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ABSTRACT

Buckling of a column with temperature dependent material properties is investigated. Euler-Bernoulli theory of
thin beams is used to derive the element matrices by means of the minimum potential energy principle.
Temperature dependency of material properties is taken into account in the formulation. The column is divided
into finite elements with the axial degrees of freedom defined at the outer fiber of the column. Column elements
have simpler derivations and compact element matrices than those of classical beam-bending element. Some
illustrative examples are presented to show the convergence of numerical results obtained by the use of new
elements. The results are compared with those of the classical beam-bending element and analytical solution.
The new element converges to the analytical results as powerful as the classical beam-bending element. The
temperature effects on the buckling loads of the column with temperature dependent material properties are also
examined.
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MALZEME ÖZELLİKLERİ SICAKLIĞA BAĞLI BİR KOLONUN BURKULMASI

ÖZET

Malzeme özellikleri sıcaklığa bağlı bir kolonun burkulması araştırılmaktadır. İnce kirişler için  Euler-Bernoulli
teorisi, minimum potansiyel enerji prensibi vasıtasıyla eleman matrislerini çıkarmak için kullanılmaktadır.
Formülasyonda malzeme özelliklerinin sıcaklığa bağımlılığı hesaba katılmaktadır. Kolon, kolonun en dış lifinde
tarif edilen eksenel yönde serbestlik derecesine sahip sonlu elemanlara bölünmektedir. Kolon elemanları, klasik
kiriş eğilme elemanından daha basit olarak çıkarılmaktadır ve daha küçük eleman matrislerine sahiptir. Yeni
elemanlar kullanarak elde edilen sayısal sonuçların yakınsamasını göstermek için bazı örnekler sunulmaktadır.
Sonuçlar hem klasik sonlu eleman hem de kesin sonuçlarla karşılaştırılmaktadır. Yeni eleman, analitik sonuçlara
klasik kiriş eğilme elemanı kadar güçlü bir şekilde yakınsamaktadır. Yine malzeme özellikleri sıcaklığa bağlı
olan bir kolonun burkulma yüklerine sıcaklık etkileri araştırılmaktadır.

Anahtar Kelimeler : Burkulma, Kolon, Sonlu eleman yöntemi, Kararlılık

1. INTRODUCTION

A column is one of the basic structural elements.
Euler gave analytical solutions for the column
buckling first, and since then many researchers have
focused their attention on the concepts of buckling
and stability of the columns. Finite element method
is one of the most common methods in the numerical
buckling analysis of structures (Weaver and

Johnston, 1984). Coulter and Miller (1986) analyzed
the free vibrations and buckling of elastic Euler-
Bernoulli beams subjected to non-uniform axial
forces by the use of various types of beam finite
elements. Ali and Sridharan  (1988) developed a
new formulation to study the interactive buckling of
thin-walled columns having arbitrary cross-sections.
Sakiyama (1986) studied the elastic buckling of
tapered columns numerically. Recently, Goda et all.
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(1992) developed a finite element code to investigate
the dynamic lateral buckling of thin walled T-shaped
beam subjected to impulsive load. Vaziri and Xie
(1992) proposed a new numerical model for
analyzing the buckling of columns with variably
distributed axial loads.  More recently, Helwig and
Yura (1999) investigated torsional buckling of
column. Wu (1998), Smithpardo and
Aristizabalochoa (1999) studied postbuckling
behavior of column.

In the present paper new finite elements for the
column buckling are introduced with the axial
degrees of freedom (DOF). Euler-Bernoulli theory
of thin beams is used to derive the element matrices
by means of the minimum potential energy
principle. Temperature dependency of the column
material is taken into account in the derivation. The
elements are tested by the buckling analysis of
columns with different boundary conditions, and
results are compared with those of the classical
beam-bending element and analytical solution. The
temperature effects on the stability characteristics of
the column are also examined considering the
temperature dependency of the material properties of
the column.

2. GOVERNING EQUATIONS AND
CONCEPT FOR THE NEW

ELEMENTS

Consider   a   perfectly  straight  elastic  column with

temperature dependent material properties (See
Figure 1). The column is subjected to an end axial
force P that is applied along its centroidal axis and a
temperature load T that has a variation along the
centroidal axis. The strain-displacement equation of
the column can be written as

L
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x
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T(x)

Figure 1. Elastic column subjected to buckling load
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where u and w are displacements along the x and w
axis; α is the thermal expansion coefficient
depending on temperature; and T is the temperature.
Strain energy of a linear elastic column can be
written as
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Then, substituting Eq. (1) into (2) we obtain,
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where E is the Young modulus, which is also a
function of temperature. Since the temperature has a
variation along the column axis (no variation over
the cross-section), the Young modulus and the

thermal expansion coefficient of the column material
will depend on only the coordinate x. Performing the
integration over the cross-section of the column and
disregarding the fourth order term, we obtain

dx
dx
dwP

dx
du2PF

dx
dw

dx
duEA

dx

wdEI
dx
duEA

2
1U

l

2

TTT

22

2

22

∫






















−−+






+













+







=                                                                (4)

where A and I are the cross-sectional area and the
moment of inertia of the column about centroidal
axis, respectively. The thermal load terms in Eq. (4)

can be obtained performing the integration over the
cross-sectional area of the column as,
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The potential energy of the axial load P and total
potential energy of the column becomes
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Ω+=Π U                                                                  (7)

Now, we can investigate the buckling of the column
from the undeflected configuration as
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where u0 and w0 denote the undeflected
configuration; u1 and w1 are infinitesimally small
increments.  Minimization of the total potential
energy needs the first variation of the total potential
energy be zero. Taking into account the column is
initially straight (i. e. w0 = 0), the first variations
becomes
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Axial displacement of the undeflected column is
obtained from Eq. (9) as
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Using Eq. (10) the second variation of the total
potential energy of the column is obtained as follows
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For inextensional buckling, the second variation
becomes
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The material properties in Eq. (12) are dependent on
temperature, and their dependency largely changes
with increasing temperature. The influence of
temperature-dependent material properties on the
thermomechanical behavior at elevated temperature
and/or high gradient temperature is quite significant.

In this study, it is assumed that the material
properties of the column have linear variation with
the temperature as follows,

TE+E=E(T) 10 and  T+=(T) 10T ααα                     (13)

By the use of the rotation defined as ( ) dxdwx 1=φ  in
Eq. (12), we obtain,
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From Eq. (14) we see that the second variation of the
total potential energy depends on only the rotation.
The rotation causes the displacements at any
distance from the neutral axis and they vary linearly
with the distance from the neutral axis. By the use of
this approximation of the thin beam theory, we may
introduce a column element with the axial degrees of
freedom (DOF) defined at the outer fiber of the
column. The new element has the simpler
formulation and more compact element matrices
than those of the classical beam-bending element. It
has a little difficulty to apply the boundary
conditions.

3. COLUMN-BUCKLING ELEMENTS

The geometry of the elements used is shown in
Figure 2. The column is assumed to sustain only
axial and flexural deformation; shear deformation is
disregarded. The bending strains and displacement
field due to the flexural behavior is given as follows:
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Figure 2. Geometry of the elements with (a) 2-DOF
and (b) 3-DOF
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where ( )xu  is the axial displacement of the fiber at
z = h. Substituting Eqs. (15) and (16) into Eq. (14),
the second variation of the total potential energy
becomes,
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Now, some column elements may be defined by
considering the axial degrees of freedom on the
outer fiber. The displacement field in a column
element can be approximated by the use of
interpolation functions and unknown nodal
displacements, so that

N.q(x)u e =                                                              (18)

where N and q denotes the interpolation function
matrix and nodal displacement vector of the
elements. Now,  two  kinds  of column elements are
introduced: the  elements with two nodes and three
nodes. The interpolation function matrices and the
nodal displacements vectors are obtained for the
element with two nodes and for the element with
three nodes as follows:
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The column is discretized by finite elements and the
displacement field given by Eq. (18) is used for the
elements. Then, the total potential energy of the

column can be obtained by simply summing the
potential energy of the elements as follows:
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The first term given in the corner bracket is the
element stiffness matrix, k, and the second one is the
element geometric matrix, g. The temperature field
within an element can be written in terms of nodal
temperatures, e

2
e
1 T and T , as follows
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Then, the variation of the Young modulus and
thermal expansion coefficient within the element can
be written for an element as
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Substituting Eqs. (22) and (23) into Eq. (21), the
stiffness and geometric matrices of the 2-DOF
element can be expressed as,
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Performing the integration, the element stiffness
matrix can be obtained as
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The geometrical matrix of the column element with
2-DOF can be written as
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For the element with 3-DOF, the stiffness and
geometric matrices are obtained by the use of the
interpolation functions given by Eq. (20), as follows
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[ ] 0QPGK =−                                                  (28)

where K is global stiffness matrix; and G is global
geometric matrix; Q is the global displacements of
the column.

Various boundary conditions for the column are
considered: (i) a column clamped at one end and free
at the other, (ii) a column with simply supported at
both ends, and (iii) a column clamped at both ends.
Boundary conditions for the element with 2-DOF
can be approximated by the use of Eq. (18). The
rotation is zero for a clamped edge. If the column is
clamped at x = 0, the boundary condition can be
expressed in the local degrees of freedom
considering Eq. (15), so that

0q1 =                                                                      (29)

It is obvious that q2 becomes zero if the column is
clamped at x=L. Since bending moment is zero for a
simply supported edge, the derivative of rotation
with respect to x becomes zero at that edge. For
example, the simply supported end conditions can be
approximated by

0q
dx
dN
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ud

==                                                  (30)

Substituting the interpolation functions Eq. (19) into
Eq. (30), the conditions that will be imposed on the
matrix equation can be written in the local degrees
freedom as

21 q=q                                                                  (31)

The boundary conditions for the element with
3-DOF are derived as explained in detail above. For
a clamped end Eq. (29) is valid again (q3 = 0 if the
column is clamped at x = L). For a simply supported
end, the condition will be

either  321 q
3
1q

3
4=q −  or

123 q
3
1q

3
4=q −                                                      (32)

according to the location of the support being at left
or at right.

4. NUMERICAL STUDIES

The columns with different end conditions are
discretized by the use of new elements. And then the
stability characteristics of the columns are obtained
numerically. The results are compared with those of

the classical beam bending element
(i. e. displacement and rotation degrees of freedom
are considered at each node) and the exact solutions.
Exact value of the buckling load of a prismatic beam
(Brush and Almroth, 1975) are given by

2cr
L

EIβ=P                                                               (33)

where β  is the instability coefficient for prismatic
beams with various boundary conditions. The
temperature effects are not considered in the
comparison studies.

It is observed that convergence is slow for the
columns with the simply supported ends when the
column is discretized by the new elements with
equal length. The undesired result is due to
weakness in the approximation to the boundary
conditions by the use of elements with equal length.
If the elements used at the boundary are chosen
smaller than those of the interior, a better
convergence can be obtained. The variation of the
relative error with length ratio of elements (interior
element length to boundary element length) is shown
in Figure 3 and 4 for five and ten elements models of
the column, respectively. The variations show that
the relative error decreases as the length ratio
increases. Therefore, the element length ratio 25 is
selected for a better convergence in the calculations
of a column with simply supported boundary
conditions. For a clamped-clamped boundary
condition, the lowest eigenvalue gives the trivial
solution and is ignored in the calculations.

0

10

20

30

40

50

60

70

0 10 20 30 40 50
 LI / LB 

R
el

at
iv

e 
Er

ro
r (

%
)

n=10
n=5

Figure 3. Improvement of  convergence for 2-DOF
model

0

5

10

15

20

0 10 20 30 40 50
 LI  /  LB 

R
el

at
iv

e 
Er

ro
r (

%
)

n=10
n=5

Figure 4. Improvement of convergence for 3-DOF
model



Buckling of  A Column With Temperature Dependent Material Properties, Ö.  Soykasap

Mühendislik Bilimleri Dergisi  2001   7 (1)  39-45 44  Journal of Engineering Sciences 2001  7 (1) 39-45

2
0Tcr2cr

L

IE
β(T)Por

L

E(T)Iβ(T)P ==

The results of the convergence studies are shown in
Tables 1-3 for the new elements and classical
element. The results obtained by the use of the new
elements, especially for the clamped cases, are in
good agreement with the classical element.

Table 1. Convergence and Comparison of the
Instability Coefficients β  (For a Clamped-Free
Column, Exact  Value of β  is 2.467)
Number of

Element
Present
(2 DOF)

Present
(3 DOF)

Classical
Element

      1   3.000   (1)*     2.486   (2)     2.486   (2)
      2   2.597   (2)   2.469   (4)     2.469   (4)
      3   2.524   (3)   2.468   (6)     2.468   (6)
      4   2.499   (4)   2.468   (8)     2.468   (8)
      5   2.488   (5)   2.467 (10)     2.467 (10)
    10   2.472 (10)   2.467 (20)     2.467 (20)
* : Numbers in the parenthesis show the total number of DOF

Table 2. Convergence and Comparison of the
Instability Coefficients β  (For a Simply Supported -
Simply Supported  Column, Exact  Value of β  is
9.870)

Number
of element

Present
(2 DOF)

Present
(3 DOF)

Classical
Element

      3  12.497 (2)*  10.207   (5)   9.885   (6)
      4  12.245 (3)  10.058   (7)   9.875   (8)
      5  11.030 (4)    9.969   (9)   9.872 (10)
      6  10.571 (5)    9.939 (11)   9.871 (12)
    10  10.094 (9)    9.902 (19)   9.870 (20)
* : Umbers in the parenthesis show the total number of  DOF

Table 3. Convergence and Comparison of the
Instability Coefficients β  (For a Clamped-Clamped
Column, Exact  Value of β  is 39.478)

Number
of element

Present
(2 DOF)

Present
(3 DOF)

Classical
Element

      3 54.000 (2)*  40.343   (5) 40.343   (4)
      4  48.000 (3)  39.775   (7) 39.775   (6)
      5  44.888 (4)  39.605   (9) 39.605   (8)
      6  43.200 (5)  39.541 (11) 39.541 (10)
      7  42.193 (6)  39.513 (13) 39.513 (12)
    10  40.794 (9)  39.487 (19) 39.487 (18)
* : Numbers in the parenthesis show the total number of  DOF

In the classical element shape functions
corresponding to rotation degrees of freedom are
quadratic. The new element with 3-DOF uses
quadratic shape functions for axial degrees of
freedom defined at the outer fiber of the beam,
yielding quadratic variation of the rotation along the
beam.  Since boundary conditions for clamped-free
and clamped-clamped cases are satisfied exactly by
the use of the new elements, the results of classical
element and the new element with 3-DOF would be
similar for those cases as given in Tables 1 and 3.
However, there is some difference for simply
supported case due to the approximate satisfaction of
boundary condition. As expected, the use of higher
order elements in discretization gives better
accuracy.

Influence of the temperature dependency of the
material properties is studied on the buckling of the
beam with the following parameters:

E0 = 20121186        N/cm2, E1 =  -5981 N/cm2 °C, (34)

Three different temperature loadings have been
considered:

(i) T(x)  = 100 ºC   (constant temperature along the
column)
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Buckling load depending on temperature loading
will be

     (36)

The calculations are carried out for a beam with
clamped-free ends. Results obtained by using of
beam elements with 2-DOF are shown in Table 4.
The buckling loads are lowered considerably by the
thermal effect.

Table 4. The Instability Coefficients β

Without/With Temperature Loading
Number of

element
β (T=0) β T (i) β T (ii) β T (iii)

        1 3.000 2.911 2.777 2.777
        2 2.597 2.519 2.362 2.391
        3 2.524 2.449 2.292 2.325
        4 2.499 2.425 2.269 2.303
        5 2.488 2.414 2.258 2.293
      10 2.472 2.399 2.243 2.279

5. CONCLUSIONS

New finite elements with axial degrees of freedom
are proposed for the buckling analysis of columns
with temperature dependent material properties.
Euler-Bernoulli theory of thin beams is used to
derive the element matrices by means of the
minimum potential energy principle. The
temperature effects are also examined on the column
buckling, and temperature dependency of material
properties is taken into account in the formulation.
The new column elements have simple derivations
and compact element matrices than the classical
beam-bending element. The boundary condition for
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a simply supported edge is satisfied approximately.
Various end conditions of columns are considered in
the examples. The results are compared with both
the classical and exact ones. The new element is as
powerful as the classical one, yet it has more
compact matrices.

The temperature effects on the buckling loads of the
column with temperature dependent material
properties are studied by the use of new element.
The temperature loads affects the elastic modulus of
column. The buckling loads are lowered by the
thermal effect.
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