
1. INTRODUCTION
Text compression plays a fundamental role in
transferring and storing text by providing bandwidth
optimization and significant cost savings in storage.
Though typically applied to image data, lossy
compression is also applicable on text.

In general, many applications benefit from text
compression. To improve text compression rates,
studies are carried out to determine how much
recovery is possible with lossy compression. These
studies have proven that human brain is capable of

Exploiting Redundancy to Achieve Lossy Text Compression

Fazlalıktan Yararlanarak Kayıplı Metin Sıkıştırma Gerçekleştirimi

Ebru CELIKEL CANKAYAa*, Venka PALANIAPPANb ve Shahram LATIFIc

aUniversity of North Texas, Dept. of Computer Science and Engineering, Denton, TX, USA, 76207
bUniversity of Nevada Las Vegas, Electrical & Comp. Eng. Dept., Las Vegas, NV, USA, 89154
cUniversity of Nevada Las Vegas, Electrical & Comp. Eng. Dept., Las Vegas, NV, USA, 89154

Geliş Tarihi/Received : 11.01.2010, Kabul Tarihi/Accepted : 06.05.2010

ABSTRACT
Regardless of the source language, text documents contain significant amount of redundancy. Data
compression exploits this redundancy to improve transmission efficiency and/or save storage space.
Conventionally, various lossless text compression algorithms have been introduced for critical applications,
where any loss after recovery is intolerable. For non-critical applications, i.e. where data loss to some extent
is acceptable, one may employ lossy compression to acquire superior efficiency. We use three recent
techniques to achieve character-oriented lossy text compression: Letter Mapping (LM), Dropped Vowels
(DV), and Replacement of Characters (RC), and use them as a front end anticipating to improve compression
performance of conventional compression algorithms. We implement the scheme on English and Turkish
sample texts and compare the results. Additionally, we include performance improvement rates for these
models when used as a front end to Huffman and Arithmetic Coding algorithms. As for the future work, we
propose several ideas to further improve the current performance of each model.

Keywords: Lossy text compression, Letter mapping, Dropped vowels, Replacement of characters.

ÖZET

Kaynak dil her ne olursa olsun metin dosyaları, kayda değer miktarda tekrar (fazlalık) içerebilmektedir. Veri
sıkıştırma, bu fazlalığı kullanarak ileti etkinliğini artırmayı ve bilgi depolama masrafını azaltmayı amaçlar.
Geleneksel olarak, kodlanan verinin çözülmesi sırasında kaybın tolere edilemeyeceği kritik uygulamalarda
kullanılmak üzere, çok çeşitli kayıpsız sıkıştırma algoritması geliştirilmiştir. Belirli bir dereceye kadar veri
kaybının tolere edilebileceği kritik olmayan uygulamalar için, daha iyi etkinlik elde etmek adına, kayıplı
sıkıştırma algoritmalarından faydalanılabilir. Bu çalışmada, karakter tabanlı kayıplı sıkıştırma sağlamayı
hedefleyen üç yeni teknik - Harf eşleme (LM), düşürülen sesliler (DV), ve karakterlerin değiştirilmesi (RC)
modelleri – kullanılarak geleneksel sıkıştırma algoritmalarının performansının iyileştirilmesi öngörülmektedir.
Adı geçen modeller İngilizce ve Türkçe örnek metinler üzerinde çalıştırılarak sonuçları karşılaştırılmıştır. Buna
ek olarak çalışmada, önerilen modeller Huffman Kodlaması ve Aritmetik Kodlama gibi yaygın olarak kullanılan
geleneksel sıkıştırma algoritmalarına ön yüz olarak kullanıldığında kaydedilen performans iyileşme değerleri de
yer almaktadır. Makale kapsamında, gelecekteki çalışmayla ilgili olarak, herbir modelin mevcut performansını
artırmaya yönelik çeşitli öneriler de sunulmuştur.

AnahtarKelimeler: Kayıplı metin sıkıştırma, Harf eşleme, Düşürülen sesliler, Karakterlerin değiştirilmesi.

* Yazışılan yazar/Corresponding author. E-posta adresi/E-mail address : ecelikel@cs.unt.edu (E. Çelikel)

Pamukkale Üniversitesi
Mühendislik Bilimleri Dergisi
Cilt 16, Sayı 3, 2010, Sayfa 235-245

235

recognizing words correctly, even if some characters
are misspelled or missing. The ability to capture and
fill in these (un) intentional gaps provides the basis for
developing lossy compression tools with better rates.

Depending on the application, compression with a
loss to some extent can well be tolerated. Take, for
instance, a message archiving application, where even
without exact recovery, the intended content can still
be restored. In some other applications, such as short
hand writing, some abbreviations can be restored
without ambiguity. These examples are promising for
lossy text compression to be effective.

The objective of this paper is to locate redundancy in
text and exploit it to compress better. We particularly
concentrate on lossy compression, which inevitably
involves error to a certain degree. This error rate is
calculated by the difference between original text
prior to compression and the text recovered after
decompression. In the field of compression, although
tolerating errors may sound inacceptable, there are
certain applications where reader can still understand
the content after recovery, even though it is not a
100% successful one. Such applications can be listed as
-but not limited to- instant messaging, chatting, online
journals, blogs, message archiving, etc. The human
mind is intelligent enough to recover the meaning
of a text even though some characters are missing or
misspelled. The rate of success for recovery increases
with such factors as experience, relevance to the field,
age, interest, etc.

2. RELATED WORK
Optimal bandwidth utilization is a critical requirement
in network communication, and data storage. This can
be achieved with compression, either lossless or lossy.
Consequently, compression is an intensively studied
field and several studies exist on text compression. For
lossless compression, statistical properties of text play
a fundamental role in achieving good compression
rates: Simply the longest patterns that occur
repeatedly in text are replaced with shorter sequences
to provide compression. The longer this pattern gets,
and the more frequent it occurs in text, the better gets
the compression rate. Algorithms such as Arithmetic
Coding (Bose and Pathak, 2006), Huffman Coding
(Shukla et al., 2009), Prediction by Partial Matching
(PPM) (Korodi and Tabus, 2008) all exploit this
statistical property: repeatedly occurring text. Burrows
Wheeler Transform (BWT) (Gilchrist and Cuhadar, 2007)
is a slightly different algorithm, which also utilizes
statistical properties of text, and uses permutation to
better compress it. In addition to lossless compression,
there are also various lossy compression approaches,
such as transform coding that converts the input data
to a new domain to better represent the content. The

examples of transform coding are discrete cosine
transform (Zhou and Chen, 2009), fractal compression
(Jorgensen and Song, 2009), wavelet compression and
its variations (Liu and Zhao, 2007), vector quantization
(Kruger et al., 2008), and linear predictive coding
(Nagarajan and Sankar, 1998).

In compression literature, several scholar works
exists on lossy text compression. Witten et al.,
(1994a) introduce semantic and generative models
to obtain improved text compression rates.
(Howard, 1996) takes text as an image file and applies
pattern matching to achieve compression. Another
interesting approach is to replace longer words with
their shorter synonyms (Nevill and Bell, 1992). This
method is called thesaurus technique, and performs
better especially in morphologically rich (inflected)
source languages. The thesaurus method preserves
semantics throughout text. A specific type of lossy
compression finds itself a vast area of implementation
in the field of programming languages: By simply
removing multiple wildcards and/or comment lines,
one can achieve lossy compression to significantly
high levels.

Palit and Garain, (2006) introduce watermarking over
lossy compressed text to provide verification of text
ownership.

Representing text as image (called textual image) is a
common practice in lossy compression. (Broder and
Mitzenmacher, 1996) develop a compression scheme
called GRID to represent text documents as gray scale
images. Some researchers bring together lossless and
lossy approaches to utilize the benefits of the two:
For example, (Witten et al.,1994b).

implement a two stage compression on image
representation of texts. In the first stage, the authors
apply lossy compression by matching a group of
pixels representing certain characters in textual
image against an adaptively built library of patterns
seen so far. In the second stage, they use the
reconstructed image to encode the original image
with a statistical context-based lossless compression.
While some of the scholar work considers lossless
and lossy compression separately, some others, such
as Kaufman and Klein, (2004) generate algorithms
as a hybrid implementation and name it as semi-
lossy compression. Textual image compression has
been addressed by the works of Ye and Cosman in
(Ye and Cosman, 2001) and (Ye and Cosman, 2003).
A different version of textual image compression
relies on OCR based text image compression and is
studied by (Shang et al., 2006).

Palaniappan and Latifi, (2007) introduce three
simple yet effective ideas to accomplish lossy text
compression: Letter Mapping, Dropped Vowels and

236

Pamukkale University, Journal of Engineering Sciences, Vol. 16, No. 3, 2010

E. Celikel Cankaya, V. Palaniappan and S. Latifi

237

Pamukkale Üniversitesi, Mühendislik Bilimleri Dergisi, Cilt 16, Sayı 3, 2010

Exploiting Redundancy to Achieve Lossy Text Compression

Replacement of Characters. The authors present
results on English text. Our lossy text compression
approach expands these techniques by applying
them on Turkish text, and also combining them with
Arithmetic Coding other than Huffman Coding. This
simple approach gives the opportunity to explore
many fields involving text processing. For example,
applications such as instant messaging and e-mail
transmission will benefit from this technique both in
transmission time and storage space. Online diaries
or blogs are rapidly growing and these areas can also
benefit from the lossy text compression scheme we
expand.

Theoretically, our design lends itself as a front end to
any lossless compression algorithm. We anticipate

our front end to offer compression improvement on
lossless compression algorithms. Although this paper
presents the execution of our scheme succeeded by
Huffman and Arithmetic Coding, in practice, it can be
succeeded by any lossless compression algorithm.

3. MATERIAL AND METHODS
In the following three subsections, we revisit the
three lossy text compression techniques and
propose some expansions.

3. 1. Letter Mapping (LM) Method

The Letter Mapping (LM) method is simply a
character replacement process that is applied to the
entire text. The block diagram of LM compression is
illustrated in Figure 1.

Figure 1. Letter mapping (LM) model flow diagram.

Figure 2. English letter frequencies.

The LM method removes a predetermined number
of least frequently occurring characters and replaces
them with the most frequently occurring characters.
For experimental work, the authors use the ordered
letter frequencies of a typical English text in Figure 2
(Lewand, 2000).

Not surprisingly, majority of the most frequent
letters in English are vowels such as e, a, o, and i. We
deliberately leave the vowels for implementing the
next compression technique, i.e. Dropped Vowels
(DV), and take only consonants instead. As can be
seen from Figure 2, characters such as t, n, s, h,
r are likely to occur with higher probability then
characters k, j, x, q and z.

238

Pamukkale University, Journal of Engineering Sciences, Vol. 16, No. 3, 2010

While implementing this technique, our gain
becomes two fold: First, we aim at achieving lower
number of bits per symbol (to be referred to as
bit rate from this point on) during encoding, i.e.
compression to some extent. We employ Huffman
Coding for this encoding. The overall idea behind
Huffman Coding is that more probable characters
are assigned shorter bits (Lee et al., 2009). Hence, by
replacing the least frequently occurring characters
with more frequently occurring ones, a better
compression rate is highly likely to be achieved.
Second, when we replace the least occurring
characters with more frequent characters, the source
alphabet size is reduced, in the ongoing example
by a rate of 5 (from whole English alphabet set to
26-5 = 21 English letters), which suggests further
compression.

At the decoding end, decompression is applied
on the encoded text in the hope of recovering
the original text as much as possible. Still, the text
recovered will most probably be erroneous due to
the existence of misspelled words. This problem can
easily be solved with an access to comprehensive
dictionaries and thesauri. By running the recovered
text through a simple spell checker, most of these
errors can easily be removed. Deciding which words
will be corrected with the spell checker is quite
straightforward: Words in error would be the ones
containing the replaced least frequent characters
of the original text, namely k, j, x, q, and z, in them.
Therefore, the spell checker only needs to look
for the words containing these characters in the
decoding end. The spell checker module does not
come free from complications, though. Evidently,
spell checker does not guarantee full recovery of
the original text, because some recovered words
with replaced characters will not be captured by the
spell checker. The reason for missing such words
is that although did not occur in the original text,
some reconstructed words may still be semantically
correct. Take the word “try” transformed into word
“cry” after implementing LM, for example.

While measuring the performance of LM
compression, we have used different text documents
to explore which application (for example E-mail
messages, blogs, newspaper articles, etc.) is most
suitable for LM compression with a tolerable error
rate. The process of one-to-one mapping between
character pairs is also varied to discover the most
efficient text recovery.

3. 1. 1. Compression

The compression module takes the input text,
extracts character probabilities with a single pass
over the text, and applies encoding, which serves
as a front end prior to implementing lossless
compression. The front end encoder later on

differentiates as either letter mapping (LM), or
dropped vowels (DV), or replacement of characters
(RC). The compression module is finalized with
the conventional compression algorithm. For this
work, this algorithm is chosen as Huffman Coding.
Following explains the internal details of the
compression scheme.

Step 1: Read the input text. This step requires the
entire input text to be stored in advance, instead
of applying the process on the fly. For this reason,
for applications that involve large amount of text
processing, the input buffer should be held large.

Step 2: With a single pass through input text,
compute the frequency of each character and build
a letter probabilities table. For example: Assume
that Table 1 is constructed by scanning through the
sample English text that is mentioned in Section 3.1.
(Lewand, 2000). According to this table, the first five
consonants with highest probability of occurrence
are t, n, s, h, and r.

Table 1. Ordered English letter frequencies.

With simple table look up, individual probabilities
of these letters are determined as: P(t)= 0.09056,
P(n)= 0.06749, P(s)= 0.06327, P(h)= 0.06094, and
P(r)= 0.05987, respectively. Similarly, the last five
consonants with the lowest probability of occurrence
for the same English text are k, j, x, q, and z, and their
individual probabilities are retrieved from Table 1
as: P(k)= 0.00772, P(j)= 0.00153, P(x)= 0.0015, P(q)=
0.00095, and P(z)= 0.00074.

 Letter Frequency
1 e 0.12702
2 t 0.09056
3 a 0.08167
4 o 0.07507
5 i 0.06966
6 n 0.06749
7 s 0.06327
8 h 0.06094
9 r 0.05987
10 d 0.04253
11 l 0.04025
12 c 0.02782
13 u 0.02758
14 m 0.02406
15 w 0.0236
16 f 0.02228
17 g 0.02015
18 y 0.01974
19 p 0.01929
20 b 0.01492
21 v 0.00978
22 k 0.00772
23 j 0.00153
24 x 0.0015
25 q 0.00095
26 z 0.00074

E. Celikel Cankaya, V. Palaniappan and S. Latifi

239

Pamukkale Üniversitesi, Mühendislik Bilimleri Dergisi, Cilt 16, Sayı 3, 2010

Step 3: The maxNumberOfSubstitutions variable
will represent the number of letters to be mapped.
Set this variable to a value that is less than or equal
to |A|/2 -where |A| is the source alphabet size-,
because with 1:1 mapping, our scheme can map at
most |A|/2 (least frequent letters) to (most frequent)
letters. Using the probability values calculated in
Step 2, replace the first most frequent letter with the
first letter in the least frequent letters list, replace
the 2nd most frequent letter with the next letter
in the least frequent letter list, until the end of the
list is reached. The end of list is determined by the
value of numberOfSubstitutions variable, that was
initialized earlier in Step 3. As an example: Assume
numberOfSubstitutions=5. Then, in the ongoing
example our scheme will take the least frequent
letters in the original text as (k, j, x, q, z) and replace
them with (t , n, s, h, r) in the given order. Therefore,
the 1:1 mapping will replace k with t, j with n, x with
s, q with h and z with r.

Step 4 : Compress the encoded sequence using a
standard compression method such as Huffman
Algorithm or Arithmetic Coding.

3. 1. 2. Decompression

The decompression module takes the compressed
text from compression module and applies
decompression on it to achieve initial recovery. After,
a spell checking submodule is employed in the hope
of recovering as closer to the original text as possible.
Since this is a lossy compression scheme, we do not
expect a perfect recovery. Still, using spell checker
is beneficial and removes a significant amount of
erroneous characters. The following summarizes the
tasks of the decompression module.

Step 1 : Decompress the received text and send it to
a spell checker.

Step 2 : The spell checker corrects the errors. The
authors want to remind at this point the fact that
this correction does not guarantee 100% recovery of
the original text. The recovered text may contain a
significant amount of false positives with incorrectly
recovered meaningful words, which did not exist in
the original text before LM encoding. This ambiguity
arises from the nature of the source language itself:
Some words are syntactically very close to each
other, although their meanings are completely
different, such as words “far” and “car” in English.
Still, this is not of main concern for our scheme,
because it targets lossy compression, not a lossless
compression. If further correction is required, a
human tester or a semantic parser can be used in a
second round to clarify such ambiguities.

3. 2. Dropped Vowels (DV) Method

In a typical English text, the ratio of vowels to

consonants is approx. 58% (Pollo et al., 2005), while
for Turkish it is calculated as 76.46% on average
for the 4 sample text from test set. Hence, for
both source languages, the vowels occur with a
surprisingly high frequency throughout the text.
This is not only important in the written text, but also
in speech processing studies, because this property
helps improve audibility for the hearing impaired
(Kewley-Port et al., 2007).

The idea we use for dropped vowels (DV) method
is quite simple: If we drop all vowels from text, it
will disrupt the readability of the entire text. Still,
the original text can be fully or partially recovered
by using a spell checker. And, if applied to the
entire text, the context help us place best probable
characters into unknown slots.

The flow diagram of DV model is very similar to that
of LM model (Figure 1). Since vowels occur with
significantly high frequency in a typical English text, if
the vowels were dropped from the text, a significant
increase in the compression is achieved due to their
frequency of occurrence. But we cannot drop all the
vowels to get the best compression, as with all the
vowels dropped, the problem of recovering the word
again will be much harder. Under this restriction, we
replace all vowels with a special character, e.g. the
blank character ‘ ’, or with one single vowel, say the
letter ‘e’ (Choosing letter “e” is for a twofold gain:
First, ‘e’ is the most frequent letter in the sample text,
so will help yield better compression rates. Second,
because some vowel to vowel encodings will be
letter ‘e’ to letter ‘e’ mappings, this will not have to
be corrected with spell checker). Although both
approaches will give the same compression rate
and bit rate, replacing all vowels with the letter ‘e’
will yield a better error recovery rate. We then apply
Huffman Coding as the compression tool to further
compress the DV encoded text. With DV model, we
obtain a reduced bit rate because instead of using
the full alphabet letters as 26 characters, we use only
22 after encoding. At the decompression side, the
first step, i.e. decompression is similar to that of LM
method. In step 2, we use the spell checker again, in
the hope for full recovery, which is not guaranteed
always.

We propose transforming the dropped vowels
(DV) model into a lossless compression scheme
(Figure 3):

During compression, while performing all vowels to
vowel “e” (or blank character) replacement, we can
use a place holder to remember what the original
vowel was. This is required for correct recovery in
the decompression end. For this purpose, we record
every vowel replacement in an auxiliary file with the
extra information on what the original vowel was

Exploiting Redundancy to Achieve Lossy Text Compression

240

Pamukkale University, Journal of Engineering Sciences, Vol. 16, No. 3, 2010

and send this file with the compressed file to the
recipient.

On the receiving end, we no longer need the spell
checker. We use auxiliary file for full recovery. So, the

scheme becomes lossless. This brings an overhead
of preparing and transferring the auxiliary file, which
may get too large as the input size gets bigger.

Figure 3. Modified dropped vowel (DV) model flow.

3. 3. Replacement of Characters (RC) Method

Based on previous work by Palaniappan and Latifi,
2007 we use the third compression model as
Replacement of Characters (RC). This method exploits
the well-known shorthand technique: Simulating a
secretary taking notes, we represent a combination
of several characters as one character. Determining
which characters to combine, and which character
to use to represent this combination is quite flexible.
This allows us to reduce the number of characters
to be processed in advance. To further improve RC
encoding, we replace capital letters with lower case
letters and thereby subtracting 26 characters from
the alphabet size. This provides improvement in bit
rate, as well.

As was the case with dropped vowels (DV) model,
the RC model also inherits the similar flow diagram
from letter mapping (LM) model. The only part that
differs is the actual encoding itself.

The recovered text may be highly erroneous; still this
could be acceptable as long as one can understand
it. RC type of lossy compression is more suitable for
applications where ability to read the content is
more important than the text itself. Therefore, this
technique uses less space to store the same amount
of information.

3. 4. Comparison of Three Models

The LM model compares to the DV model in two
aspects: One, the former is a lossy compression
scheme, while the latter can be easily transformed
into a lossless compression scheme with the
proposed modification (Figure 3). Still, LM model
could be preferable because it does not require the
extra preparation and transfer of the auxiliary file,

which may grow too large in proportion with the
original text size. Second, the performance of the LM
model will differ how frequently the most and least
frequent letters occur in the given text. Likewise, the
performance of the DV model will differ based on
the vowel to consonant ratio in the given text, which
might differ significantly from one text to another.

The performance of the RC model depends on
which character set we encode with a single symbol.
Due to the flexibility offered, this model is the
most promising one among the three. Because as
a theoretical extreme, we can even represent the
whole text with one letter, which may never be the
case with LM or DV models.

In practice, all three models are prone to fluctuations
in terms of compression performance.

In the next section, we present compression rates
obtained with three lossy compression techniques
on English and Turkish sample texts and their
comparisons.

4. EXPERIMENTAL WORK AND RESULTS
To compare compression performances of each
technique, we compiled English and Turkish test
sets of 10 and 4 texts from a variety of domains,
respectively.

4. 1. Compression Performances

Our design is a front end that can precede any
lossless compression algorithm. We present
implementation results on the two most common
conventional lossless compression algorithms:
Huffman and Arithmetic Coding. For English, we
first run plain Huffman Coding on each text of the
test set. After, we run our scheme with each of the

E. Celikel Cankaya, V. Palaniappan and S. Latifi

241

Pamukkale Üniversitesi, Mühendislik Bilimleri Dergisi, Cilt 16, Sayı 3, 2010

Figure 4. Compression improvement chart for LM, DV and RC models on English.

Figure 5. Models + Huffman Algorithm on Turkish.

3 models as LM, DV, and RC succeeded by Huffman
Coding on the same test set. We then computed the
rate of improvement on Huffman compression and
plot the chart in Figure 4.

Figure 4 shows that each model behaves differently
on individual elements of the test set. This
result supports our anticipation: Performance
improvement (or degradation) relies basically on
the nature of the text: For LM model, it depends
on the statistical distribution of the most and least
frequent letters, for DV model the ratio of vowels
to consonants, and for RC model, the statistical
distribution of what we choose as the short hand
representation(s). These distributions are obviously
different in elements of the test set; which explains
differences even in the same model.

Figure 4 also shows that for English, the best model
among the three is RC model, which performs better
for most of the text files. The results for text1 are very
different from the rest of the test results. This implies
that text1 is not suitable for RC encoding. DV model
is the next best model after RC model, and LM is the
least performing model in terms of compression
improvement. These results conform to our earlier
expectations, as we explained in Section 3.4 as the

extreme case, where RC encodes the whole text with
one single character.

We repeated experiments by employing three
models as a front end to Huffman Coding on Turkish
test set. We further expanded the scheme to serve
as a front end to Arithmetic Coding, as well. Figure
5 presents the compression rate (bpc) values on
Turkish test set for Huffman Coding.

Figure 5 shows that when applied as a front end
to Huffman, each model yields better performance
than that of plain Huffman compression. DV model
performs best for each Turkish text, while RC model
performs consistently poorer. This can be explained
as the characteristic difference between source
languages: For English, we can find more letter
sequences that appear multiple times in text, while
for Turkish, there is not that many such occurrences
to exploit for the RC model. Also, the Turkish test set
apparently has less redundancy than English test
set. By expanding test sets to include more texts that
are representative of more domains, this difference
can be better explained. Using each model as the
front end and Arithmetic Coding as the compression
algorithm, we obtained the bpc values in Figure 6 on
Turkish texts.

Exploiting Redundancy to Achieve Lossy Text Compression

242

Pamukkale University, Journal of Engineering Sciences, Vol. 16, No. 3, 2010

Figure 6. Models + Arithmetic Coding on Turkish.

As seen in Figure 6, although performs poorer
(higher bpc rates) than Huffman algorithm, results
with Arithmetic Coding are similar to that of
Huffman algorithm. On average, the percentage of
improvement with DV model with Arithmetic Coding
is 19.16%, which is very close to the corresponding
value (20.76%) with Huffman algorithm.

4. 2. Information Theoretical Comparison
If we do not employ any encoding, the input to
the compression algorithm will contain the entire
source alphabet, with each alphabet letter having
a different probability of occurrence. When we
apply Huffman Coding as the compression tool,
it assigns a unique binary code to each alphabet
letter, based on its frequency of occurrence. To
measure the performance of a coding scheme, we
use three standard measures as entropy (H), bit rate
(l), and redundancy (R), whose formula are given as
(Palaniappan and Latifi, 2007):

 (1)

 (2)

 (3)

Redundancy is a measure to determine how much
more a text can still be compressed. If we compute
redundancy before and after a certain encoding, we
expect it to be lower to conclude that the encoding
achieved a good level of redundancy.

Table 2 shows the calculation of entropy and bit rate
values for the English sample text, for which letter
statistics were given earlier (Figure 2 and Table 1).

Initially, we apply plain Huffman Coding to the
sample text to calculate the redundancy value. Then,
by employing each of the three encodings as LM, DV,
and RC, we compute their redundancy levels as well
and compare them with that of plain Huffman.

In Table 2, calculation of redundancy (R) involves
bit rate (l), which involves code length (l

i
). The

code length calculation requires constructing the
Huffman tree with minimal code lengths.

As seen from Table 2, the bit rate for plain Huffman
is =4.2101 bpc for the sample text.
Hence, redundancy for plain Huffman is calculated

Similarly, we compute entropy (H), bit rate (l), and
redundancy (R) values for LM and DV models. These
values can be seen at Table 3, where all values are
measured in bpc.

When LM encoding is used as a front end to
Huffman algorithm, the alphabet size is reduced
by the number of characters being mapped. This
helps us obtain better performance than that of
plain Huffman compression. The increased level of
redundancy from 0.0343 bpc to 0.351 bpc in Table 3
verifies that justification.

According to Table 3, DV encoding yields even better
performance (with highest level of redundancy as
0.0622 bpc) because it removes certain number
of (5 for the ongoing experiment) characters with
lower probability, and replaces each with one single
symbol (letter ‘e’ in this experiment). Therefore,
the number of bits required to code the alphabet
becomes less. Furthermore, since letter ‘e’ is also
the most frequent letter in the text, it helps improve
the compression performance. The calculation of
redundancy for RC encoding is deliberately not
included here. Because of the flexibility of encoding
it provides, one can obtain different compression
rates, so there is no fixed compression rate for the RC
model. Repeating entropy and bit rate calculations
on the sample Turkish text trk1.txt (which is a daily
newspaper article) we obtained the values in Table 4.

E. Celikel Cankaya, V. Palaniappan and S. Latifi

as R = 4.21008 - 4.1758 = 0.0343 bpc.

243

Pamukkale Üniversitesi, Mühendislik Bilimleri Dergisi, Cilt 16, Sayı 3, 2010

Table 2. Entropy & Bit rate for sample text (English).

Table 3. Redundancy values for each model (English).

Table 4. Entropy & Bit rate for sample text (Turkish).

Exploiting Redundancy to Achieve Lossy Text Compression

Compression Model Bit rate (l) Entropy (H) Redundancy (R)
Plain Huffman 4.2101 4.1758 0.0343
LM + Huffman 4.1373 4.1022 0.0351
DV + Huffman 3.4040 3.3418 0.0622

Letteri
P(letteri) log2(P(letteri)) Entropy: H(letteri) code length (li) Huffman code

Bit rate: P(letteri)
x li

e 0.12702 -2.977 0.378 3 110 0.38106
t 0.09056 -3.465 0.314 3 100 0.27168
a 0.08167 -3.614 0.295 4 0100 0.32668
o 0.07507 -3.736 0.280 4 0110 0.30028
i 0.06966 -3.844 0.268 4 0000 0.27864
n 0.06749 -3.889 0.262 4 0001 0.26996
s 0.06327 -3.982 0.252 4 0010 0.25308
h 0.06094 -4.036 0.246 4 1110 0.24376
r 0.05987 -4.062 0.243 4 1010 0.23948
d 0.04253 -4.555 0.194 5 01010 0.21265
l 0.04025 -4.635 0.187 5 01110 0.20125
c 0.02782 -5.168 0.144 5 00110 0.1391
u 0.02758 -5.180 0.143 5 00111 0.1379
m 0.02406 -5.377 0.129 5 11110 0.1203
w 0.0236 -5.405 0.128 5 10110 0.118
f 0.02228 -5.488 0.122 5 10111 0.1114
G 0.02015 -5.633 0.114 6 010110 0.1209
y 0.01974 -5.663 0.112 6 010111 0.11844
p 0.01929 -5.696 0.110 6 011110 0.11574
b 0.01492 -6.067 0.091 6 111110 0.08952
v 0.00978 -6.676 0.065 7 0111110 0.06846
k 0.00772 -7.017 0.054 7 1111110 0.05404
j 0.00153 -9.352 0.014 8 01111110 0.01224
x 0.0015 -9.381 0.014 8 01111111 0.012
q 0.00095 -10.040 0.010 8 11111110 0.0076
z 0.00074 -10.400 0.008 8 11111111 0.00592
Sum 1.00000 4.1758 4.21008

Letteri P(letteri)
log2(P(letteri))

Entropy:
H(letteri) code length (li) Huffman code

Bit rate: P(letteri)
x li

a 0.1439 -2.797 0.402 3 100 0.4318
e 0.0821 -3.607 0.296 4 1010 0.3284
n 0.0714 -3.807 0.272 4 0110 0.2857
i 0.0672 -3.896 0.262 4 0011 0.2687
r 0.0672 -3.896 0.262 4 0100 0.2687
l 0.0544 -4.201 0.228 4 0001 0.2175
k 0.0533 -4.230 0.225 4 0000 0.2132
i 0.0480 -4.382 0.210 5 11111 0.2399
s 0.0469 -4.414 0.207 5 11110 0.2345
b 0.0458 -4.447 0.204 5 11101 0.2292
d 0.0405 -4.626 0.187 5 10110 0.2026
u 0.0405 -4.626 0.187 5 10111 0.2026
m 0.0352 -4.829 0.170 5 01011 0.1759
y 0.0352 -4.829 0.170 5 01110 0.1759
t 0.0320 -4.967 0.159 5 00101 0.1599
ü 0.0192 -5.704 0.109 6 111000 0.1151
o 0.0181 -5.786 0.105 6 011111 0.1087
h 0.0171 -5.873 0.100 6 011110 0.1023
ş 0.0171 -5.873 0.100 6 010101 0.1023
ç 0.0128 -6.288 0.080 6 001000 0.0768
g 0.0128 -6.288 0.080 6 001001 0.0768
z 0.0128 -6.288 0.080 7 1110011 0.0896
p 0.0075 -7.066 0.053 7 0101000 0.0522
c 0.0043 -7.873 0.034 8 01010010 0.0341
ö 0.0043 -7.873 0.034 8 01010011 0.0341
v 0.0043 -7.873 0.034 8 11100100 0.0341
f 0.0032 -8.288 0.027 9 111001010 0.0288
ğ 0.0032 -8.288 0.027 9 111001011 0.0288
j 0.0000 0.000
Sum 1.0000 4.2518 4.4893

244

Pamukkale University, Journal of Engineering Sciences, Vol. 16, No. 3, 2010

Using equations 1,2, and 3 we can compute the
redundancy value for plain Huffman on sample
Turkish text as R = 4.4893 – 4.2518 = 0.2375.

A drawback of our scheme is that, the better we get
in compression, the higher gets the error rate, which
is measured as the number of false positives after
decompression. Figure 7 illustrates the compression
improvement vs. error rate for English test set.

Figure 7. Compression improvement vs. Error rate (English).

Apparently, our scheme achieves better compression
improvements to the expense of losing from
recovered text accuracy.

5. CONCLUSION
This work presents three novel models for lossy text
compression to achieve better compression rates.
Regardless of the implementation details, each model
simply introduces a front end encoding mechanism
that can be complemented with a conventional
lossless compression scheme afterwards. The paper
utilizes Huffman algorithm and Arithmetic Coding
for this purpose.

The first model introduced is letter mapping (LM)
and replaces a certain number of the least frequent
letters with the same number of most frequent letters
on a 1:1 mapping basis. The second model is called
dropped vowel (DV) technique, and simply replaces
vowels of the source language with one single
character. The third model is called replacement of
characters (RC) model and based on the idea of short
hand representation of long sequences of characters
with one single symbol. The determination of this
sequence is left to the user’s discretion; therefore
this scheme is highly probable to outperform the
former two models.

We present experimental work on each model for
English and Turkish test sets and demonstrate that in
terms of compression rates, the models are ordered
as RC, DV, and LM for English; and DV, RC, and LM for
Turkish from best to worst performance.

6. FUTURE WORK
To decrease the false positives that we may
encounter during LM compression, we suggest
combining this model with a second pass, through
which a human tester or an automated semantic
parser detects semantically ambiguous words
and corrects them. This idea is very promising and
introduces a new edge to our work: The possibility
of combining it with a natural language processing
(NLP) implementation.

Due to the characteristics of three techniques
employed, i.e. letter mapping (LM), dropped
vowels (DV) and replacement of characters (RC),
they yield different performances on different
source languages. So, another avenue that we will
further our work on is to apply these models on
different source languages other than English and
Turkish, and compare compression performances.
This may help us introduce a new parameter to
cross-language comparison studies.

Although we employed Huffman and Arithmetic
Coding, theoretically, the compression module
succeeding the encoder can be replaced with
any lossless compression algorithm. So, as part of
future work, we will employ several other lossless
compression algorithms and measure the rate of
performance improvement.

E. Celikel Cankaya, V. Palaniappan and S. Latifi

245

Pamukkale Üniversitesi, Mühendislik Bilimleri Dergisi, Cilt 16, Sayı 3, 2010

REFERENCES

Bose, R. and Pathak, S. 2006. “A Novel Compression and
Encryption Scheme Using Variable Model Arithmetic
Coding and Coupled Chaotic System”, IEEE Transactions
on CCts and Systems. 848-857.

Broder, A. and Mitzenmacher, M. 1996. “Pattern-based
Compression of Text Images”, Proceeding of Data
Compression Conference, March 31-April 3, 1996,
Snowbird, Utah, USA. 300-309.

Gilchrist, J. and Cuhadar, A. 2007. “Parallel Lossless Data
Compression Based on the Burrows-Wheeler Transform”,
AINA 2007. 877-884.

Howard, P. G. 1996. “Lossless and Lossy Compression of
Text Images by Soft Pattern Matching”, IEEE Transaction.
210-219.

Jorgensen, P. E. T. and Song, M. 2009. “Analysis of Fractals,
Image Compression, Entropy Encoding, Karhunen-Loève
Transforms”, Acta Applicandae Mathematicae: An Int’l
Survey Journal on Applying Math. and Mathematical
Appls. 108 (3), 489-508.

Kaufman, Y. and Klein, S. T. 2004. “Semilossless Text
Compression”, Prague Stringology Conf., Aug. 30 - Sept.
1, 2004, Prague, Czech Republic.

Kewley-Port, D. Burkle, T. Z. and Leed, J. H. 2007.
“Contribution of Consonant Versus Vowel Information
to Sentence Intelligibility for Young Normal-Hearing and
Elderly Hearing-Impaired Listeners”, Acoustical Soc. of
America. 2365–2375.

Korodi, G. and Tabus, I. 2008. “On Improving the PPM
Algorithm”, ISCCSP 2008. 1450-1453.

Kruger H., Schreiber R., Geiser B. and Vary, P. 2008. “On
Logarithmic Spherical Vector Quantization”, ISITA 2008.
1-6.

Lee, Y. H., Kim, D. S., and Kim, H. K. 2009. “Class-Dependent
and Differential Huffman Coding Of Compressed Feature
Parameters For Distributed Speech Recognition”, ICASSP
2009. 4165 – 4168.

Lewand, R. E. 2000. “Cryptological Mathematics”, The
Mathematical Association of America, USA.

Liu, G. and Zhao, F. 2007. “An Efficient Compression
Algorithm for Hyperspectral Images Based on Correlation
Coefficients Adaptive Three Dimensional Wavelet Zerotree
Coding”, Int’l Conf. on Image Processing. 341-344.

Nagarajan, S. and Sankar, R. 1998. “Efficient
Implementation of Linear Predictive Coding Algorithms”,
IEEE Southeastcon ‘98. 69-72.

Nevill, C. and Bell, T. 1992. “Compression of Parallel Texts”,
Inf. Processing & Mgmnt., 28, 00-00.

Palaniappan, V. and Latifi, S. 2007 “Lossy Text Compression
Techniques”, ICCS 2007. 205-210.

Palit S. and Garain, U. 2006. “A Novel Technique For The
Watermarking Of Symbolically Compressed Documents”,
DIAL 2006. 291-296.

Pollo, T. C., Kessler, B. and Treiman, R. 2005. “Vowels,
Syllables, and Letter Names: Differences Between Young
Children’s Spelling in English and Portuguese”, Journal of
Experimental Child Psychology. 92 (2), 161-181.

Shang, J., Liu, C. and Ding, X. 2006. “JBIG2 Text Image
Compression Based on OCR”. SPIE 2006.

Shukla, P.K., Rusiya, P., Agrawal, D., Chhablani, L. and
Raghuwanshi, B.S. 2009. “Multiple Subgroup Data
Compression Technique Based on Huffman Coding”,
CICSYN 2009. 397-402.

Witten, I. H, Bell, T. C., Moffat, A., Nevill-Manning, C. G.,
Smith, T. G. and Thimbleby, H. 1994a. “Semantic and
Generative Models for Lossy Text Compression”, The
Computer Journal. 37 (2), 83-87.

Witten, I. H, Bell T. C., Moffat A., Nevill-Manning C. G.,
Smith T. G. and Thimbleby H. 1994b. “Textual Image
Compression: 2-Stage Lossy/Lossless Encoding of Textual
Images”, Proceedings of the IEEE. 82 (6), 878-888.

Ye, Y. and Cosman, P. 2001. “Dictionary Design for Text
Image Compression with JBIG2”, Proceedings of IEEE for
Image Processing. V. (10), 818-828.

Ye, Y. and Cosman, P. 2003. “Fast and Memory Efficient
Text Image Compression with JBIG2”, Proceedings of
IEEE for Image Processing. V. (10), 944-956.

Zhou, J. and Chen, P. 2009. “Generalized Discrete Cosine
Transform”, PACCS 2009. 449-452.

Exploiting Redundancy to Achieve Lossy Text Compression

