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ABSTRACT 
 
This paper considers the problem of an axisymmetric infinite cylinder with a crack at z = 0. The cylinder is 
under the action of uniformly distributed axial tension applied at infinity and its lateral surface is free of traction. 
It is assumed that the material of the cylinder is linearly elastic and isotropic. Crack surfaces are free. 
Formulation of the boundary problem under consideration is reduced to single singular integral equation in 
terms of the derivative of the crack surface displacement. These equations together with the single-valuedness 
and equilibrium condition for the displacements around the crack is converted to a system of a linear algebraic 
equation which is solved numerically. Stress intensity factors are calculated and presented in graphical form. 
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EKSENEL SİMETRİK ÇATLAK İÇEREN SONSUZ SİLİNDİRİN GERİLME ŞİDDETİ 
FAKTÖRÜNÜN HESAPLANMASI 

 
 

ÖZET 
 
 

Bu çalışmada çekmeye maruz z = 0 düzleminde çatlak içeren sonsuz eksenel simetrik silindir incelenmektedir. 
Silindir düzgün yayılı p0 şiddetinde eksenel çekmeye maruzdur. Silindirin yanal yüzeylerinde gerilmeler sıfırdır. 
Malzemenin lineer elastik ve izotropik olduğu varsayılmaktadır. Çatlak yüzeyleri serbesttir. Problem çatlak 
yüzey deplasman türevi cinsinden tek tekil integral denkleme indirgenmektedir. Boyutsuzlaştırılan denklem 
takımı single-valuedness ve denge durum denklemi ilave edilerek  lineer denklem takımlarına indirgenerek 
sayısal çözümü yapılmıştır. Gerilme şiddeti faktörü hesaplanmış ve sonuçlar grafiklerle sunulmuştur. 
 
Anahtar Kelimeler : Çatlak, Tekillik, Silindir, Gerilme şiddeti faktörü  
 
 

1. INTRODUCTION 
 
Fracture mechanics is based on the principle that all 
materials contain initial defects in the form of 
cracks, voids or inclusions that can effect the load 
carrying capacity of engineering structures. The 
engineering field of fracture mechanics was 
established to develop a basic understanding of 
crack propagation problem. Cracks will propagate 
under service loading and finally could lead to a 

complete failure of the structure. Fracture occurs 
when either the toughness of the material is 
exceeded or the remaining ligament yields. In other 
words, fracture toughness expresses the ability of 
the material to resist a fracture in the presence of the 
cracks. The stress intensity factor K, which defines 
the amplitude of the crack tip singularity, 
incorporates both geometrical terms and the stress 
level. Many levels of stress depending on the 
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magnitude of load applied and size of the 
component. 
Various authors have considered the problem of 
semi-infinite and finite solid circular cylinder with 
the curved surface free of tractions and prescribed 
displacements or tractions at the plane end. The 
classical theory of elasticity equations are solved in 
terms of unknown function that is shown to be the 
solution of Fredholm integral equation of second 
kind. Erdogan and Gupta (1973) developed the pair 
of Gauss-Chebyshev integration formulas for 
singular integrals. By using these formulas a simple 
numerical method for solving a system of singular 
integral equation is described. . The integral 
equation is replaced by a system of linear algebraic 
equations and this system is solved to calculate the 
stress intensity factor and stresses. Integral equation 
approach is taken by Gupta in solving the problem 
of a semi-infinite strip (1973) and semi-infinite 
cylinder (1975) under uniform tension at one end 
and fixed at the other. Integral transform technique 
is used to provide an exact formulation of the 
problem in terms of singular integral equations. 
Stress singularity at the strip corner is obtained from 
the singular integral equation, which is solved 
numerically.  The singular integral equation 
obtained from the formulation of the problem must 
be such that the method of Muskhelishvili (1953) 
can be used. Nied and Erdoğan (1983) considered 
the elasticity problem for a long circular cylinder 
containing an axisymmetric circumferential crack 
subjected to a general nonaxisymmetric external 
loads. The axisymmetric contact problem for a semi-
infinite cylinder and a half space is considered by 
Geçit (1986). The problem is reduced to a system of 
singular integral equations of the second kind using 
the transform technique. The problem of a semi-
infinite strip containing a transverse crack is 
considered by    (Geçit, 1988). 
 
In the present paper, the axisymmetric infinite 
elastic solid circular cylinder subjected to axial 
tension with lateral surface free of traction and 
having a transverse crack at z = 0 plane is 
considered.  The objective of this work is to 
investigate the stress intensity factors for the ring - 
shaped crack located on   z = 0 plane symmetrically 
with arbitrary (but equal) length. Material of the 
cylinder is assumed to be linearly elastic and 
isotropic. The solution of the actual problem can be 
obtained by superposition of solutions for the 
following two problems:               (1) Uniform 
solution of an infinite cylinder subjected to uniform 
tension only and (2) The problem containing a ring-
shaped transverse crack of arbitrary width 

A)ab(0 <−<  at 0z = . Loading in the second 
problem is the negative of the stresses and the 

displacements resulting from the first problem at 
locations of the crack. Solution of the first problem 
is obtained by applying the elasticity theory to it and 
called the uniform solution. The second problem is 
called the perturbation problem. In this study, the 
auxiliary solutions for the necessary subproblems 
can be derived by the application of Fourier and 
Hankel transform techniques.             (Sneddon, 
1951; Erdelyi, 1953) have obtained the general 
expressions for displacements and stress 
components on Navier equations. Applying the 
boundary conditions, the problem is reduced to a 
system of three singular integral equations in terms 
of crack surface displacement derivative. By using 
Gauss quadrature formulas, this singular integral 
equation is converted to a linear algebraic equation 
that is solved numerically. 

 
 

2. FORMULATION OF THE RING-
SHAPED CRACK PROBLEM 

 
Consider the axisymmetric, linearly elastic, isotropic 
infinite cylinder with radius A shown in Figure 1. 
Both ends of this infinite cylinder are under the 
action of a uniformly distributed axial tension of 
intensity p0 and the lateral surface is free of traction. 
 
Solution for the infinite cylinder having a crack will 
be obtained by superposing the solutions of (i) the 
infinite cylinder subjected to uniformly distributed 
axial tension intensity po at infinity, and (ii) 
perturbation problem for the infinite cylinder having 
a ring shaped transverse crack. (Figure 2). 
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Figure 1. Geometry of the problem and loading 
conditions 

 
 
Figure 2.  Superposition scheme for the general 
problem 
 
For part (i) the partial differential equations are used 
for uniform solution that are obtained from Eqn’s 1 
and 2 respectively. These equations become 
uncoupled ordinary differential equations because of 
only one dependent displacement u in r-direction 
and one dependent w in z-direction. For part (ii) 
solution is obtained for the infinite cylinder contains 
a ring-shaped transverse crack of arbitrary length 

A)ab(0 <−<  at 0z =  which is the plane  of 
symmetry. Therefore, for axisymmetric elasticity 
problem under consideration the Navier equations 
may be written in the following form: 
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where u and w are the r and z  components of         
the  displacement  vector and ,43 ν−=κ  ν being the  

Poisson’s ratio. The relevant stress components can 
be written as  
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Where µ  is the shear modulus. As shown in Figure 
3 the perturbation solution of the problem must be 
obtained by the sum of the expressions for the 
displacement and the stress components of the two 
subproblem (a) and (b). z = 0 is the plane of 
symmetry, the problem is considered in the region            
0 ≤ z  ≤ ∞. The obtained expressions of 
displacements u2 and w2 are in the form : 
 

 
 
Figure 3. Superposition scheme for perturbation 
problem 
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Similarly, the obtained expressions for stresses are, 
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Where J0 and J1 are Bessel functions of the first kind of order zero and one, respectively, and I0, I1 are modified 
Bessel functions of the first kind of order zero and one. 
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and c c1 2,  are unknown quantities. ( )tm  is the derivative of the  crack  surface  displacement. c1 and c2  can be 
determined by the use of the stress boundary conditions:  
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Where ,E1  and 2E  are given in Appendix. Now for 
the remaining one unknown, the following boundary 
condition on the crack must be used : 
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Where  p0  is the uniform axial tension. The strain ε0 
can be given as: 
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Note that the boundary condition is in terms of stress 
type condition (9). Therefore, by this replacement 
for the perturbation problem, also some divergent 
integral is disregarded and the following integral 
equations are obtained with kernels having Cauchy-
type singularity. 
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K  and E being the complete elliptic integrals of the 
first and second kinds, respectively. N11(r,t), is the 
kernel and defined in Equation (15). The system of 
singular integral equation, Eq. (11) must be solved 
subject to the following single-valuedness and 
equilibrium condition 
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The dominant part of the integral equation (11) has  
 

i) Cauchy have with Cauchy-type singularity at t = r, 
ii) the kernels H1, have only logarithmic singularity, 

 
iii) among the Fredholm kernels, N11 have singular terms when 

t A=  and Ar ±= . 
 

∫
∞

λλ=
0

1111 d),t,r(L)t,r(N                       (15) 

 
Where L11 is the integrands and contain the Bessel 
function. The singularity at zero may easily be 
removed when examining the behavior of integrand 
L11 for λ → 0 . It can be shown that the integrand of 
the kernel vanish and is bounded everywhere except 
for λ = 0, by examining the behavior of integrand 
for λ → ∞ . The singular term can be separated by 
studying the asymptotic behavior of the integral 
given by Eq. (15). 
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The bounded parts of the kernels can be expressed 
as  
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Corresponding singular kernels N11s can be obtained 
by integrating L11∞ as 
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Together with ),rt/(1 −  N11 gives generalized 
Cauchy kernel. After somewhat lengthy 
manipulations, it can be shown that the solution of 
Eq.(11)  is, 
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Where M*(t) are Hölder-continuous function in the 
intervals [a, b]. The characteristic equation for 
constant γ is 
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Which gives 2/1=γ  at the tip of the crack 
( )br,ar →→ . To solve the system of one singular 
integral equation (11) with single valuedness and 
equilibrium conditions, the normalization will be 
done. By using the Gauss-Lobatto integration 
formula, equation (11) can be replaced by a system 
of linear algebraic equation. From the viewpoint of 
fracture, the stress intensity factors at the tip of the 
crack are given below. 
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The normalized stress intensity factors are obtained 
as  
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3. NUMERICAL RESULTS 
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The system of singular integral equation  with  
single valuedness and equilibrium condition will be 
normalized and the dimensionless variables for 
crack given in Appendix are introduced. The 
integral techniques are used to evaluate the 
normalized integrals. The results were calculated for 
the normalized region [1, -1], and a/A, b/A, L/A 
have been taken as the independent variables. Some 
of the numerical results are given in Table 1-3 and 
shown in Figure 3-5. The normalized stress intensity 

factors k ka b1 1
− −,  are obtained for an infinite cylinder 

having a ring-shaped crack with uniform tension 
intensity p0.  Figure 3 shows the variation of the 
normalized stress intensity factors k ka b1 1

− −,  with (b-
a)/A for various geometries when ν = 0 3. . It is 
observed that the normalized normal stress intensity 
factors increase when crack length increases. 

 
 
Table 1. Variation of Normalized Stress Intensity Factors With Poisson’s Ratio ν 

ν = 0.4 ν = 0.3 ν = 0.2 (b-a)/A 
−
ak1  

−
bk1  

−
ak1  

−
bk1  

−
ak1  

−
bk1  

0.4 1.2551 1.0055 1.2551 1.0055 1.2551 1.0055 
0.6 1.6185 1.1009 1.6185 1.1009 1.6185 1.1009 
0.8 2.6281 1.3600 2.6281 1.3600 2.6281 1.3600 

 
 
 
Table 2. Comparison of the Obtained Results (for same ν) With The Stress Intensity Factors For A Symmetric 
Crack in a Thick-Walled Cylinder Subjected  to Axial Tension (Nied and Erdoğan, 1983) 

CRACK LENGTH, (b-a)/A Present Study Nied and Erdoğan, (1983) 
a/A b/A k1a k1b k(c) k(d) 

0.505 0.595 1.024 0.984 1.028 0.985 

 
 
 
Table 3. Variation of k a1

−  and k b1
−  With Crack Location  

a+b>1.0A 
Closer to the lateral surface 

a+b=1.0A 
Centered crack 

a+b<1.0A 
Closer to the center of the cylinder 

(b-a)/A 

−
ak1  

−
bk1  

−
ak1  

−
bk1  

−
ak1  

−
bk1  

0.2 1.1042 1.0694 1.0821 0.9777 1.2803 0.9416 

0.4 1.2617 1.1653 1.2551 1.0055 1.5779 0.9627 

0.6 1.5574 1.2564 1.6185 1.1009 1.9529 1.0412 

0.8 2.4613 2.1524 2.6281 1.3599 3.3882 1.2471 

 
 
It is observed the normalized stress intensity factors 
k ka b1 1
− −,  are independent of length L/A. However, 

k ka b1 1
− −,  increase with increasing crack lengths. From 

Table 1 it is seen that there are no mean difference 
in stress intensity factors k a1

− and k b1
−  for 

differentν values. For special case (d-c)/(b-a) = 0.1, 
((d-c)/b = 0.09 and c/d = 0.505 the stress intensity 
factors for a symmetric crack in a thick walled 
cylinder subjected to axial tension Nied and 
Erdoğan, (1983) are given together with the results 

of this study when a/A = 0.505 and b/A = 0.595 in 
Table 2. 
 
Table 3 and Figure 4-5 show comparisons for cracks 
and inclusions located closer to the center, and 
closer  
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to the lateral surface. If  
 
i)   a+b >1.0A (closer to the lateral surface) 
ii)  a+b <1.0A (closer to the center) 
 
Note that, if the case i and ii compared with centered 
solution, the normalized stress intensity factors k1a 

for case i are less than these for the centered 
solution, but for case ii they are greater. The same 
comparison for the normalized stress intensity 
factors −

bk1  for case i are greater than the centered 
solution and case ii. 
 

 
 

Figure 4.Variation of the Normalized Stress Intensity Factors k ka b1 1
− −,  with (b-a)/A when .3.0=ν (a + b=1.0A) 

 
 

 
 

Figure 5. Variation of the k a1
−  for different a+b values with (b-a)/A when ν = 0 3. .  

 
 

 
 

4. CONCLUSIONS 
 

In this paper it has been observed that the 
normalized stress intensity factors −−

ba kk 11 ,  at the 
crack tips increase with increasing crack length. As 
crack approaches to the lateral surface, considerable 
increase occurs in the stress intensity factors. It is 
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concluded that the stress intensity factors depend on 
the material properties as well as material geometry. 

 
 

5. APPENDIX 
 
Expressions for E1  and E2 can be put into the 
following form in terms of unknown functions m(t) : 
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The following dimensionless variables are 
introduced for crack: 

  

22
ababr +

+
−

= ξ              a<r<b; -1<ξ<1  

 

22
ababt +

+
−

= τ               a<t<b; -1<τ<1 

 
6. NOTATİON 

 
A     : Radius of the cylinder 
a, b  : Inner and outer radii of the crack 
E     : Young’s Modulus of Elasticity 
ρ     : Hankel transform variable 
( )m r  : Crack surface displacement derivative 

k ka b1 1
− −,  : Normalized normal stress intensity factors 

at crack tips 
L     : Half the distance between the rigid 

inclusions 
δ    : Power of singularity at the edges of 

inclusions 
γ    : Power of singularity at the crack tips 
H1  : Hankel transform with J1  
H0  : Hankel transform with J0  
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