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ABSTRACT

In this study, we reconsider the problem of an elastic-plastic torsion of a bar made of work hardening material. Nonlinear
partial differential equation derived is reduced to awell known L aplace equation by means of transformation functions and
stresses 1y, Ty, and the torque T are analytically found for elliptical and circular cross sections. It is further shown that the
stresses and the twisting moment do not depend on the value of n in the stress-strain law.
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UZAMA SERTLEPMELY MALZEMEDEN YAPILMIP BYR PAFTIN ELASTYK-PLASTYK
BURULMA PROBLEMY UZERYNE ANALYTYK BYR YNCELEME

OZET

Bu c¢alypmada, uzama serlebmeli malzemeden yapylmyp paftlaryn eastik-plastik burulma problemini ele alynmyptyr.
Problemin ¢dzUmiinde ortaya ¢gykan ve pu ana kadar analitik ¢6zUma bilinmeyen non-lineer kysmi diferensiyel denklem,
doénupim fonksiyonlary yardymyyla ¢ozimleri ¢ok iyi bilinen Laplace diferensiyel denklemine indirgenmekte ve 1y, 1y,
gerilmeleri ile T torku diptik ve dairesal kesitler igin bulunmaktadyr. Ayryca, gerilmeler ile burulma momentinin gerilme
uzama badyntysyndaki n sabitine badly olmadydy daispat edilmektedir.

Anahtar Kelimeler: Nonlineer, Viskos, Burulma, Miller

1. INTRODUCTION

Analytical expressions have many advantages compared
to numerica technics because of the easiness of
comparison of numerica results with the experimental
results and every day use. By their natures, it is usualy
possible to give anaytica results for linear differentia
equations arising in the formulation of physica events
based on many simplifications. But, if the more physical
guantities are considered or some other nonlinear effects
are included in the theory, then the resulting differential
equation becomes nonlinear and therefore unsolvable in
many cases (Hodge and Prager, 1951, Shames, 1992).
Such differential equations also occur in dastic and
plastic analysis of structures. The usual procedures in
these cases have been to develop numerical technics for
possible solution of the equations. But, in some cases,
there may be a way for determining related quantities in
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an analytical way, and this method can well be extended
to include the other problems resulting in nonlinear
equations (Pala, 1994). It is therefore the objective of this
paper to develop an analytical, but rather simple method
when possible for the solution of equations arising in the
mathematical formulation of the problem of a eagtic-
plastic torsion of a bar made of work hardening material.
We remind that it is possible to develop numerical
methods for the solution of the nonlinear partia
differentia which is mentioned below (Chakrabarty,
1987, Mendelson, 1968).

2. ANALYSIS

Let us consider a uniform shaft having an arbitrary cross-
section and subjected to a torque T (see, Fig.l). The
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location of axesx, y, z is chosen at the end section of the
bar, the z axis being taken paralld to its generator. But,
for convenience, the axes x, y are chosen as principal
axes.

With the assumptions made by Saint-Venant (Shames,
1992), the displacements in the x and y directions for
small deformation are given by the same equations as
were developed for linear elastic shafts.

To analyze the problem of elastic-plagtic torsion of a bar
made of work hardening material, it is convenient to
employ a stress-strain relation that corresponds to no
well-defined yield point. The problem can then be
simplified by the absence of an elastic-plastic boundary,
which permits the same equations in linear elastic torsion
problem to apply throughout the cross section
(Chakrabarty, 1987). In the derivation of the governing
equation, we shall use the Ramberg-Osgood equation
(Hodge and Prager, 1951)

Figure 1. Cross Section of a Bar Made of Work
Hardening Materia
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for the uniaxial stress-strain curve, where m and n are
dimensionless constants, and k a nominal yield stress in
simple or pure shear, the dope of the stress-strain curve
being equal to E when 6=0.

Let us now consider the formulation of the torsion
problem by using the Hencky stress-strain relations
(Chakrabarty, 1987). Since the velocity field in the
twisted bar (Chakrabarty, 1987)is given by the partia
derivative of

u=-0yz, v=0xz, w=w(x,y,0) 1.2

with respect to 6, which is taken as the time scale, the

(2w ) (2w )

*w 0
2d7xz=L -dee,Zdyny +de9 (L3)
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components of the shear-strain increment are expressed as
The elimination of w from these equations leads to the
strain compatibility equation

a_ax(d yyz)-a% (d7y )=do

(1.4)

If we use Hencky stress-strain relations, which may be
written as (Ckakrabarty, 1987)

2Gy,, = k(1+x)z—$,

15
i o (1.9)
2Gy,,=-k(1+1) >

in the case of monotonic loading, we have from Eq.(1.4)
that

ir(u 1)%1 + o [+ 2)]
axt OXJ oy
(1.6)
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with the boundary condition ¢=constant on the boundary
curve of the cross section (Chakrabarty, 1987), where ¢ is
the stress function and A is a positive quantity given by
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in which t and ¢ are the resultant shear stress and stress
function, respectively.

A=

Since Eq.(1.4) dso holds in the plastic range with t,, and
1, replaced by 2Gy, and 2Gyy,, respectively
(Chakrabarty, 1987), we can write the non-zero stresses
as

Txz = k(1+ 7\') ¢y: Tyz = 'k(1+ 7\') ¢x (1-8)

Although this formulation seems to be identical to the
linear elastic torsion problem, stresses and the governing
Eq.(1.6) are given in completely different forms.

3. SOLUTION
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Itvig almdzﬁxmpossuble to find the open for b& f
wq,sfymg a{aqth the equation (1.6) and the g
condiition ¢=0. Instead of that, we will try to find the
shear stresses in terms of the partiad derivatives of a
specia function y which depends on ¢.

L et us make use of the transformations

V= (L) by 1 vy =(1+A) 4, (19
from which we can write

Va2 O (110)

W)’ (I)y

where y, and y, are the partial derivatives of the function
v with respect to x and y, respectively. Then, Eq.(1.6)
reduces to well known Laplace equation

>y, + v,

=0
ox? oy*

(1.12)

after making a second transformation in the form of
y=y-(A/4)(x*+y?), where A=2Go/k.

Now, on the other hand, considering the boundary
condition ¢=constant, we can aso write ¢./¢p,= -dy/dx on
the boundary curve. Employing equation (1.10), we have

(1.12)

Shear stresses 1, and 1y, and the twisting moment T
(Chakrabarty, 1987) can be written in terms of y, and vy
without using ¢y and ¢y since it is not possible to find an
expression for ¢, and ¢y because of the nonlinear relation
between yy, yy, and ¢y, ¢, (Chakrabarty, 1987):

te=kVy. Ty= KV,

T = Jl(xry, - yryg)dxdy (113

= -k [lxy,+ yy,)dxdy

Our am is to find the functions y, and v, both
satisfying Egs.(1.6) and (1.12).

Elliptical and Circular Cross Sections:

We assume that the boundary condition of the cross
section is an dlipse, whose equation is given by
b>?+afy’*=a’h? where a and b are semiaxes. Then, we
have for the slope of the curve that -dy/dx=(b%a)(x/y).
Substituting this expression into (1.12), we have

On the other hand, since the function v satisfies Laplace
equation, it can be written asthe real parts of the complex
function z=(x+iy)®, which will be found for the integer
values of B. Among these solutions, the unique one which
is compatible with the boundary condition (1.10) is x*y?

Therefore, w must be taken in the form of

from which we find that

B A B A
V= 2a-z X, !//y—-2a+z y

A
_4(X2 + yz)

(1.16)

v =a(x2-y?) (115)

Subsgtituting Eq.(1.16) in Eq.(1.14) and finding m out, we
obtain
and

Al a?-p?
s

Then, Egs.(1.16) give
The stresses 1,,, 1y, and the torque T are given by
usng kgs.(lb), stran components Y2 @nd vy, ae

:
( X2 - y%) - (x+y)J (L19)

obtaindoPes’ KA p?
v e e T gy
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It is observed from Eqs.(1.20) that the eastic-plagtic
boundary on which t,,°+t,,*=k? where k is the yield
stress, is again an elipse for an dliptical cross section.
For circular cross section where a=h, eastic-plagtic
boundary iscircle, asis clear from Egs.(1.20).

-A b2

SAD Ad
2+p2 YT

2+b2y

v, = (1.19)

4. RESULTS AND CONCLUSIONS

It has been shown here that, in a bar made of work
hardening material, it is possible to solve the governing
equation and to find the stress distribution for the
eliptical and circular cross sections in an analyticd way.
One important point that has been observed in this
analysis is that stresses t,,, 1, and the torque T do not
depend on the constant n in the stress strain law (seg,
Eq.(1.3)) for awork hardening material. These results are
aso supported by numerical technics (Chakrabarty,
1987). Indeed, it is seen in the case of sguare cross
section that the twisting moment gives very near values
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for the values between 1 and 9 of n (Chakrabarty, 1987).
However, It must be reminded here that it is not possible
to find the value of A in an analytical way (Chakrabarty,
1987, Hodge and Prager, 1951, Prager, 1947). It is dso
beneficial to say a few words about square cross section.
Since, by Eq.(1.10), the function

v is dso constant on the surface, the conditions in this
problem are identical with those in the torsion problem of
linear elastic shafts and therefore ¢, and ¢, in there can
directly be taken as yy, and v, in this problem (Shames,
1992, Pala, 1994).
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