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ABSTRACT

Buckling of a column with temperature dependent material properties is investigated. Euler-Bernoulli theory of
thin beams is used to derive the element matrices by means of the minimum potential energy principle.
Temperature dependency of material properties is taken into account in the formulation. The column is divided
into finite elements with the axial degrees of freedom defined at the outer fiber of the column. Column elements
have simpler derivations and compact element matrices than those of classica beam-bending element. Some
illustrative examples are presented to show the convergence of numerical results obtained by the use of new
elements. The results are compared with those of the classical beam-bending element and analytical solution.
The new element converges to the analytical results as powerful as the classical beam-bending element. The
temperature effects on the buckling loads of the column with temperature dependent material properties are also
examined.
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MALZEME OZELLIKLERI SICAKLIGA BAGLI BIR KOLONUN BURKULMASI

OZET

Malzeme 6zellikleri sicakliga bagli bir kolonun burkulmasi arastirilmaktadir. ince kirisler icin Euler-Bernoulli
teorisi, minimum potansiyel enerji prensibi vasitaslyla eleman matriderini ¢ikarmak icin kullaniimaktadir.
Formiilasyonda malzeme 6zelliklerinin sicakliga bagimliligi hesaba katilmaktadir. Kolon, kolonun en dig lifinde
tarif edilen eksenel yonde serbestlik derecesine sahip sonlu elemanlara bdltinmektedir. Kolon elemanlari, klasik
kiris egilme elemanindan daha basit olarak ¢ikariimaktadir ve daha kiiclk eleman matrislerine sahiptir. Yeni
elemanlar kullanarak elde edilen sayisal sonuglarin yakinsamasini gostermek icin bazi érnekler sunulmaktadir.
Sonuglar hem klasik sonlu eleman hem de kesin sonuclarla karsilastirilmaktadir. Yeni eleman, analitik sonuclara
klasik Kkiris egilme elemani kadar guclu bir sekilde yakinsamaktadir. Yine mazeme 6zellikleri sicakliga bagl
olan bir kolonun burkulma yuklerine sicaklik etkileri arastiriimaktadir.

Anahtar Kelimeler : Burkulma, Kolon, Sonlu eleman yoéntemi, Kararlilik

1. INTRODUCTION Johnston, 1984). Coulter and Miller (1986) analyzed

the free vibrations and buckling of eastic Euler-

A column is one of the basic structural elements. Bernoulli beams subjected to non-uniform axial
Euler gave anaytical solutions for the column forces by the use of various types of beam finite
buckling first, and since then many researchers have elements. Ali and Sridharan (1988) developed a
focused their attention on the concepts of buckling new formulation to study the interactive buckling of
and stability of the columns. Finite element method thin-walled columns having arbitrary cross-sections.
is one of the most common methods in the numerical Sakiyama (1986) studied the elastic buckling of
buckling analysis of structures (Weaver and tapered columns numerically. Recently, Goda et al.
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(1992) developed afinite element code to investigate
the dynamic lateral buckling of thin walled T-shaped
beam subjected to impulsive load. Vaziri and Xie
(1992) proposed a new numerical model for
analyzing the buckling of columns with variably
distributed axia loads. More recently, Helwig and
Yura (1999) investigated torsional buckling of
column. Wu (1998), Smithpardo and
Aristizabalochoa (1999) studied postbuckling
behavior of column.

In the present paper new finite elements for the
column buckling are introduced with the axial
degrees of freedom (DOF). Euler-Bernoulli theory
of thin beams is used to derive the element matrices
by means of the minimum potentia energy
principle. Temperature dependency of the column
material is taken into account in the derivation. The
elements are tested by the buckling analysis of
columns with different boundary conditions, and
results are compared with those of the classical
beam-bending element and analytical solution. The
temperature effects on the stability characteristics of
the column are also examined considering the
temperature dependency of the material properties of
the column.

2. GOVERNING EQUATIONS AND
CONCEPT FOR THE NEW
ELEMENTS

Consider a perfectly straight elastic column with
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where E is the Young modulus, which is aso a
function of temperature. Since the temperature has a
variation along the column axis (no variation over
the cross-section), the Young modulus and the

where A and | are the cross-sectiona area and the
moment of inertia of the column about centroidal
axis, respectively. The thermal load terms in Eq. (4)

temperature dependent material properties (See
Figure 1). The column is subjected to an end axial
force P that is applied aong its centroidal axis and a
temperature load T that has a variation along the
centroidal axis. The strain-displacement equation of
the column can be written as
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Figure 1. Elastic column subjected to buckling load
2 2
axzﬁ—zd—wﬁ—l(d—WJ —aTl (l)

where u and w are displacements along the x and w
axis;, o is the therma expansion coefficient
depending on temperature; and T is the temperature.
Strain energy of a linear elastic column can be
written as

U =%Iszde 2
\%

Then, substituting Eq. (1) into (2) we obtain,

©)

thermal expansion coefficient of the column material
will depend on only the coordinate x. Performing the
integration over the cross-section of the column and
disregarding the fourth order term, we obtain

2 2 N2 2 2
du dew du ( dw du dw
EA[&] +El{dx_2} +EA&[K) +H‘2PT&‘PT[KJ ]dx )

can be obtained performing the integration over the
cross-sectional area of the column as,
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©)

Fr= IEaZTsz TN A J EoTdA = EAaT
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The potential energy of the axial load P and tota
potential energy of the column becomes

du
Q= Pj‘&dx (6)
0
N=U+Q @)

Now, we can investigate the buckling of the column
from the undeflected configuration as

u—ug+up

(8)

W — Wqg +Wq

where uy and wp denote the undeflected
configuration; u; and w; are infinitesimally small
increments.  Minimization of the total potential
energy needs the first variation of the total potential
energy be zero. Taking into account the column is
initialy straight (i. e. wp = 0), the first variations
becomes

811 = ﬂ duodul +(P- PT)dul x=0  (9)

Axial displacement of the undeflected column is
obtained from Eq. (9) as

(P=Pr)

Upg =- EA

(10)

Using Eq. (10) the second variation of the total
potential energy of the column is obtained as follows

ouflofse) ol 2w

0

For inextensional buckling, the second variation
becomes

2
2
g S| dwi dx
dX2 dx

The material propertiesin Eq. (12) are dependent on
temperature, and their dependency largely changes
with increasing temperature. The influence of
temperature-dependent material properties on the
thermomechanical behavior at elevated temperature
and/or high gradient temperature is quite significant.

(12)

In this study, it is assumed that the material
properties of the column have linear variation with
the temperature as follows,
E(T)=Eg+E;Tand at(T)=

ag+oagT (13)

By the use of the rotation defined as ¢(x)=dw,/dx in
Eq. (12), we obtain,

(14

From Eq. (14) we see that the second variation of the
total potential energy depends on only the rotation.
The rotation causes the displacements at any
distance from the neutral axis and they vary linearly
with the distance from the neutral axis. By the use of
this approximation of the thin beam theory, we may
introduce a column element with the axial degrees of
freedom (DOF) defined at the outer fiber of the
column. The new element has the simpler
formulation and more compact element matrices
than those of the classical beam-bending element. It
has a little difficulty to apply the boundary
conditions.

3. COLUMN-BUCKLING ELEMENTS

The geometry of the elements used is shown in
Figure 2. The column is assumed to sustain only
axial and flexural deformation; shear deformation is
disregarded. The bending strains and displacement
field due to the flexural behavior is given as follows:
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Figure 2. Geometry of the elements with (a) 2-DOF
and (b) 3-DOF
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do _1du

dx  hodx (16)
where ©(x) isthe axia displacement of the fiber at
Z = h. Substituting Egs. (15) and (16) into Eq. (14),
the second variation of the total potential energy
becomes,
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on- (185 oo

(17)

Now, some column elements may be defined by
considering the axial degrees of freedom on the
outer fiber. The displacement field in a column
element can be approximated by the use of

interpolation  functions and unknown nodal
displacements, so that
T8(x) = (18)
N = l-ix+ix2 4 x-ix2 ix+—x2

Le &2 Le Le2 Le Le

The column is discretized by finite elements and the
displacement field given by Eq. (18) is used for the
elements. Then, the total potential energy of the

(%) (e
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e
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The first term given in the corner bracket is the
element stiffness matrix, k, and the second one is the
element geometric matrix, g. The temperature field
within an element can be written in terms of nodal

temperatures, TS and T3, asfollows

e e

T5,-T
Te(x):Tle+—2 1y
Le

(22)
Then, the variation of the Young modulus and
thermal expansion coefficient within the element can
be written for an element as
E®(x)=Eq + E1T®(x) (23)
Substituting Egs. (22) and (23) into Eq. (21), the
stiffness and geometric matrices of the 2-DOF
element can be expressed as,

1 TS 217 T§ [
Eg+Eq| —Lt+—2+-2||-8 16 -8 g=
2| 0 Ts T3 T
3Léh® 1 -8 7

a" =[x a2 a3l
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4 2 -1
Le
2 16 2
&2
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where N and g denotes the interpolation function
matrix and noda displacement vector of the
elements. Now, two kinds of column elements are
introduced: the elements with two nodes and three
nodes. The interpolation function matrices and the
nodal displacements vectors are obtained for the
element with two nodes and for the element with
three nodes as follows:

q" =l az]" (19)

(20)

column can be obtained by simply summing the
potential energy of the elements as follows:

q (21)

e
|(:I

~ (24)
2
he

e -e
e
L& dx dx

Performing the integration, the element tiffness
matrix can be obtained as

E e T1'5+T2e 1 -1
N
2| 0Tl e

The geometrical matrix of the column element with
2-DOF can be written as

B L (2 1
g_GheZ 12

For the element with 3-DOF, the stiffness and
geometric matrices are obtained by the use of the
interpolation functions given by Eqg. (20), asfollows

EQ+ El[Tle +

e

k= (25)

L®h®

(26)

(27)
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[K-PGJQ=0 (28)

where K is global stiffness matrix; and G is global
geometric matrix; Q is the global displacements of
the column.

Various boundary conditions for the column are
considered: (i) acolumn clamped at one end and free
at the other, (i) a column with simply supported at
both ends, and (iii) a column clamped at both ends.
Boundary conditions for the element with 2-DOF
can be approximated by the use of Eq. (18). The
rotation is zero for a clamped edge. If the column is
clamped at x = O, the boundary condition can be
expressed in the local degrees of freedom
considering Eg. (15), so that

0@ =0 (29)

It is obvious that g, becomes zero if the column is
clamped at x=L. Since bending moment is zero for a
simply supported edge, the derivative of rotation
with respect to x becomes zero at that edge. For
example, the simply supported end conditions can be
approximated by

du dN

Substituting the interpolation functions Eq. (19) into
Eqg. (30), the conditions that will be imposed on the
matrix equation can be written in the local degrees
freedom as

a1 =Q: (3D

The boundary conditions for the element with
3-DOF are derived as explained in detail above. For
a clamped end Eq. (29) is valid again (gz = 0 if the
column is clamped at x = L). For asimply supported
end, the condition will be

. 4 1
either =—qgy,-=0qg OF
a1 3Q2 3Q3

4, 1
a3 = 3CI2 3(11 (32

according to the location of the support being at left
or at right.

4. NUMERICAL STUDIES

The columns with different end conditions are
discretized by the use of new elements. And then the
stability characteristics of the columns are obtained
numerically. The results are compared with those of

the classica beam bending element
(i. e. displacement and rotation degrees of freedom
are considered at each node) and the exact solutions.
Exact value of the buckling load of a prismatic beam
(Brush and Almroth, 1975) are given by

Py =P (3

where p is the instability coefficient for prismatic
beams with various boundary conditions. The
temperature effects are not considered in the
comparison studies.

It is observed that convergence is sow for the
columns with the simply supported ends when the
column is discretized by the new elements with
equal length. The undesired result is due to
weakness in the approximation to the boundary
conditions by the use of elements with equal length.
If the elements used at the boundary are chosen
smaller than those of the interior, a better
convergence can be obtained. The variation of the
relative error with length ratio of elements (interior
element length to boundary element length) is shown
in Figure 3 and 4 for five and ten elements models of
the column, respectively. The variations show that
the relative error decreases as the length ratio
increases. Therefore, the element length ratio 25 is
selected for a better convergence in the calculations
of a column with simply supported boundary
conditions. For a clamped-clamped boundary
condition, the lowest eigenvalue gives the trivial
solution and isignored in the calculations.

8

Figure 3. Improvement of convergence for 2-DOF
model

Figure 4. Improvement of convergence for 3-DOF
model
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The results of the convergence studies are shown in
Tables 1-3 for the new elements and classica
element. The results obtained by the use of the new
elements, especialy for the clamped cases, are in
good agreement with the classical element.

Table 1. Convergence and Comparison of the
Instability Coefficients p (For a Clamped-Free

Column, Exact Vaueof p is2.467)

Number of Present Present Classical
Element (2 DOF) (3DOF) Element
1 3000 (1)° | 2486 (2 2486 (2)
2 2597 (2) | 2469 (4) 2469 (4)
3 2524 (3) 2.468 (6) 2.468 (6)
4 2499 (4) 2.468 (8) 2.468 (8)
5 2488 (5) | 2.467(10) 2.467 (10)
10 2.472 (10) 2.467 (20) 2.467 (20)

* . Numbersin the parenthesis show the total number of DOF

Table 2. Convergence and Comparison of the
Instability Coefficients g (For a Simply Supported -
Simply Supported Column, Exact Value of g is

9.870)
Number Present Present Classica
of element (2 DOF) (3DOF) Element
3 12.497 (2)* | 10.207 (5) 9.885 (6)
4 12.245 (3) 10.058 (7) 9.875 (8)
5 11.030 (4) 9.969 (9) 9.872 (10)
6 10.571 (5) 9.939 (11) 9.871(12)
10 10.094 (9) 9.902 (19) 9.870 (20)

* : Umbersin the parenthesis show the total number of DOF

Table 3. Convergence and Comparison of the
Instability Coefficients p (For a Clamped-Clamped

Column, Exact Vaueof p is39.478)

Number Present Present Classica

of element (2 DOF) (3DOF) Element
3 54.000 (2)* | 40.343 (5) 40.343 (4)
4 48.000 (3) 39.775 (7) 39.775 (6)
5 44.888 (4) 39.605 (9) 39.605 (8)
6 43.200 (5) 39.541 (11) 39.541 (10)
7 42.193 (6) 39.513 (13) 39.513 (12)
10 40.794 (9) 39.487 (19) 39.487 (18)

* - Numbers in the parenthesis show the total number of DOF

In the classicd eement shape functions
corresponding to rotation degrees of freedom are
quadratic. The new element with 3-DOF uses
quadratic shape functions for axial degrees of
freedom defined at the outer fiber of the beam,
yielding quadratic variation of the rotation along the
beam. Since boundary conditions for clamped-free
and clamped-clamped cases are satisfied exactly by
the use of the new elements, the results of classica
element and the new element with 3-DOF would be
similar for those cases as given in Tables 1 and 3.
However, there is some difference for simply
supported case due to the approximate satisfaction of
boundary condition. As expected, the use of higher
order elements in discretization gives better
accuracy.

Influence of the temperature dependency of the
material properties is studied on the buckling of the
beam with the following parameters:

Eo=20121186  N/em? E; = -5981 Nfen? °C, (34)

Three different temperature loadings have been
considered:

(i) T(x) =100 °C (constant temperature along the
column)

. x] o . i (35)
@i T = [400-300& C, (linear variation)

. X X 2 o .
(iii) T(x) = {400 - 600r + 300&) } C, (quadratic
variation)

Buckling load depending on temperature loading
will be

ET)! . E0l
_L2 or Per (M =BT 2 (36)

Per (T) =B
The calculations are carried out for a beam with
clamped-free ends. Results obtained by using of
beam elements with 2-DOF are shown in Table 4.
The buckling loads are lowered considerably by the
thermal effect.

Table 4. The Instability Coefficients p
Without/With Temperature Loading

Number of B(T=0) | BT () | pg ()| B (iii)
element
1 3.000 2911 2.777 2777
2 2.597 2.519 2.362 2.391
3 2.524 2.449 2.292 2.325
4 2.499 2.425 2.269 2.303
5 2.488 2414 | 2.258 2.293
10 2.472 2.399 2.243 2.279

5. CONCLUSIONS

New finite elements with axial degrees of freedom
are proposed for the buckling analysis of columns
with temperature dependent material properties.
Euler-Bernoulli theory of thin beams is used to
derive the element matrices by means of the
minimum  potentiadl  energy  principle.  The
temperature effects are also examined on the column
buckling, and temperature dependency of material
properties is taken into account in the formulation.
The new column elements have simple derivations
and compact element matrices than the classical
beam-bending element. The boundary condition for
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a simply supported edge is satisfied approximately.
Various end conditions of columns are considered in
the examples. The results are compared with both
the classical and exact ones. The new element is as
powerful as the classica one, yet it has more
compact matrices.

The temperature effects on the buckling loads of the
column with temperature dependent material
properties are studied by the use of new element.
The temperature loads affects the elastic modulus of
column. The buckling loads are lowered by the
thermal effect.
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