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ABSTRACT

The performance of a CMAC neural network depends on the training algorithms and the selection of input
points. Papers have been published that explain CMAC algorithms but little work has been done to improve
existing algorithms. In this paper, the existing algorithms are first explained and then compared using
computational results and the algorithm properties. Improvements are made to the recommended Maximum
Error Algorithm by using a "Combine Algorithm" approach. In this method, CMAC network is first trained by
using Neighborhood Training Algorithm and then trained by Maximum Error Algorithm for fine-tuning of
CMAC network. Faster initial convergence is achieved for the recommended Maximum Error Algorithm. This
approach may reduce the training time and accelerate the initial learning which is very important in many
control applications.
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CMAC NÖRAL DEVRESİ İÇİN KOMBİNE BİR ALGORİTMA

ÖZET

Bir CMAC nöral devresinin başarısı, öğrenme algoritmasına ve giriş vektörlerin seçimine bağlıdır. CMAC
algoritmasını  geliştirme konusunda  yeterli bir çalışma yapılmamıştır. Oysa, bir algoritmanın zayıf yönleri diğer
algoritmanın güçlü yönleriyle birleştirilebilir. Bu makalede önce algoritmaların açıklanması yapılmış olup bunu
takiben algoritma özellikleri ve bilgisayar simulasyonları kullanılarak karşılaştırımı yapılmıştır. 'Maksimum
Hata Algoritması'nın sonuç olarak en iyi performansı göstermiştir. Geliştirim, önerilen Maksimum Hata
Algoritması üzerine olmuş ve önerilen 'Kombine Algoritma' metodu CMAC'in başlangıçta fonksiyonu çok hızlı
kavramasını sağlamıştır. Yeni bulunan bu teknikle kontrol sistemlerinde çok büyük öneme sahip olan
fonksiyonu hızlı kavrama oranı arttırılabilmektedir.

Anahtar Kelimeler : CMAC nöral devresi, CMAC algoritması, Maksimum hata algoritması

1. INTRODUCTION

The CMAC (Cerebellar Modular Articulation
Controller) is a mathematical formalism developed
by (Albus, 1975a; Albus, 1975b) to model the
information processing characteristics of the
cerebellum. The CMAC as a controller computes
control values by referring a memory look-up table
where those control values are stored. It is believed
that the biological organisms use some form of

memory driven control systems. Memory table
basically stores the relation between input and
output or the control function.  After memory table
is formed, the output values are calculated just by
averaging the contents of memory elements
addressed by the input vector.

In comparison to the other neural networks, CMAC
has the advantage of very fast learning and it has the
unique property of quickly training certain areas of
memory without affecting the whole memory
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structure due to local training property of CMAC.
The CMAC has an advantage in training speed and
this property is very important in real time
applications.  For example, in an adaptive flight
control system, the CMAC can learn as the flights
are performed. The same benefits may be
gained in other adaptive control systems
(Cembrano et al., 1999).

2. CMAC STRUCTURE

In CMAC, learning is iterative and 'teacher' supplies
important information about the desired function to
be learned and CMAC adapts itself using this
feedback information (Figure 1). This is called
supervised learning.  The input selects the active
weights of CMAC depending on its value. Then
active weights are summed and averaged to
calculate an output.  This output is compared with
the desired output, and CMAC uses the difference to
adjust its weights to get the desired response.
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Figure 1. Supervised learning in the CMAC
structure

Albus based CMAC on the perceptron by Rosenblatt
and the mappings (Rosenblatt, 1961).

S A P→ →            (1)

Where S is sensory input vector, A is the binary
association matrix, and P is the output response.

The first mapping is a non-linear transformation that
maps the input variable s, into a binary vector that
indeed represents the location of chosen weights by
the corresponding input. The generalization factor,
ρ, is a design parameter and determines the number
of active cells with "ones" in the association vector.
In the second mapping of the CMAC, the output
values are formed first by summing of all the
weights of the cells in the association vector which

have been excited by a particular input and then
taking their average.
In the training phase, weights are adjusted in such a
way that the output of the CMAC approaches the
desired output. Training of weights takes place in a
supervised learning environment. Given the k-th
training sample the error between the desired output
d(k) and the calculated output r(k),  is e(k) = d(k) -
r(k).  This error is then used as a correction to each
of the memory cells excited by the k-th input.  For
each excited memory element, the correction of
weight is  ( )W e kγ∆ = , where, γ is the learning
factor.

Miller et al. (1982) identifies the CMAC training
algorithm as the well-known Least Mean Squares
(LMS) algorithm  :

1( ) ( 1) { ( ) ( ) ( 1)} ( )TW k W k d k a k W k a kγ
ρ

= − + − −           (2)

where  a(k) is the binary  association vector, and ρ is
the generalization parameter.

3. COMPARISON OF CMAC
TRAINING ALGORITHMS

3. 1. Selection of Training Input Points

Parks and Militzer (1992) discusses Cyclic and
Random Training methods for the CMAC
algorithms. In Cyclic (Sequential) Training, a cycle
is defined for the input training points and during
the training this cycle is repeated until a desired
performance is reached. If the training points are in
the same neighborhood of the previous input points,
good output convergence may not be obtained.
Random Training method could be used to prevent
the cross-talk  (interference) between the input
training points. A pseudo-random number generator
could be used to generate uniformly distributed
random numbers at each training session. In this
manner, learning interference is greatly minimized
because of the reduction of repetitive learning at the
same neighborhood.

3. 2. Comparison of Training  Algorithms

The following algorithms were investigated :

1. Albus Instantenous Learning (Nonbatch)
Algorithm.

2. Batch Learning Algorithm.
3. Maximum Error Algorithm.
4. Gram-Schmidt Procedure.
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5. Partially Optimized Step Length Algorithm.
6. Moving Average Algorithm.
In CMAC, weight updates can be made after each
presentation (Non-batch Algorithm) or after a batch
of presentations (Batch Algorithm). Instantaneous
Error Correction Algorithm developed by Albus
(Albus, 1975b) updates the network weight vector
after each training pair is presented to the network.
The rate of convergence of the algorithm depends
directly on the orthogonality (no interference
between patterns) of the training patterns
(Brown and Harris, 1994).

A new learning algorithm, Gram-Schmidt Procedure
are derived which produce weight changes
perpendicular to the previous L weight changes
(L = user defined parameter) and so the learning is
orthogonal for the last L training examples
(Parks and Militzer, 1992; Brown and Harris, 1994).

The Moving Average Algorithm uses  a counter
vector c, to indicate how often a weight has been
updated and the update is forwarded to less
frequently changed weight elements for a particular
input (Parks  and  Militzer, 1992).

The Maximum Error Training Algorithm, developed
by Parks and Militzer (1992), is based on the
algorithm proposed by (Albus, 1975b).  The
algorithm takes L training input points consisting of
the current training input point and L-1 past input
points and selects the one with the largest output
error.

Partially Optimized Step Length Algorithm tries to
minimize the sum of errors for the last L training
patterns rather than minimizing the square of error
for one input. The details of these algorithms can be
found in (Albus, 1975a-b; Brown and Harris, 1992;
Brown and Harris, 1994 and Parks and Militzer,
1992).

In the comparison, the computational results and
algorithm properties have been utilized. The training
is performed either in a cyclic or in a random
manner. The following two functions are used as
target functions for generating the training data:

Case A)  An arbitrary mathematical function  f (x)
which is defined for  180 180x− ≤ ≤o o :

1 1( ) 2 sin( ) sin(2 ) sin(3 )
2 3
1 1            . cos( ) cos(2 ) cos(3 )
2 3

f x x x x

x x x

 = − +  
 − +  

               (3)

Case B)  A composite function which has a
discontinuous first derivative  at  x = (N-1)/3 where
N=361, and  g(x) that is defined for 0 360x≤ ≤o o

3
1

3

1 3( ) 6 1 5
112 5

x
N xg x e

Ne
−

 
= − − + −− +  

          (4)

Desirable properties of learning algorithms are
initial fast learning and long-term convergence.  The
computational time of each algorithm is also taken
into consideration.  These criteria formed basis for
comparison. The following abbreviations are made:

ALC : Albus (nonbatch) Cyclic Training
ALR : Albus (nonbatch) Random Training
AVC : Moving Average Cyclic Training
AVR : Moving Average Random Training
GRC : Gram-Schmidt Proc. Cyclic Training
GRR : Gram-Schmidt Proc. Random Training
MAC : Maximum Error Cyclic Training
MAR : Maximum Error Random Training
OSC : Optimized Step Cyclic Training
OSR : Optimized Step  Random Training
BATC : Batch Alg. with Cyclic Training
BATR : Batch Alg. with Random Training

In both cases, the target functions are the given
functions in (3) and (4), and the parameters in the
training are: ρ=10 and B=361 (Resolution of 1
degree).

Comparing the two cases, the second function (Case
B) is actually harder than the first one in terms of
CMAC learning because of its discontinuous first
derivative. From the results it can easily be seen that
the Albus Nonbatch Algorithm is the least time
requiring algorithm for training data and is
convenient for on-line learning because of its easy
algorithm implementation. But there is a risk if
modelling error or measurement noise exists in the
network.  In that case of mismatch, the weight
vector never converges to its optimal value, instead
it converges in a domain which surrounds this
optimal value, called minimal capture zone
(Brown and Harris, 1994).

As it can be seen in Tables 1 and 2, when Cyclic
Training is applied, slow initial convergence occurs.
This is due to the interference  which is inherent in
the Cyclic Training nature.  The employment of
Random Training may improve initial convergence.
The drawback in the Random Training is that it may
sometimes get stuck since the Random Training
process can choose points at which it is already
reasonably well trained.  At some point CMAC
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may not learn anything. The work done by (Ellison, 1988) also explains this fact.
Table 1. Comparison of Training Algorithms for Case A

Algorit. L

361 pts.
=1epoch
e(rms)

3610 pts.
=10 epoch

e(rms)

18050 pts.
=50 epoch

e(rms)

36100 pts. 100
epoch
e(rms)

Exec.time /
single point

t(msec)
ALC -  81.78 % 10.20% 0.139% 0.076% 3.30
ALR -    6.38 % 1.130% 0.198% 0.073% 3.18
AVC -    4.78 % 0.910% 0.533% 0.460% 5.50
AVR -    4.61% 0.920% 0.543% 0.492% 3.18
GRC 2 30.76 % 0.185 % 0.062 % 0.016 % 40.41
GRC 10 18.62 % 0.105 % 0.013 % 0.010 % 195.00
GRR 2 11.02 % 0.388 % 0.089 % 0.021 % 42.40
GRR 10   5.88 % 0.112 % 0.048 % 0.015 % 212.13
MAC 10 21.24 % 0.375 % 0.032 % 0.015 % 30.00
MAC 50 3.304 % 0.159 % 0.029 % 0.012 % 126.12
MAR 10 5.701 % 1.159 % 0.100 % 0.061 % 31.81
MAR 50 3.312 % 0.411 % 0.074 % 0.031 % 139.00
OSC 2 67.48 % 1.540 % 0.096 % 0.057 % 10.50
OSC 10 27.04 % 0.405 % 0.145 % 0.090 % 87.42
OSR 2   5.80 % 1.299 % 0.156 % 0.061 % 10.61
OSR 10   5.49 % 1.230 % 0.191 % 0.067 % 88.31

361 epch            3610 epoch              18050 epoch
BATC -  0.823% 0.176% 0.060% - 1019
BATR -  0.928% 0.220% 0.067% - 1020

Table 2. Comparison of Training Algorithms For Case B

Algorit. L
361 pts.
=1epoch
e(rms)

3610 pts.
=10 ep.
e(rms)

18050 pts.
=50 ep.
e(rms)

36100 pt.
=100 ep.

e(rms)

Exec.time /
single point

t(msec)
ALC -  82.54 % 13.61% 0.323% 0.165% 3.30
ALR -    7.50 % 1.23% 0.207% 0.110% 3.18
AVC -   3.53 % 1.10% 0.669% 0.566% 7.90
AVR -   3.62 % 1.22% 0.685% 0.592% 7.91
GRC 2 17.76 % 0.12 % 0.022 % 0.009 % 40.41
GRC 10   8.62 % 0.08 % 0.017 % 0.007 % 195.00
GRR 2   7.32 % 1.19 % 0.129 % 0.027 % 42.40
GRR 10   5.88 % 0.41 % 0.042 % 0.015 % 212.13
MAC 10 21.97 % 0.48 % 0.072 % 0.035 % 30.00
MAC 50 12.62 % 0.46 % 0.061 % 0.018 % 126.12
MAR 10  6.71 % 0.98 % 0.174 % 0.068 % 31.81
MAR 50  4.13 % 0.62 % 0.078 % 0.055 % 139.00
OSC 2       67.94 % 2.21 % 0.196 % 0.110 % 10.50
OSC 10       27.09 % 0.97 % 0.345 % 0.170 % 87.42
OSR 2  8.16 % 1.29 % 0.177 % 0.061 % 10.61
OSR 10  6.99 % 1.23 % 0.220 % 0.101 % 88.31

    361 epch                 3610 epoch              18050 epoch
BATC - 1.66% 0.303% 0.069% - 1019
BATR - 2.23% 0.490% 0.077% - 1023

Initial convergence in the Moving Average
Algorithm is better than Albus Algorithm when
Cyclic Training is used, but later on convergence
rate gets slower and slower. The computational
effort is the second best after Albus Nonbatch
Algorithm.

The Optimized Step Algorithm with Cyclic Training
shows a slow convergence because the transformed
input patterns are parallel to each other.  Since the
weight vectors are optimized with respect to last L
pieces of data, inputs are still correlated.  With
Random Training the initial convergence improves
but long term convergence still remains the same.

The best result is recorded with small L value.
Large values may slow down the algorithm.

Gram-Schmidt procedure gives the fastest
convergence, but it takes almost a quarter of a
second just to store one single point. Larger L
values, gives more accuracy and faster convergence
but also requires tremendous amount of computation
time.

The Maximum Error Algorithm has a good
convergence property. Initial learning rate is
especially high and  could be made higher using
Neighborhood Training technique. The long-term
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convergence is the best after Gram-Schmidt
procedure.  It has a moderate computation time
compared to others.  Choosing L larger increases the
accuracy but requires much computation time.

Batch training doesn't look appropriate for our
purposes. The requirement that all the information
about the training data points in one pass should be
known limits the usage of this technique.

The recommended algorithm in this paper is the
Maximum Error Algorithm because of its moderate
computation time, fast initial and long term
convergence. The works of  (Ellison, 1988) and also
Parks and Militzer, (1992) also agrees with this
result.

4. COMBINE ALGORITHM ;
NEIGHBORHOOD TRAINED

MAXIMUM ERROR ALGORITHM

The Maximum Error Algorithm has been the best
algorithm in terms of its moderate computation time
and good convergence properties.  But can there be
any improvement on Maximum Error Algorithm?
From Tables 1-2 and discussions before, we
conclude that the initial convergence may be
improved by "Neighborhood training".

To avoid the interference resulting from the
CMAC's generalization property, (Thompson and
Sungyyu, 1995) suggested the Neighborhood
Training method. Ling later used this form of
training in a control system since it minimizes
learning interference  (Ling and Fischer, 1995). In
this method, input training points that lie outside the
previous input training point are selected so that no
interference will occur between the training points.
After applying the Albus Nonbatch algorithm or
other algorithms (all gives the same result), the
result is appreciable because of the speed advantage
of this method.  Data for each memory element are
adjusted only one time (with gain = 1) during
training.  Only one pass using the neighborhood
method finishes the procedure.

The total number of input points to be trained
depends on the resolution of the bins and ρ.  For sin
(x) function with 360x0 ≤≤ , a resolution of 1
degree and ρ = 10, the total number of
Neighborhood Training points is Ntrainp = 360/10 +
1 = 37.  Training at about 10 % of input points gives
an rms error of 0.3%. The training points for this
example are chosen as 1, 11, 21,..., 351 with no
interference with each other. For an arbitrary

function (Thompson and Sungyyu, 1995) used in
simulations the calculated rms error is found 3.2 %
after training only 37 pts. This result can  be
compared with the cyclic training with 180 training
points (Figure 2).

Figure 2. Neighborhood training at 37 points vs.
Cyclic training at 180 points for function f(x)

In the proposed approach, the training is continued
with the Maximum Error Algorithm for fine-tuning
of CMAC. During simulations, input points for the
Maximum Error Algorithm are chosen in a cyclic
order. Instead of using only one pass of
neighborhood at 37 points, a second pass of
Neighborhood Training are also utilized in the
midpoints. ie. for case b, mid-points correspond to
the half of the previous neighborhoods, i.e., 6, 16,
26, ..., 356 respectively. In doing so, the points that
had the least interference with the previously trained
ones are used. After the second pass, the rms error
for case a was 1.45 % and the rms for case b was
only 0.1148 % (Figure 3). For both functions, L
value is chosen to be 10.

From Table 3, it can be concluded that the initial
convergence improves appreciably. ie, for only after
one pass of Neighborhood Algorithm 1.18 % rms
error is obtained vs. 21.24 % for Cyclic Trained
Maximum Error Algorithm and 5.7 % for random
trained Maximum Error Algorithm.  After 10 epoch,
rms error drops down to 0.23 % instead of 0.37 %
and 1.15 % corresponding to the Cyclic and
Random Training, respectively. The initial
convergence rate was better for the second function.
After first pass of Neighborhood Training, the rms
error becomes 0.145 %. The rms error value drops
down to 0.034 % after the first epoch of the
Maximum Error algorithm. Long term convergence
also well improves from 0.035 % to 0.017 %. In
conclusion the combination of these two algorithms
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improves CMAC neural network convergence
considerably.
Table 3. Recommended Algorithm  (L = 10)

 Neighborhood Training Algorithm Maximum Error Algorithm with Neighborhood Training   (L=10)

Case 1st pass
e(rms)

2nd pass
e(rms)

361 pts.
=1 epoch

e(rms)

3610 pts.
=10 epoch

e(rms)

18050 pts.
=50 epoch

e(rms)

36100 pts
100 epoch

e(rms)

Mean Exec.
time

t (msec)

A 3.20% 1.45% 1.180% 0.230% 0.040% 0.016% 30
B 0.14% 0.11% 0.065% 0.034% 0.024% 0.017% 30

Figure 3. Function f(x) (top figure) and g(x) after
2-pass Neighborhood training

5. CONCLUSION

After explaining the CMAC with illustrative
examples, the possible algorithms and training
methods are analyzed thoroughly for the CMAC
network. Throughout the paper the importance is
stressed on the selection of the input training points.
For that reason beside the Cyclic Training, Random
Training is also taken into consideration in
comparing different algorithms, and good results are

obtained for Optimized Step Algorithm performance
when  Random  Training  is  employed.  Among  the
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algorithms that were in comparison, Maximum Error
Algorithm has been recommended because of its
moderate computation time, fast initial and long-
term convergence. Improvements are then examined
for the recommended Maximum Error algorithm and
a combine algorithm approach has been developed.
In this scheme, it is thought that prior to CMAC
training using the recommended algorithm, a new
form of training called Neighborhood training
technique can be meaningful to apply if faster initial
convergence is required.

The employment of the combine algorithm
technique yielded faster initial convergence for both
cases a and b, and also resulted in better long term
convergence for case b. However, the acceleration
in the convergence may depend on shape and
complexity of a function as well as other network
parameters.

In comparison to the other neural networks,  CMAC,
has the advantage of very fast learning (Horst,
1993). By using the combine approach, much faster
initial convergence is achieved for the CMAC,
which is very important for  control applications.
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