STime ≤ Etime .and.;
 Etime ≤ eVAR[Shift0])

 Shift0 TYPE Shift EXP “Current Shift “ HEAD “Shift”
METHODS

- - - -
ENDOBJECT
CO Process

COMPOSITION
sDate TYPE date INITVALUE Today()
Work TYPE WorkPeriod

METHOD
- - - -

ENDOBJECT

Object Process is composed of sDate and Work
where Work has a type of WorkPeriod. Some
naming conflicts will arise while referring to Stime,
ETime or Shift components. A way to overcome this
problem is to accept the last referred atomic object
name as the physical file field name. In this case
programmer should follow the CO tree to get the
actual reference name.

There is another way of establishing an inheritance
while defining the object ProcessRec as below.

CO ProcessRec inherit from Process
COMPOSITION

sDate TYPE date INITVALUE Today()
METHOD

- - - -
ENDOBJECT

In the former definition, methods that were defined
in the METHOD section of object WorkPeriod
would not be accessible. Only the methods and other
properties of atomic objects Stime, Etime and Shift0
will inherit. In the latter solution all objects, their
properties and methods are expected to inherit.
There may be different situations, where it may be
preferable to select one of these solutions.

2. 5. Table Class (TO): Physical Data Class

Physical Data Objects are the objects that keep
actual data of the database where instance values
will persist forever until they are edited or deleted
by end-user. TO is implemented as relations (table)
of a relational DBMS. Hierarchy of TO is not
implemented. This class is a set of data columns.
Column type, picture, pre & post edit, pre & post
Delete, pre & post insert methods may be defined.
Below is the list of three Physical Data Objects:
Product, Customer, Production. At this level the
definition of the object that resides on disk as a table
is given. The object relationship model

Xprot : Object-Oriented Prototyping Model, A. N. Başoğlu

Mühendislik Bilimleri Dergisi 2000 6 (1) 57-63 60 Journal of Engineering Sciences 2000 6 (1) 57-63

(Yourdan, 1994) is an expressive technique for
documenting object classes and their attributes and
relationship, and the model will be used to present
the sample (Figure 2).

Product
PNO
Pname
Color
Price

Production
Quantity
sDate
sTime
eTime
Shift0

Customer
CNO
Cname
Adres
CPhone
City

Figure 2. Object relationship model

TO Product
COMPOSITION

PNO TYPE Pcode KEY
Pname TYPE Char LENGTH 35
Color TYPE Char LENGTH 2 MULTIVALUE

(‘RED’,’BLUE’,’WHITE’)
Price TYPE num LENGTH 5 POSTACT (Price > 0)

RELATIONSHIP
RELATED WITH Production DEGREE MIN 1 MAX n

METHOD
- - -

ENDOBJECT

TO Customer
COMPOSITION

CNO TYPE Ccode KEY AUTOSEQ
Cname TYPE Char LENGTH 30 NODUP
Adres TYPE Char LENGTH 50
cPhone TYPE Phone1
City TYPE Char LENGTH 12

RELATIONSHIP
RELATED WITH Production DEGREE MIN 0 MAX n

ENDOBJECT
TO Production

COMPOSITION
PNO TYPE Pcode KEY ;
CNO TYPE Ccode KEY ;
Quantity TYPE num LENGTH 6 PICTURE “###,###”

POSTACT (0<Quantity) HEAD “Q”
Process COLOR if(Quantity> 0, CO_GREEN, CO_WHITE)

METHOD
preACT is KeepStatus()
postACT is SCHEDULE()

ACCESS
INDEX P1 ON Customer HEADING "..... "
INDEX P2 ON sDate,sTIME HEADING "Date,Time"

ENDOBJECT

2. 6. Relationship

There is another section, RELATIONSHIP, where it
is possible to define the relationship and the degree
between TOs. Minimum and maximum limits of the
number of relations between instances can be
declared as below. A Product may take place in
many productions, that is; there is a one-to-many
relationship between Product and Production.

If it is not defined Default relationship cardinality is
a many-to-one (n:1). For every incoming
relationship from an object an inverse relationship is
defined automatically, however it can be overwritten
by extra statements.

In the current sample there are three TOS’s such as
Product, Customer, Production. A product may be
produced for many customers as well as a customer
may require many products, that is; the relationship

between Product and Customer is many-to-many.
However this may be decomposed into two one-to-
many relationships. The relationship between
objects can be defined within body of objects.
Physical Object Production has a special method
KeepStatus() which will be invoked every time
Object Production is active and method Schedule()
will work automatically after user exits the object.

If property is defined as KEY or NODUP an
automatic index definition statement is created.

2. 7. Alternative Definition of Table Objects

It's possible to apply two different approaches to
define the object where a typical sample is given
below. A TO may be defined as a composition of
many AOs or a single CO. In case database
administrator does not wish to allow programmer to
modify the structure; a pre-defined CO is given to
programmer. Then the programmer will use this pre-
defined structure. When the structure should stay
safe, this approach seems to be preferable. A
different way is to allow programmer to define his
own structure. When there is a rush or in the initial,
tentative steps, the latter approach may be more
preferable. Object Product is defined by
ProductType object.

TO ProductType
COMPOSITION

PNO TYPE Pcode KEY
Pname TYPE Char LENGTH 35
- - -

ENDOBJECT
TO Product INHERIT FROM ProductType

RELATIONSHIP
RELATED WITH Production DEGREE MIN 1 MAX n

ENDOBJECT

2. 8. View Class (VO)

View is a set of relations (tables). If it is not defined
then the table at the lowest level in relation hierarchy
is selected as driving table. This Class inherits
properties from Tables Class (Figure 3). Basic
screen attributes & modules that may be invoked by
user are declared in this Class. Columns that inherit
from Table may be excluded. Derived columns may
be defined. Additional pre & post action of columns
may be defined. Help popup lists may be filtered.
Some of the properties of view class may be defined
by the end user at runtime. Pre & post action of view
objects may be defined. (Lee and Wiederhold 1994,
Spaccapietra and Parent, 1994)

VO ProducPROG
COMPOSITION

OBJECT Customer
OBJECT Product
OBJECT Production
EXPR Product->Price * Production->Quantity ;

 PICT “##,###,### “

Xprot : Object-Oriented Prototyping Model, A. N. Başoğlu

Mühendislik Bilimleri Dergisi 2000 6 (1) 57-63 61 Journal of Engineering Sciences 2000 6 (1) 57-63

FILTER
sDate > Today()-30

ENDOBJECT

MO Main
OPT “Production ” MESG “....” PREACT ...

POSTACT ProducPRO
OPT “Reports ” MESG “....” PREACT time() > “17:00”

POSTACT SubMe
ENDOBJECT

MO SubMenu HORIZONTAL AT 10,12 MAXLINE 5
EXP “Report 1” MESG “....” PREACT ... POSTACT Rep1
EXP “Report 2” MESG “....” PREACT ... POSTACT Rep2

ENDOBJECT

RO Rep
COMPOSITION

OBJECT ProducPROG
FILTER

sDate=Today() .and. Customer->City=“IST”
ORDER

CNO
SUMMARY

Sum of Quantity, Max of Quantity
ENDOBJECT

Figure 3. View, Report and Menu Objects definition

2. 9. Report Class (RO)

This object may inherit either from a TO or VO, but
however it does not utilize many methods of its
superclasses because change in persistent data is not
allowed. In Report object there are many methods
used for formating, filtering, ordering, aggregation
(Figure 3).

2. 10. Menu Class (MO)

Menus are list of independent programs from which
a user may make a selection. Menu objects are the
branching mechanisms that allow user to jump to
selected modules. These lists may be in different
forms. Object Menu Main is the introduction menu
of the system (Figure3). A menu object may invoke
a View, a TO or another menu object.

View Object ProducPROG is composed of objects
Customer, Product, and Production. Since the
relationship between these objects had been defined,
An automatic natural join will take place using the
access mechanisms. View object ProductPROG is
called from Main Menu object

3. METHOD DEFINITION

Methods are defined in the method section of
objects. The preACT and postACT are special pre-
edit and post-edit procedures. Methods may be
simple equations as well as procedures coded in
native language.

AO: Mainly pre-edit, post-edit, default value
methods,
CO: Interaction functions between AOs which
compose CO may be defined as well as pre-edit,
post-edit and default value methods,
TO: this is the object where basic row operations
may be defined. Key definition, duplicate check,
automatic sequence generation, pre-delete and post-
delete methods, data flows, referential Integrity
rules,
VO: Filtering rules, computed columns, additional
referential integrity rules,
RO: Computed columns, aggregate functions,
referential Integrity rules may be defined.
MO : Pre and post actions of reports may be defined.

3. 1. Demons

For each object a pre and post methods may be
defined. For AO and CO, these methods are simple
pre and post edit procedures. Pre object method is
executed before the object is active, and the post
method is initiated automatically upon leaving the
object. These demons are given as preACT and
postACT procedures in method section of objects.

3. 2. Standard Methods

The system comes up with a pre-defined method and
these methods are utilized by TOs. Some of these
methods are the built-in methods of Clipper Classes
and the rest is built by the programmer. It should be
assumed that every TO do inherit methods from
block CORE_METHOD. This block is part of
initial source template. Even it's dropped a copy of
these methods that is embedded in system code will
be in use. However it's possible to overwrite or use
them in different ways.

OBJECT CORE_METHOD
KEY F9 INVOKES SearchByIndex TITLE “Arama”
KEY alt-R INVOKES ReportGenerate TITLE “Raporlama”
DELETE RESTRICTED IF CHILD EXISTS

ENDOBJECT
There are some extra pre-defined methods. Methods may be used to define
some behavioral properties of objects.

KEY PREACT isempty(...)
POSTACT Dupcheck(...)

AUTOSEQ INITVALUE AutoSEQ(...)
NODUP POSTACT DupCheck(...)
NONULL POSACT not isempty(...)
FULL POSACT not isempty(atrim(..))
NOEDIT PREACT false
MULTIVALUE <...> PREACT Select(<...>)

POSTACT isWithin (<...>)

3. 3. Standard pre-edit, pre-delete and post-
delete methods

While editing a foreign key, in most cases the value
should be in the set of parent tables' key. This is the

Xprot : Object-Oriented Prototyping Model, A. N. Başoğlu

Mühendislik Bilimleri Dergisi 2000 6 (1) 57-63 62 Journal of Engineering Sciences 2000 6 (1) 57-63

standard existence check act as a pre-edits method.
In addition as a standard, a pop-list of available
values is listed to select among them.

While attempting to delete row that is parent, related
with its child tuples there may be different standard
strategies (Table 3). However these methods may be
overwritten.

Table 3. Delete strategies and related commands.
COMMAND / Strategy
DELETE RESTRICTED
Do not delete, which is rarely applied.
DELETE RESTRICTED IF CHILD EXISTS
Do not allow delete if child exists
DELETE INVOKES DELETECHILDREN
Delete all children (complete subtree)
Delete Propagation
DELETE INVOKES NULLIFY
Nullify the foreign key in the children objects.

3. 4. Method Inheritance and Overwrite

If it is not defined again, the methods inherit from
ancestors. Even it is not meaningful it is possible to
relate same method to two or more keys (buttons).
However if at lower level a different method were
assigned to same buttons, the latter would be
dominating. In VO, collision of methods due to
multiple inheritance is possible. In case of a
collision, the selection would be arbitrarily, if it
were not redefined. However the preACT and
postACT methods will work additive; accumulating
the methods that should be applied.

4. APPLICATION

DICTPRO is dictionary-based expert system that
aids designer to input the basic specifications.
Depending on these specifications a module called
EXEC_HOT simulates many properties of the
program that will be coded (in progress). After some
refinements, another module of the system may
generate the source code that could be modified by
programmer. The source should be compiled and
linked with other modules twice.

• First, to evaluate the schema and create physical
files and access mechanisms.

• Second, to arrive at the executable module.
Link list should include kernel of the
database, other objects and user-defined
functions.

4. 1. Architecture

The System includes many facilities to implement
the model. The list of main modules is given below.

• Class dictionary
• Object dictionary and definition
• Source code generation
• Editing Source code
• Schema generation. Physical file creation and

modification. Access mechanism definition.
• Edit data
• Maintain access mechanisms

4. 2. Authorization, Recovery, Multi-user
Environment

Given the TO and VO the system will add the built-
in authorization module. Using this module
administrator will be able to arrange the grants, and
then the system will automatically apply the
restrictions. For each user, his rights for each TO,
VO and MO and also the buttons may be defined.
The system allows creating journal files of the
selected tables that keep track of every operation.
When a file is destroyed, it is possible to recover the
modifications starting from the last back-up. In
multi-user environment, tables that face a storage
operation (insert, update, and delete) are locked
automatically.

4. 3. Implementation

The system is constructed by CA-Clipper DBMS. Its
built-in functions, its native classes and commands
translation directives and CA-Clipper Tools are
utilized. Below is a typical command translation
application.

#command DISPLAY <li1>[,<lin>][<p:LASTPAGE>] ;
 FROM <fi> ;

[CONNECTION <cn>] [FILTER <tfi>] ;
[AT <c1>[,<c2>[,<c3>]]] [<b:BOX>] ;

 [HEADING <he>] ;
 DISP_SUBSET({||QQout(<li1>[,<lin>])},

<"fi">,<"cn">,<"tfi"><.p.>,<.b.>,<c1>,<c2>,<c3>,<he
>)

5. CONCLUSION
Numerous object-oriented systems have been
designed and implemented over the past few years.
Current research objective was to create a system
that would be easily used for developing immediate
applications. This objective was fulfilled in a great
percentage. zPROT, an un-matured version without
objects and command language, has been used in
many applications and it had proved its efficiency.
Still it needs many enhancements and extensions. A
matrix type of report generation, a rule-base method
definition and a graphical modeling interface
extension is feasible and may improve the overall
prototyping activity (Başoğlu, 1993, 1996). Internal
algorithms may need revisions to optimize the
speed.

Xprot : Object-Oriented Prototyping Model, A. N. Başoğlu

Mühendislik Bilimleri Dergisi 2000 6 (1) 57-63 63 Journal of Engineering Sciences 2000 6 (1) 57-63

6. ACKNOWLEDGMENT

Special thanks to Bekir Kara for his innovative
approach and cooperative work while developing the
zPROT system engine and testing on various
applications.

7. REFERENCES
Ahad, R., Yao, B. 1993. RQL : A Recursive Query
Language, IEEE Transactions on Knowledge and
Data Engineering, 5 (3), 451-461.

Başoğlu, N. 1993. "İstatistik Veri Tabanları için Bir
Sorgulama Sistemi", Araştırma Sempozyumu,
DIE, Ankara, Kasım, 1993.

Başoğlu, N. 1996. "Bir Kural Tabanlı Nesne
Yönelimli Üretim Çizelgeleme Sistemi Tasarımı",
1. Zeki İmalat Sistemleri Sempozyumu, Sakarya
Üniversitesi, Sapanca, Mayıs, 1996.

Bekke, J. H. 1992. Semantic Data Modeling,
Trowbridge,Prentice Hall.

Berztiss, A. 1993. The Query Language Vizla, IEEE
Transactions on Knowledge and Data Engineering,
5 (5), 813-825.

Dar, S., Agrawal, R. 1993. Extending SQL with
Generalized Transitive Closure, IEEE Transactions
on Knowledge and Data Engineering, 5 (5),
799-812.

Date, C.J. 1990. An Introduction to Database
Systems, 5th ed., Addison-Wesley, Reading, MA.

Dewitz, S. D. 1996. System Analysis and Design
And the Transition to Objects, McGraw-Hill.

Gray, P. M. D., Kulkarni, K. G., Paton, N. W. 1992.
Object-Oriented Databases A Semantic Data Model
Approach, Trowbridge, Prentice Hall.

Gyssens, M., Parenaens, J., Bussche, J. V., Gucht,
D. V. 1994. A Graph-Oriented Object Database
Model, IEEE Transactions on Knowledge and Data
Engineering. (6), 572.

Hughes, J. 1991. Object Oriented Databases,
Cambridge, Prentice Hall.

Lee, B. S., Wiederhold, G. 1994. Outer Joins and
Filters for Instantiating Object from Relational
Databases Through Views, IEEE Transactions on
Knowledge and Data Engineering. (6), 108.

Lieberherr, K., Xio, C. 1993. Formal Foundations
for Object-Oriented Data Modeling, IEEE
Transactions on Knowledge and Data Engineering, 5
(3), 462-478.

Mohan, L., Kashyap, R.L. 1993. A Visual Query
Language For Graphical Interaction With Schema-
Intensive Databases, IEEE Transactions on
Knowledge and Data Engineering, 5 (5), 843-858.

Parsaye, K., Chignell, M., Khoshafian, S., Wong, H.
1989. Inteligent Databases, Objet-Oriented,
Deductive, Hypermedia Technologies, Wiley.

Snodgrass, R.T., Gomez, S., Edwin M. L. 1993.
Aggregates in the Temporary Query Language
Tquel, IEEE Transactions on Knowledge and Data
Engineering, 5 (5), 826-842.

Spaccapietra, S., Parent, C. 1994. View Integration :
A Step Forward in Solving Structural Conflicts,
IEEE Transactions on Knowledge and Data
Engineering. (6), 258.

Su, S.Y.W., Lam, H. 1993. Association Algebra: A
Methematical Foundation for Object-Oriented
Databases, IEEE Transactions on Knowledge and
Data Engineering, 5 (5), pp.775-798.

Ullman, J. D. 1988. Principles of Database and
Knowledge-Base Systems, Compuer Science Press.

Yoo, S. B., Sheu, P. C. Y. 1993. Evaluation and
Optimization of Query Programs in an Object-
Oriented and Symbolic Information System, IEEE
Transactions on Knowledge and Data Engineering,
5 (3), 479-495.

Yourdan, E. 1994. Object-Oriented Systems Design:
An Integrated Approach,Yourdan Press/Prentice-
Hall. 69.

