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ABSTRACT 
 
 

In various industrial applications there is a need for higher speed, yet reliably operating rotating machinery.       
A key factor in achieving this type of machinery continues to be the ability to accurately predict the dynamic 
response and stability of a rotor-bearing system. This paper introduces and explains the nature of rotordynamic 
phenomena from comparatively simple analytic models. Starting with the most simple rotor model that is 
supported in two rigid bearings at its ends, the more realistic and more involved cases are considered by 
incorporating the effects of flexible bearings. Knowledge of these phenomena is fundamental to an 
understanding of the behavior of complex models, which corresponds to the real rotors of turbomachines. 
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ROTOR- YATAK SİSTEMLERİNİN KARARLILIĞI 
 
 

ÖZET 
 
Endüstrideki çeşitli uygulamalarda yüksek hızının yanısıra güvenli olarak çalışan dönen rotorlu makinaya ihtiyaç 
vardır. Bu tür bir makinayı elde etmedeki anahtar faktörün rotor-yatak sisteminin dinamik tepkisini ve 
kararlılığını doğru tahmin edebilme olduğu geçerliliğini korumaktadır. Bu makale basit analitik modellerle rotor 
dinamiği kavramının doğasını tanıştırmakta ve açıklamaktadır.  İki ucundan sabit yataklarla desteklenen en basit 
rotor modeli ile başlanarak, daha gerçekçi ve daha detaylı durumlar esnek yatak etkileri de katılarak ele 
alınmıştır. Bu olguların bilinmesi gerçek turbomakinaların rotorlarını temsil eden karmaşık modellerin 
davranışını anlamada esastır. 
 
Anahtar Kelimeler : Kararlılık, Rotor-Yatak, Rotor dinamiği, Turbomakinalar 
 
 

1. INTRODUCTION 
 
 

Rotating machinery, one of the most important 
classes of machinery, is used extensively throughout 
the industrialized world. Its uses are extremely 
diverse: in power stations, aircraft engines, medical 
equipment and many other applications. Indeed, it is 
difficult to think of many types of machine that do 
not include rotating components in one form or 
another.  
 
In operation the rotor undergoes bending and 
torsional vibration. The vibration of a rotor depends 

upon its geometry and the type of support, as well as 
on the excitation forces. The vibrating rotor also 
excites its foundation. 
 
Failure of the machine components in applications 
such as aeroengines, turbogenerators, military 
equipment, space satellites and others, may put 
human life in jeopardy and cost a lot of money to 
repair. Therefore, in the design of high-speed 
rotating machinery, the following questions must be 
addressed: 
 

a) For a given running speed, what are a 
rotor's natural frequencies? 

b) What are the rotor's critical speeds? 
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c) What are the anticipated steady-state 
response levels over the rotor's operating 
range? 

d) Will the rotor be stable over its operating 
range? 

 
In order to address these questions, one must 
consider a complete rotordynamic model, which 
accounts for the rotor's structural-dynamic plus 
fluid-structure-interaction forces, seal generated 
forces, external time-dependent forces, imbalance, 
etc. 
 
All rotating machinery is supported by one or more 
bearings, which play a vital part of the entire system, 
since it is the component that permits the relative 
motion between the stationary and moving parts.  
There are two general types of bearings which are 
commonly used in rotor-bearing system 
applications.  These are fluid-film bearings and 
rolling-element bearings. 
 
Bearings can have a significant effect on machine's 
vibration characteristics. The fluid-film of a fluid-
film bearing acts like a spring-damper system and it 
influences the machine critical speeds and imbalance 
response. Moreover, bearing fluid-film forces can 
cause rotor instability that result in serious levels of 
self-excited vibration. Shaft seals have a similar 
effect as fluid-film bearings. They influence the 
critical speeds, can provide damping or on the other 
hand cause instability. Instability from fluid-film 
bearings and shaft seals arises from the fact that 
during radial displacement of the rotor a restoring 
force is produced, which has a component at right 
angles to this displacement. 
 
Extensive studies of the rotor-bearing system over a 
long period of time have resulted in a good 
understanding of the forces induced by bearings. 
These studies have been incorporated into codes, 
which are used to design rotor systems, see for 
example (Szeri, 1980; Szeri, 1987; Childs, 1993; 
Kramer, 1993). In addition many theoretical studies, 
numerical calculations and measurements have been 
carried out to determine the effect of self-exited 
vibration in the turbomachinery due to shaft seals, 
see for example (Childs and Scharrer, 1988; Eser 
and Kazakia, 1995; Yucel, 2000; Kwanka, 2001;). 
 
Here, we don’t intend to consider the subject of the 
effects of the fluid-film bearings and shaft seals on 
the stability of rotors. More information about these 
subjects can be obtained at (Childs, 1993;            
Kramer, 1993).  
  
In practice, instability must be avoided and one must 
know as much as possible about the conditions and 

about behavior during instability. Therefore, in the 
following sections the stability of rotor-bearing 
systems is considered. Starting with the most simple 
rotor model that is supported in two rigid bearings at 
its ends, more realistic and more involved cases are 
considered by incorporating the effects of flexible 
bearings. 

 
 

2. STABILITY CONSIDERATIONS OF 
ROTOR-BEARING SYSTEMS 

 
 

The material in this section is given to introduce and 
explain the nature of rotordynamic phenomena from 
comparatively simple analytic models. The 
phenomena demonstrated by flexible rotors and 
techniques employed for their analysis is basically 
similar to other areas of vibrations and structural 
dynamics. 
 
The vibration problems can be represented by the 
equation of motion 
 

)t(FKXXCX =++Μ &&&                                           (1) 
 
The simple harmonic vibration of the rotor is 
described with the terms X&&Μ  and KX  of the above 
equation.  Damping, either from the structure of the 
shaft or from the bearing structure is characterized 
by the term XC & . Imbalanced rotor effects are 
described by the forcing term )t(F  on the right hand 
side. Flexible bearings, hydrodynamic bearings and 
gas seals introduce terms of the form KX  and XC & . 
 
The complete solution of Eqn. (1) consists of the 
solution of the homogeneous equation together with 
the particular solution corresponding to the right-
hand side.  Solution of the homogeneous equation 
requires the eigenvalues of the system to be found. 
These are conjugate complex or real and 
characterize the natural vibration. The imaginary 
part corresponds to the natural frequency in question 
and the real part gives the stability of the natural 
vibration. For a negative real part, the vibration 
decays with time that means the system is stable, 
and for positive real part it grows which means it is 
unstable.  The stability boundary of the system is 
reached when the real part of an eigenvalue is zero. 
 
In the next two subsections, we consider simple 
rotor models to study their stability. The basic model 
used in this work is the Jeffcott rotor (Kramer, 
1993). With this simple model most of the important 
results can be shown and explained analytically. 
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2. 1. Jeffcott Rotor With Rigid Bearings 
 
The most simple rotor model consists of a heavy 
disk of mass m  mounted at mid-span of a massless 
elastic shaft.  The shaft is supported in two rigid 
bearings at its ends as shown in Figure 1. This model 
is called a Laval shaft or Jeffcott rotor (Rao, 1983; 
Goodwin, 1989; Childs, 1993; Kramer, 1993). The 
shaft has a circular cross-section with constant 
diameter over its whole length and turns with 
constant angular velocity ω . 
 
 2

G
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Figure 1. Schematic of Jeffcott rotor with rigid 
bearings 
 
The mid-span disk has a center of mass that due to 
unbalance is at a point G , a distance e  from the 
geometrical center (disc center) O ; this distance is 
known as the eccentricity. The disk is assumed to 
move only in its own plane, more precisely in the 
plane defined by axis 1, 2 in Figure 2. The 
coordinates 1y , 2y  give the movement of the shaft 
center O  relative to the unloaded position and the 
angle turned through by the disk is given by tω . 
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Figure 2. Assumed movement plane for the disk 

The position of the midpoint G  is determined from 
the equations 
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The equations of motion for the mass-center G  can 
be obtained by using Newton's law as 
 

0ykydzm
0ykydzm

2r22

1r11

=++
=++

&&&

&&&
                                          (3) 

 
where rk  is the shaft-stiffness coefficient and d  is 
the damping coefficient.  Substituting the second 
derivatives of Eqns. (2) into Eqns. (3), the following 
equations are obtained 
 

tsinmeykydym
tcosmeykydym

2
2r22

2
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ωω=++

&&&

&&&
                        (4) 

 
We first consider an ideally balanced disk that is for 

0e =  the problem becomes very simple, as then the 
angle of rotation of the disk is independent of its 
displacement.  Thus, for free vibration of the Jeffcott 
rotor Eqns. (4) become 
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The solutions to Eqns. (5) can be obtained as 
 

( )
( )tsinBtcosAe)t(y

tsinBtcosAe)t(y

d2d2
t

2

d1d1
t

1

ω+ω=
ω+ω=

δ−

δ−

                    (6) 

 

where  m2d=δ  and 22
nd δ−ω=ω  with the 

natural frequency mkrn =ω . In Eqns. (6), the 
coefficients 1A , 2A , 1B  and 2B  are real constants. 
 
Equations (6) describe the path of the shaft center O  
in the 1-2 plane during free vibration, which is 
called natural motion. With zero damping this 
natural motion consists of harmonic vibrations in 
directions 1 and 2 with natural frequency nω . With 
damping the natural motion is similar to that without 
damping, except that the amplitudes decrease with 

time by the factor te δ− . 
 
If we consider the case of unbalance excitation that 
is 0e ≠ , the particular solutions of the Eqns. (4) 
become 
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( )
( )ε−ω=

ε−ω=
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Where the whirl amplitude  r   at the disk is defined 
by  )(Ver η′=  with 
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and the phase angle ε  is defined by 










η−
η

=ε 21
D2arctan . From Eqns. (7), it is seen that 

the shaft center moves with angular velocity ω  in a 
circle of radius r . The angle between r  and e  
remains constant. 
 
The characteristic of the whirl amplitude 

er)(V =η′  versus excitation frequency ratio η  for 
various values of the damping ratio D  is shown in 
Figure 3. For small damping ( D <<1), the 
maximum whirl amplitude is given to a good 
approximation by ( )D21Vmax ≈′ . The angular 
velocity at the maximum value is called critical and 
is usually assumed to be simplified to nc ωω = . 
Correspondingly, the critical speed of the Jeffcott 
rotor is ( )πω= 2n nc . 
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Figure 3. Dynamic magnification of rotor whirl 
amplitude as a function of speed for rigid bearings 
 
For an undamped rotor, we notice from Figure 3 that 
resonance occurs when nωω = . Hence, the rotor 

whirls with large amplitudes at resonance with the 
natural frequency of the stationary shaft in lateral 
vibration and hence this speed is called the "critical 
speed" of the rotor. For the Jeffcott rotor model, the 
rotor's critical speed is indistinguishable from its 
natural frequency; however, this is not generally the 
case. 
 
In summary, the following conclusions can be drawn 
from Figure 3: First of all, at driving force of lower 
or higher speed, the amplitude response is much 
smaller. But, when the running speed is equal to the 
natural frequency of the system, the amplitude is 
magnified. Theoretically, the amplitude can build up 
to infinite values. The only thing that prevents this 
build up is damping. In other words, when operating 
at or near critical speed, damping is the only way to 
control the amplitude of vibration.  
 
2. 2. Jeffcott Rotor with Flexible Bearings 
 
In the previous subsection the bearings supporting 
the rotor have been assumed to be rigid. However, 
the bearings of real shafts are more or less flexible 
and have their special dynamic characteristics. But, 
these will not be investigated here in details. More 
detailed information about the dynamic 
characteristics of bearings can be found at            
(Szeri, 1980; Childs, 1993; Kramer, 1993). 
 
In this subsection it will simply be assumed that a 
bearing can be replaced by massless springs in two 
mutually perpendicular radial directions (preferably 
horizontal and vertical) as shown in Figure 4. The 
two bearings have equal pairs of stiffnesses in 
directions 1 and 2, respectively (as shown in            
Figure 5). 
 
When 21 kk ≠ , the bearing is referred to as 
anisotropic. Using rk  as the stiffness of the shaft 
with stiff bearings, the total stiffness of the system 
of shaft and bearings, in directions 1 and 2, is 
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Hence, the equations of motion for the Jeffcott rotor 
with flexible bearings become 
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The particular solutions of the above equations can 
be found as 
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Figure 4. Schematic of  Jeffcott rotor with flexible 
bearings 
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Figure 5. Bearing stiffnesses in directions 1 and 2 

Accordingly, the disc center undergoes harmonic 
motion in directions 1 and 2, under the action of 
unbalance excitation, with a frequency equal to the 
shaft frequency and amplitudes 1ŷ  and 2ŷ  whose 
character corresponds to )(V η′  in Figure 3. 
 
The characteristic of the whirl amplitudes )(Vi η′  
versus excitation frequency ratios iη  for damping 
ratios 0Di =  is shown in Figure 6. The plot is for 

r1 k5.0k =  and r2 k2k = . Because of different 
stiffnesses the shaft has two natural frequencies 

21, ωω  that is two critical speeds 21 n,n . At the 
critical speeds the amplitude builds up to infinite 
values because of zero damping factor. The 
maximum amplitudes for small damping ( 1Di << , 

2,1i = ) are: ( )imax,i D21V ≈′ . 
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Figure 6. Dynamic magnification of rotor whirl 
amplitude as a function of speed for flexible 
bearings 
 
With rigid bearings, the disc center describes a circle 
in plane 1-2 as discussed before. This is also the case 
for isotropic flexible bearings with 21 kk = , where 

12 ŷŷ =  and 12 ε=ε . With anisotropic flexible 
bearings, that is 21 kk ≠ , the path of the disc center 
is, in general, an ellipse whose shape and major axis 
direction depends on the shaft speed. Figure 7 shows 
the orbits of the shaft center  O  with some external 
damping force 1.0D =  for r1 k5.0k = , r2 k2k = . 
Here the elliptical orbit is roughly horizontal in the 
region of first critical speed ( )2(n 11 πω≈ ), and 
roughly vertical in the region of second critical 
speed ( )2(n 22 πω≈ ). For the values 
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of 1n04.1 and 2n96.0  the orbit degenerates to a 
straight line. Below and above these speeds the 
direction of rotation of the orbit is the same as for 

the rotational speed of the shaft that is forward 
whirl. Between these values it is in backward whirl. 
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Figure 7. Orbits of the disk center O 

 
 

3.  CONCLUSIONS 
 
 

In this study the model of Jeffcott rotor was used 
from which the most important phenomena 
encountered in rotordynamics were presented.  
Knowledge of these phenomena is fundamental to an 
understanding of the behavior of complex models, 
which corresponds to the real rotors of 
turbomachines.  For a full rotordynamic analysis the 
forces due to the bearing fluid-structure-interaction, 
shaft seals, turbines and pump impellers must be 
included. 
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