
1. INTRODUCTION
Text compression plays a fundamental role in 
transferring and storing text by providing bandwidth 
optimization and significant cost savings in storage. 
Though typically applied to image data, lossy 
compression is also applicable on text.

In general, many applications benefit from text 
compression. To improve text compression rates, 
studies are carried out to determine how much 
recovery is possible with lossy compression. These 
studies have proven that human brain is capable of 
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ABSTRACT
Regardless of the source language, text documents contain significant amount of redundancy. Data 
compression exploits this redundancy to improve transmission efficiency and/or save storage space. 
Conventionally, various lossless text compression algorithms have been introduced for critical applications, 
where any loss after recovery is intolerable. For non-critical applications, i.e. where data loss to some extent 
is acceptable, one may employ lossy compression to acquire superior efficiency. We use three recent 
techniques to achieve character-oriented lossy text compression: Letter Mapping (LM), Dropped Vowels 
(DV), and Replacement of Characters (RC), and use them as a front end anticipating to improve compression 
performance of conventional compression algorithms. We implement the scheme on English and Turkish 
sample texts and compare the results. Additionally, we include performance improvement rates for these 
models when used as a front end to Huffman and Arithmetic Coding algorithms. As for the future work, we 
propose several ideas to further improve the current performance of each model.

Keywords: Lossy text compression, Letter mapping, Dropped vowels, Replacement of characters.

ÖZET

Kaynak dil her ne olursa olsun metin dosyaları, kayda değer miktarda tekrar (fazlalık) içerebilmektedir. Veri 
sıkıştırma, bu fazlalığı kullanarak ileti etkinliğini artırmayı ve bilgi depolama masrafını azaltmayı amaçlar. 
Geleneksel olarak, kodlanan verinin çözülmesi sırasında kaybın tolere edilemeyeceği kritik uygulamalarda 
kullanılmak üzere, çok çeşitli kayıpsız sıkıştırma algoritması geliştirilmiştir. Belirli bir dereceye kadar veri 
kaybının tolere edilebileceği kritik olmayan uygulamalar için, daha iyi etkinlik elde etmek adına, kayıplı 
sıkıştırma algoritmalarından faydalanılabilir. Bu çalışmada, karakter tabanlı kayıplı sıkıştırma sağlamayı 
hedefleyen üç yeni teknik - Harf eşleme (LM), düşürülen sesliler (DV), ve karakterlerin değiştirilmesi (RC) 
modelleri – kullanılarak geleneksel sıkıştırma algoritmalarının performansının iyileştirilmesi öngörülmektedir. 
Adı geçen modeller İngilizce ve Türkçe örnek metinler üzerinde çalıştırılarak sonuçları karşılaştırılmıştır. Buna 
ek olarak çalışmada, önerilen modeller Huffman Kodlaması ve Aritmetik Kodlama gibi yaygın olarak kullanılan 
geleneksel sıkıştırma algoritmalarına ön yüz olarak kullanıldığında kaydedilen performans iyileşme değerleri de 
yer almaktadır. Makale kapsamında, gelecekteki çalışmayla ilgili olarak, herbir modelin mevcut performansını 
artırmaya yönelik çeşitli öneriler de sunulmuştur.

AnahtarKelimeler: Kayıplı metin sıkıştırma, Harf eşleme, Düşürülen sesliler, Karakterlerin değiştirilmesi.
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recognizing words correctly, even if some characters 
are misspelled or missing. The ability to capture and 
fill in these (un) intentional gaps provides the basis for 
developing lossy compression tools with better rates.

Depending on the application, compression with a 
loss to some extent can well be tolerated. Take, for 
instance, a message archiving application, where even 
without exact recovery, the intended content can still 
be restored. In some other applications, such as short 
hand writing, some abbreviations can be restored 
without ambiguity. These examples are promising for 
lossy text compression to be effective.

The objective of this paper is to locate redundancy in 
text and exploit it to compress better. We particularly 
concentrate on lossy compression, which inevitably 
involves error to a certain degree. This error rate is 
calculated by the difference between original text 
prior to compression and the text recovered after 
decompression. In the field of compression, although 
tolerating errors may sound inacceptable, there are 
certain applications where reader can still understand 
the content after recovery, even though it is not a 
100% successful one. Such applications can be listed as 
-but not limited to- instant messaging, chatting, online 
journals, blogs, message archiving, etc. The human 
mind is intelligent enough to recover the meaning 
of a text even though some characters are missing or 
misspelled. The rate of success for recovery increases 
with such factors as experience, relevance to the field, 
age, interest, etc. 

2. RELATED WORK
Optimal bandwidth utilization is a critical requirement 
in network communication, and data storage. This can 
be achieved with compression, either lossless or lossy. 
Consequently, compression is an intensively studied 
field and several studies exist on text compression. For 
lossless compression, statistical properties of text play 
a fundamental role in achieving good compression 
rates: Simply the longest patterns that occur 
repeatedly in text are replaced with shorter sequences 
to provide compression. The longer this pattern gets, 
and the more frequent it occurs in text, the better gets 
the compression rate. Algorithms such as Arithmetic 
Coding (Bose and Pathak, 2006), Huffman Coding 
(Shukla et al., 2009), Prediction by Partial Matching 
(PPM) (Korodi and Tabus, 2008) all exploit this 
statistical property: repeatedly occurring text. Burrows 
Wheeler Transform (BWT) (Gilchrist and Cuhadar, 2007) 
is a slightly different algorithm, which also utilizes 
statistical properties of text, and uses permutation to 
better compress it. In addition to lossless compression, 
there are also various lossy compression approaches, 
such as transform coding that converts the input data 
to a new domain to better represent the content. The 

examples of transform coding are discrete cosine 
transform (Zhou and Chen, 2009), fractal compression 
(Jorgensen and Song, 2009), wavelet compression and 
its variations (Liu and Zhao, 2007), vector quantization 
(Kruger et al., 2008), and linear predictive coding 
(Nagarajan and Sankar, 1998).

In compression literature, several scholar works 
exists on lossy text compression. Witten et al., 
(1994a) introduce semantic and generative models 
to obtain improved text compression rates. 
(Howard, 1996) takes text as an image file and applies 
pattern matching to achieve compression. Another 
interesting approach is to replace longer words with 
their shorter synonyms (Nevill and Bell, 1992). This 
method is called thesaurus technique, and performs 
better especially in morphologically rich (inflected) 
source languages. The thesaurus method preserves 
semantics throughout text. A specific type of lossy 
compression finds itself a vast area of implementation 
in the field of programming languages: By simply 
removing multiple wildcards and/or comment lines, 
one can achieve lossy compression to significantly 
high levels.

Palit and Garain, (2006) introduce watermarking over 
lossy compressed text to provide verification of text 
ownership.

Representing text as image (called textual image) is a 
common practice in lossy compression. (Broder and 
Mitzenmacher, 1996) develop a compression scheme 
called GRID to represent text documents as gray scale 
images.  Some researchers bring together lossless and 
lossy approaches to utilize the benefits of the two:  
For example, (Witten et al.,1994b).

implement a two stage compression on image 
representation of texts. In the first stage, the authors 
apply lossy compression by matching a group of 
pixels representing certain characters in textual 
image against an adaptively built library of patterns 
seen so far. In the second stage, they use the 
reconstructed image to encode the original image 
with a statistical context-based lossless compression. 
While some of the scholar work considers lossless 
and lossy compression separately, some others, such 
as Kaufman and Klein, (2004) generate algorithms 
as a hybrid implementation and name it as semi-
lossy compression. Textual image compression has 
been addressed by the works of Ye and Cosman in 
(Ye and Cosman, 2001) and (Ye and Cosman, 2003). 
A different version of textual image compression 
relies on OCR based text image compression and is 
studied by (Shang et al., 2006).

Palaniappan and Latifi, (2007) introduce three 
simple yet effective ideas to accomplish lossy text 
compression: Letter Mapping, Dropped Vowels and 
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Replacement of Characters. The authors present 
results on English text. Our lossy text compression 
approach expands these techniques by applying 
them on Turkish text, and also combining them with 
Arithmetic Coding other than Huffman Coding. This 
simple approach gives the opportunity to explore 
many fields involving text processing. For example, 
applications such as instant messaging and e-mail 
transmission will benefit from this technique both in 
transmission time and storage space. Online diaries 
or blogs are rapidly growing and these areas can also 
benefit from the lossy text compression scheme we 
expand.

Theoretically, our design lends itself as a front end to 
any lossless compression algorithm. We anticipate 

our front end to offer compression improvement on 
lossless compression algorithms. Although this paper 
presents the execution of our scheme succeeded by 
Huffman and Arithmetic Coding, in practice, it can be 
succeeded by any lossless compression algorithm. 

3. MATERIAL AND METHODS
In the following three subsections, we revisit the 
three lossy text compression techniques and 
propose some expansions.

3. 1. Letter Mapping (LM) Method

The Letter Mapping (LM) method is simply a 
character replacement process that is applied to the 
entire text. The block diagram of LM compression is 
illustrated in Figure 1.

Figure 1. Letter mapping (LM) model flow diagram.

Figure 2. English letter frequencies.

The LM method removes a predetermined number 
of  least frequently occurring characters and replaces 
them with the most frequently occurring characters.  
For experimental work, the authors use the ordered 
letter frequencies of a typical English text in Figure 2 
(Lewand, 2000).

Not surprisingly, majority of the most frequent 
letters in English are vowels such as e, a, o, and i. We 
deliberately leave the vowels for implementing the 
next compression technique, i.e. Dropped Vowels 
(DV), and take only consonants instead. As can be 
seen from Figure 2, characters such as  t, n, s, h, 
r are likely to occur with higher probability then 
characters k, j, x, q and  z.
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While implementing this technique, our gain 
becomes two fold: First, we aim at achieving lower 
number of bits per symbol (to be referred to as 
bit rate from this point on) during encoding, i.e. 
compression to some extent. We employ Huffman 
Coding for this encoding. The overall idea behind 
Huffman Coding is that more probable characters 
are assigned shorter bits (Lee et al., 2009). Hence, by 
replacing the least frequently occurring characters 
with more frequently occurring ones, a better 
compression rate is highly likely to be achieved. 
Second, when we replace the least occurring 
characters with more frequent characters, the source 
alphabet size is reduced, in the ongoing example 
by a rate of 5 (from whole English alphabet set to 
26-5 = 21 English letters), which suggests further 
compression.

At the decoding end, decompression is applied 
on the encoded text in the hope of recovering 
the original text as much as possible. Still, the text 
recovered will most probably be erroneous due to 
the existence of misspelled words. This problem can 
easily be solved with an access to comprehensive 
dictionaries and thesauri. By running the recovered 
text through a simple spell checker, most of these 
errors can easily be removed. Deciding which words 
will be corrected with the spell checker is quite 
straightforward: Words in error would be the ones 
containing the replaced least frequent characters 
of the original text, namely k, j, x, q, and  z, in them. 
Therefore, the spell checker only needs to look 
for the words containing these characters in the 
decoding end. The spell checker module does not 
come free from complications, though. Evidently, 
spell checker does not guarantee full recovery of 
the original text, because some recovered words 
with replaced characters will not be captured by the 
spell checker. The reason for missing such words 
is that although did not occur in the original text, 
some reconstructed words may still be semantically 
correct. Take the word “try” transformed into word 
“cry” after implementing LM, for example.

While measuring the performance of LM 
compression, we have used different text documents 
to explore which application (for example E-mail 
messages, blogs, newspaper articles, etc.) is most 
suitable for LM compression with a tolerable error 
rate. The process of one-to-one mapping between 
character pairs is also varied to discover the most 
efficient text recovery. 

3. 1. 1. Compression

The compression module takes the input text, 
extracts character probabilities with a single pass 
over the text, and applies encoding, which serves 
as a front end prior to implementing lossless 
compression. The front end encoder later on 

differentiates as either letter mapping (LM), or 
dropped vowels (DV), or replacement of characters 
(RC). The compression module is finalized with 
the conventional compression algorithm. For this 
work, this algorithm is chosen as Huffman Coding. 
Following explains the internal details of the 
compression scheme.

Step 1: Read the input text. This step requires the 
entire input text to be stored in advance, instead 
of applying the process on the fly. For this reason, 
for applications that involve large amount of text 
processing, the input buffer should be held large. 

Step 2: With a single pass through input text, 
compute the frequency of each character and build 
a letter probabilities table. For example: Assume 
that Table 1 is constructed by scanning through the 
sample English text that is mentioned in Section 3.1. 
(Lewand, 2000). According to this table, the first five 
consonants with highest probability of occurrence 
are t, n, s, h, and r.

Table 1. Ordered English letter frequencies.

With simple table look up, individual probabilities 
of these letters are determined as: P(t)= 0.09056, 
P(n)= 0.06749, P(s)= 0.06327, P(h)= 0.06094, and 
P(r)= 0.05987, respectively. Similarly, the last five 
consonants with the lowest probability of occurrence 
for the same English text are k, j, x, q, and z, and their 
individual probabilities are retrieved from Table 1 
as: P(k)= 0.00772, P(j)= 0.00153, P(x)= 0.0015, P(q)= 
0.00095, and P(z)= 0.00074.

 Letter Frequency 
1 e 0.12702 
2 t 0.09056 
3 a 0.08167 
4 o 0.07507 
5 i 0.06966 
6 n 0.06749 
7 s 0.06327 
8 h 0.06094 
9 r 0.05987 
10 d 0.04253 
11 l 0.04025 
12 c 0.02782 
13 u 0.02758 
14 m 0.02406 
15 w 0.0236 
16 f 0.02228 
17 g 0.02015 
18 y 0.01974 
19 p 0.01929 
20 b 0.01492 
21 v 0.00978 
22 k 0.00772 
23 j 0.00153 
24 x 0.0015 
25 q 0.00095 
26 z 0.00074 
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Step 3: The maxNumberOfSubstitutions variable 
will represent the number of letters to be mapped. 
Set this variable to a value that is less than or equal 
to |A|/2 -where |A| is the source alphabet size-, 
because with 1:1 mapping, our scheme can map at 
most |A|/2 (least frequent letters) to (most frequent) 
letters. Using the probability values calculated in 
Step 2, replace the first most frequent letter with the 
first letter in the least frequent letters list, replace 
the 2nd most frequent letter with the next letter 
in the least frequent letter list, until the end of the 
list is reached. The end of list is determined by the 
value of numberOfSubstitutions variable, that was 
initialized earlier in Step 3. As an example: Assume 
numberOfSubstitutions=5. Then, in the ongoing 
example our scheme will take the least frequent 
letters in the original text as (k, j, x, q, z) and replace 
them with (t , n,  s, h, r) in the given order. Therefore, 
the 1:1 mapping will replace k with t, j with n, x with 
s, q with h and z with r. 

Step 4 : Compress the encoded sequence using a 
standard compression method such as Huffman 
Algorithm or Arithmetic Coding.  

3. 1. 2. Decompression

The decompression module takes the compressed 
text from compression module and applies 
decompression on it to achieve initial recovery. After, 
a spell checking submodule is employed in the hope 
of recovering as closer to the original text as possible. 
Since this is a lossy compression scheme, we do not 
expect a perfect recovery. Still, using spell checker 
is beneficial and removes a significant amount of 
erroneous characters. The following summarizes the 
tasks of the decompression module.

Step 1 : Decompress the received text and send it to 
a spell checker.

Step 2 : The spell checker corrects the errors. The 
authors want to remind at this point the fact that 
this correction does not guarantee 100% recovery of 
the original text. The recovered text may contain a 
significant amount of false positives with incorrectly 
recovered meaningful words, which did not exist in 
the original text before LM encoding. This ambiguity 
arises from the nature of the source language itself: 
Some words are syntactically very close to each 
other, although their meanings are completely 
different, such as words “far” and “car” in English. 
Still, this is not of main concern for our scheme, 
because it targets lossy compression, not a lossless 
compression. If further correction is required, a 
human tester or a semantic parser can be used in a 
second round to clarify such ambiguities.

3. 2. Dropped Vowels (DV) Method

In a typical English text, the ratio of vowels to 

consonants is approx. 58% (Pollo et al., 2005), while 
for Turkish it is calculated as 76.46% on average 
for the 4 sample text from test set. Hence, for 
both source languages, the vowels occur with a 
surprisingly high frequency throughout the text. 
This is not only important in the written text, but also 
in speech processing studies, because this property 
helps improve audibility for the hearing impaired 
(Kewley-Port et al., 2007).

The idea we use for dropped vowels (DV) method 
is quite simple: If we drop all vowels from text, it 
will disrupt the readability of the entire text. Still, 
the original text can be fully or partially recovered 
by using a spell checker. And, if applied to the 
entire text, the context help us place best probable 
characters into unknown slots.

The flow diagram of DV model is very similar to that 
of LM model (Figure 1). Since vowels occur with 
significantly high frequency in a typical English text, if 
the vowels were dropped from the text, a significant 
increase in the compression is achieved due to their 
frequency of occurrence. But we cannot drop all the 
vowels to get the best compression, as with all the 
vowels dropped, the problem of recovering the word 
again will be much harder. Under this restriction, we 
replace all vowels with a special character, e.g. the 
blank character ‘ ’, or with one single vowel, say the 
letter ‘e’ (Choosing letter “e” is for a twofold gain: 
First, ‘e’ is the most frequent letter in the sample text, 
so will help yield better compression rates. Second, 
because some vowel to vowel encodings will be 
letter ‘e’ to letter ‘e’ mappings, this will not have to 
be corrected with spell checker). Although both 
approaches will give the same compression rate 
and bit rate, replacing all vowels with the letter ‘e’ 
will yield a better error recovery rate. We then apply 
Huffman Coding as the compression tool to further 
compress the DV encoded text. With DV model, we 
obtain a reduced bit rate because instead of using 
the full alphabet letters as 26 characters, we use only 
22 after encoding. At the decompression side, the 
first step, i.e. decompression is similar to that of LM 
method. In step 2, we use the spell checker again, in 
the hope for full recovery, which is not guaranteed 
always.

We propose transforming the dropped vowels 
(DV) model into a lossless compression scheme           
(Figure 3):

During compression, while performing all vowels to 
vowel “e” (or blank character) replacement, we can 
use a place holder to remember what the original 
vowel was. This is required for correct recovery in 
the decompression end. For this purpose, we record 
every vowel replacement in an auxiliary file with the 
extra information on what the original vowel was 
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and send this file with the compressed file to the 
recipient.

On the receiving end, we no longer need the spell 
checker. We use auxiliary file for full recovery. So, the 

scheme becomes lossless. This brings an overhead 
of preparing and transferring the auxiliary file, which 
may get too large as the input size gets bigger.

Figure 3. Modified dropped vowel (DV) model flow.

3. 3. Replacement of Characters (RC) Method

Based on previous work by Palaniappan and Latifi, 
2007 we use the third compression model as 
Replacement of Characters (RC). This method exploits 
the well-known shorthand technique: Simulating a 
secretary taking notes, we represent a combination 
of several characters as one character. Determining 
which characters to combine, and which character 
to use to represent this combination is quite flexible. 
This allows us to reduce the number of characters 
to be processed in advance. To further improve RC 
encoding, we replace capital letters with lower case 
letters and thereby subtracting 26 characters from 
the alphabet size. This provides improvement in bit 
rate, as well.

As was the case with dropped vowels (DV) model, 
the RC model also inherits the similar flow diagram 
from letter mapping (LM) model. The only part that 
differs is the actual encoding itself.

The recovered text may be highly erroneous; still this 
could be acceptable as long as one can understand 
it. RC type of lossy compression is more suitable for 
applications where ability to read the content is 
more important than the text itself. Therefore, this 
technique uses less space to store the same amount 
of information.

3. 4. Comparison of Three Models

The LM model compares to the DV model in two 
aspects: One, the former is a lossy compression 
scheme, while the latter can be easily transformed 
into a lossless compression scheme with the 
proposed modification (Figure 3). Still, LM model 
could be preferable because it does not require the 
extra preparation and transfer of the auxiliary file, 

which may grow too large in proportion with the 
original text size. Second, the performance of the LM 
model will differ how frequently the most and least 
frequent letters occur in the given text. Likewise, the 
performance of the DV model will differ based on 
the vowel to consonant ratio in the given text, which 
might differ significantly from one text to another.

The performance of the RC model depends on 
which character set we encode with a single symbol. 
Due to the flexibility offered, this model is the 
most promising one among the three. Because as 
a theoretical extreme, we can even represent the 
whole text with one letter, which may never be the 
case with LM or DV models.

In practice, all three models are prone to fluctuations 
in terms of compression performance.

In the next section, we present compression rates 
obtained with three lossy compression techniques 
on English and Turkish sample texts and their 
comparisons.

4. EXPERIMENTAL WORK AND RESULTS
To compare compression performances of each 
technique, we compiled English and Turkish test 
sets of 10 and 4 texts from a variety of domains, 
respectively.

4. 1. Compression Performances

Our design is a front end that can precede any 
lossless compression algorithm. We present 
implementation results on the two most common 
conventional lossless compression algorithms: 
Huffman and Arithmetic Coding. For English, we 
first run plain Huffman Coding on each text of the 
test set. After, we run our scheme with each of the 
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Figure 4. Compression improvement chart for LM, DV and RC models on English.

Figure 5. Models + Huffman Algorithm on Turkish.

3 models as LM, DV, and RC succeeded by Huffman 
Coding on the same test set. We then computed the 
rate of improvement on Huffman compression and 
plot the chart in Figure 4.

Figure 4 shows that each model behaves differently 
on individual elements of the test set. This 
result supports our anticipation: Performance 
improvement (or degradation) relies basically on 
the nature of the text: For LM model, it depends 
on the statistical distribution of the most and least 
frequent letters, for DV model the ratio of vowels 
to consonants, and for RC model, the statistical 
distribution of what we choose as the short hand 
representation(s). These distributions are obviously 
different in elements of the test set; which explains 
differences even in the same model.

Figure 4 also shows that for English, the best model 
among the three is RC model, which performs better 
for most of the text files. The results for text1 are very 
different from the rest of the test results. This implies 
that text1 is not suitable for RC encoding. DV model 
is the next best model after RC model, and LM is the 
least performing model in terms of compression 
improvement. These results conform to our earlier 
expectations, as we explained in Section 3.4 as the 

extreme case, where RC encodes the whole text with 
one single character.

We repeated experiments by employing three 
models as a front end to Huffman Coding on Turkish 
test set. We further expanded the scheme to serve 
as a front end to Arithmetic Coding, as well. Figure 
5 presents the compression rate (bpc) values on 
Turkish test set for Huffman Coding. 

Figure 5 shows that when applied as a front end 
to Huffman, each model yields better performance 
than that of plain Huffman compression. DV model 
performs best for each Turkish text, while RC model 
performs consistently poorer. This can be explained 
as the characteristic difference between source 
languages: For English, we can find more letter 
sequences that appear multiple times in text, while 
for Turkish, there is not that many such occurrences 
to exploit for the RC model. Also, the Turkish test set 
apparently has less redundancy than English test 
set. By expanding test sets to include more texts that 
are representative of more domains, this difference 
can be better explained. Using each model as the 
front end and Arithmetic Coding as the compression 
algorithm, we obtained the bpc values in Figure 6 on 
Turkish texts.
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Figure 6. Models + Arithmetic  Coding on Turkish.

As seen in Figure 6, although performs poorer 
(higher bpc rates) than Huffman algorithm, results 
with Arithmetic Coding are similar to that of 
Huffman algorithm. On average, the percentage of 
improvement with DV model with Arithmetic Coding 
is 19.16%, which is very close to the corresponding 
value (20.76%) with Huffman algorithm. 

4. 2. Information Theoretical Comparison
If we do not employ any encoding, the input to 
the compression algorithm will contain the entire 
source alphabet, with each alphabet letter having 
a different probability of occurrence. When we 
apply Huffman Coding as the compression tool, 
it assigns a unique binary code to each alphabet 
letter, based on its frequency of occurrence. To 
measure the performance of a coding scheme, we 
use three standard measures as entropy (H),  bit rate 
(l), and redundancy (R), whose formula are given as 
(Palaniappan and Latifi, 2007):

                    (1)

                    (2)

                   (3)

Redundancy is a measure to determine how much 
more a text can still be compressed. If we compute 
redundancy before and after a certain encoding, we 
expect it to be lower to conclude that the encoding 
achieved a good level of redundancy.

Table 2 shows the calculation of entropy and bit rate 
values for the English sample text, for which letter 
statistics were given earlier (Figure 2 and Table 1).
 
Initially, we apply plain Huffman Coding to the 
sample text to calculate the redundancy value. Then, 
by employing each of the three encodings as LM, DV, 
and RC, we compute their redundancy levels as well 
and compare them with that of plain Huffman.

In Table 2, calculation of redundancy (R) involves 
bit rate (l), which involves code length (l

i
). The 

code length calculation requires constructing the 
Huffman tree with minimal code lengths.

As seen from Table 2, the bit rate for plain Huffman 
is                                  =4.2101 bpc for the sample text. 
Hence, redundancy for plain Huffman is calculated 

Similarly, we compute entropy (H), bit rate (l), and 
redundancy (R) values for LM and DV models. These 
values can be seen at Table 3, where all values are 
measured in bpc.

When LM encoding is used as a front end to 
Huffman algorithm, the alphabet size is reduced 
by the number of characters being mapped. This 
helps us obtain better performance than that of 
plain Huffman compression. The increased level of 
redundancy from 0.0343 bpc to 0.351 bpc in Table 3 
verifies that justification.

According to Table 3, DV encoding yields even better 
performance (with highest level of redundancy as 
0.0622 bpc) because it removes certain number 
of (5 for the ongoing experiment) characters with 
lower probability, and replaces each with one single 
symbol (letter ‘e’ in this experiment). Therefore, 
the number of bits required to code the alphabet 
becomes less. Furthermore, since letter ‘e’ is also 
the most frequent letter in the text, it helps improve 
the compression performance. The calculation of 
redundancy for RC encoding is deliberately not 
included here. Because of the flexibility of encoding 
it provides, one can obtain different compression 
rates, so there is no fixed compression rate for the RC 
model. Repeating entropy and bit rate calculations 
on the sample Turkish text trk1.txt (which is a daily 
newspaper article) we obtained the values in Table 4.

E. Celikel Cankaya, V. Palaniappan and S. Latifi

as R =  4.21008 - 4.1758 = 0.0343 bpc.
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Table 2. Entropy & Bit rate for sample text (English).

Table 3. Redundancy values for each model (English).

Table 4. Entropy & Bit rate for sample text (Turkish).

Exploiting Redundancy to Achieve Lossy Text Compression

Compression Model Bit rate (l) Entropy (H) Redundancy (R) 
Plain Huffman 4.2101 4.1758 0.0343 
LM + Huffman 4.1373 4.1022 0.0351 
DV + Huffman 3.4040 3.3418 0.0622 
 

Letteri 
P(letteri) log2(P(letteri)) Entropy: H(letteri)  code length (li) Huffman code 

Bit rate:     P(letteri) 
x li 

e 0.12702 -2.977 0.378 3 110 0.38106 
t 0.09056 -3.465 0.314 3 100 0.27168 
a 0.08167 -3.614 0.295 4 0100 0.32668 
o 0.07507 -3.736 0.280 4 0110 0.30028 
i 0.06966 -3.844 0.268 4 0000 0.27864 
n 0.06749 -3.889 0.262 4 0001 0.26996 
s 0.06327 -3.982 0.252 4 0010 0.25308 
h 0.06094 -4.036 0.246 4 1110 0.24376 
r 0.05987 -4.062 0.243 4 1010 0.23948 
d 0.04253 -4.555 0.194 5 01010 0.21265 
l 0.04025 -4.635 0.187 5 01110 0.20125 
c 0.02782 -5.168 0.144 5 00110 0.1391 
u 0.02758 -5.180 0.143 5 00111 0.1379 
m 0.02406 -5.377 0.129 5 11110 0.1203 
w 0.0236 -5.405 0.128 5 10110 0.118 
f 0.02228 -5.488 0.122 5 10111 0.1114 
G 0.02015 -5.633 0.114 6 010110 0.1209 
y 0.01974 -5.663 0.112 6 010111 0.11844 
p 0.01929 -5.696 0.110 6 011110 0.11574 
b 0.01492 -6.067 0.091 6 111110 0.08952 
v 0.00978 -6.676 0.065 7 0111110 0.06846 
k 0.00772 -7.017 0.054 7 1111110 0.05404 
j 0.00153 -9.352 0.014 8 01111110 0.01224 
x 0.0015 -9.381 0.014 8 01111111 0.012 
q 0.00095 -10.040 0.010 8 11111110 0.0076 
z 0.00074 -10.400 0.008 8 11111111 0.00592 
Sum 1.00000  4.1758    4.21008 

 

Letteri P(letteri) 
log2(P(letteri)) 

Entropy: 
H(letteri)  code length (li) Huffman code 

Bit rate:    P(letteri) 
x li 

a 0.1439 -2.797 0.402 3 100 0.4318 
e 0.0821 -3.607 0.296 4 1010 0.3284 
n 0.0714 -3.807 0.272 4 0110 0.2857 
i 0.0672 -3.896 0.262 4 0011 0.2687 
r 0.0672 -3.896 0.262 4 0100 0.2687 
l 0.0544 -4.201 0.228 4 0001 0.2175 
k 0.0533 -4.230 0.225 4 0000 0.2132 
i 0.0480 -4.382 0.210 5 11111 0.2399 
s 0.0469 -4.414 0.207 5 11110 0.2345 
b 0.0458 -4.447 0.204 5 11101 0.2292 
d 0.0405 -4.626 0.187 5 10110 0.2026 
u 0.0405 -4.626 0.187 5 10111 0.2026 
m 0.0352 -4.829 0.170 5 01011 0.1759 
y 0.0352 -4.829 0.170 5 01110 0.1759 
t 0.0320 -4.967 0.159 5 00101 0.1599 
ü 0.0192 -5.704 0.109 6 111000 0.1151 
o 0.0181 -5.786 0.105 6 011111 0.1087 
h 0.0171 -5.873 0.100 6 011110 0.1023 
ş 0.0171 -5.873 0.100 6 010101 0.1023 
ç 0.0128 -6.288 0.080 6 001000 0.0768 
g 0.0128 -6.288 0.080 6 001001 0.0768 
z 0.0128 -6.288 0.080 7 1110011 0.0896 
p 0.0075 -7.066 0.053 7 0101000 0.0522 
c 0.0043 -7.873 0.034 8 01010010 0.0341 
ö 0.0043 -7.873 0.034 8 01010011 0.0341 
v 0.0043 -7.873 0.034 8 11100100 0.0341 
f 0.0032 -8.288 0.027 9 111001010 0.0288 
ğ 0.0032 -8.288 0.027 9 111001011 0.0288 
j 0.0000   0.000       
Sum 1.0000   4.2518     4.4893 
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Using equations 1,2, and 3 we can compute the 
redundancy value for plain Huffman on sample 
Turkish text as R = 4.4893 – 4.2518 = 0.2375. 

A drawback of our scheme is that, the better we get 
in compression, the higher gets the error rate, which 
is measured as the number of false positives after 
decompression. Figure 7 illustrates the compression 
improvement vs. error rate for English test set.

 

Figure 7. Compression improvement vs. Error rate (English).

Apparently, our scheme achieves better compression 
improvements to the expense of losing from 
recovered text accuracy.

5. CONCLUSION
This work presents three novel models for lossy text 
compression to achieve better compression rates. 
Regardless of the implementation details, each model 
simply introduces a front end encoding mechanism 
that can be complemented with a conventional 
lossless compression scheme afterwards. The paper 
utilizes Huffman algorithm and Arithmetic Coding 
for this purpose.

The first model introduced is letter mapping (LM) 
and replaces a certain number of the least frequent 
letters with the same number of most frequent letters 
on a 1:1 mapping basis. The second model is called 
dropped vowel (DV) technique, and simply replaces 
vowels of the source language with one single 
character. The third model is called replacement of 
characters (RC) model and based on the idea of short 
hand representation of long sequences of characters 
with one single symbol. The determination of this 
sequence is left to the user’s discretion; therefore 
this scheme is highly probable to outperform the 
former two models.

We present experimental work on each model for 
English and Turkish test sets and demonstrate that in 
terms of compression rates, the models are ordered 
as RC, DV, and LM for English; and DV, RC, and LM for 
Turkish from best to worst performance. 

6. FUTURE WORK
To decrease the false positives that we may 
encounter during LM compression, we suggest 
combining this model with a second pass, through 
which a human tester or an automated semantic 
parser detects semantically ambiguous words 
and corrects them. This idea is very promising and 
introduces a new edge to our work: The possibility 
of combining it with a natural language processing 
(NLP) implementation.

Due to the characteristics of three techniques 
employed, i.e. letter mapping (LM), dropped 
vowels (DV) and replacement of characters (RC), 
they yield different performances on different 
source languages. So, another avenue that we will 
further our work on is to apply these models on 
different source languages other than English and 
Turkish, and compare compression performances. 
This may help us introduce a new parameter to 
cross-language comparison studies.

Although we employed Huffman and Arithmetic 
Coding, theoretically, the compression module 
succeeding the encoder can be replaced with 
any lossless compression algorithm. So, as part of 
future work, we will employ several other lossless 
compression algorithms and measure the rate of 
performance improvement. 
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