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ABSTRACT

In this study, we reconsider the problem of an elastic-plastic torsion of a bar made of work hardening material. Nonlinear
partial differential equation derived is reduced to a well known Laplace equation by means of transformation functions and
stresses τxz, τyz and the torque T are analytically found for elliptical and circular cross sections. It is further shown that the
stresses and the twisting moment do not depend on the value of n in the stress-strain law.
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UZAMA SERTLEÞMELÝ MALZEMEDEN YAPILMIÞ BÝR ÞAFTIN ELASTÝK-PLASTÝK
BURULMA PROBLEMÝ ÜZERÝNE ANALÝTÝK BÝR ÝNCELEME

ÖZET

Bu çalýþmada, uzama serleþmeli malzemeden yapýlmýþ þaftlarýn elastik-plastik burulma problemini ele alýnmýþtýr.
Problemin çözümünde ortaya çýkan ve þu ana kadar analitik çözümü bilinmeyen non-lineer kýsmi diferensiyel denklem,
dönüþüm fonksiyonlarý yardýmýyla çözümleri çok iyi bilinen Laplace diferensiyel denklemine indirgenmekte ve τxy, τxz
gerilmeleri ile T torku eliptik ve dairesel kesitler için bulunmaktadýr. Ayrýca, gerilmeler ile burulma momentinin gerilme
uzama baðýntýsýndaki n sabitine baðlý olmadýðý da ispat edilmektedir. 

Anahtar Kelimeler: Nonlineer, Viskos, Burulma, Miller  

1. INTRODUCTION

Analytical expressions have many advantages compared
to numerical technics because of the easiness of
comparison of numerical results with the experimental
results and every day use. By their natures, it is usually
possible to give analytical results for linear differential
equations arising in the formulation of physical events
based on many simplifications. But, if the more physical
quantities are considered or some other nonlinear effects
are included in the theory, then the resulting differential
equation becomes nonlinear and therefore unsolvable in
many cases (Hodge and Prager, 1951, Shames, 1992).
Such differential equations also occur in elastic and
plastic analysis of structures. The usual procedures in
these cases have been to develop numerical technics for
possible solution of the equations. But, in some cases,
there may be a way for determining related quantities in

an analytical way, and this method can well be extended
to include the other problems resulting in nonlinear
equations (Pala, 1994). It is therefore the objective of this
paper to develop an analytical, but rather simple method
when possible for the solution of equations arising in the
mathematical formulation of the problem of a elastic-
plastic torsion of a bar made of work hardening material.
We remind that it is possible to develop numerical
methods for the solution of the nonlinear partial
differential which is mentioned below (Chakrabarty,
1987, Mendelson, 1968).

2. ANALYSIS 

Let us consider a uniform shaft having an arbitrary cross-
section and subjected to a torque T (see, Fig.1). The
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location of axes x, y, z  is chosen at the end section of the
bar, the z axis being taken parallel to its generator. But,
for convenience, the axes x, y are chosen as principal
axes.

With the assumptions made by Saint-Venant (Shames,
1992), the displacements in the x and y directions for
small deformation are given by the same equations as
were developed for linear elastic shafts.

To analyze the problem of elastic-plastic torsion of a bar
made of work hardening material, it is convenient to
employ a stress-strain relation that corresponds to no
well-defined yield point. The problem can then be
simplified by the absence of an elastic-plastic boundary,
which permits the same equations in linear elastic torsion
problem to apply throughout the cross section
(Chakrabarty, 1987). In the derivation of the governing
equation, we shall use the Ramberg-Osgood equation
(Hodge and Prager, 1951)

x

y

(x,y)

τ

−τxz

τyz

T

Figure 1. Cross Section of a Bar Made of Work
               Hardening Material

for the uniaxial stress-strain curve, where m and n are
dimensionless constants, and k a nominal yield stress in
simple or pure shear, the slope of the stress-strain curve
being equal to E when σ=0.

Let us now consider the formulation of the torsion
problem by using the Hencky stress-strain relations
(Chakrabarty, 1987). Since the velocity field in the
twisted bar (Chakrabarty, 1987)is given by the partial
derivative of 

with respect to θ, which is taken as the time scale, the

components of the shear-strain increment are expressed as
The elimination of w from these equations leads to the
strain compatibility equation

If we use Hencky stress-strain relations, which may be
written as (Ckakrabarty, 1987)

in the case of monotonic loading, we have from Eq.(1.4)
that

with the boundary condition φ=constant on the boundary
curve of the cross section (Chakrabarty, 1987), where φ is
the stress function and λ is a positive quantity given by

in which τ and φ are the resultant shear stress and stress
function, respectively.

Since Eq.(1.4) also holds in the plastic range with τxz and
τyz replaced by 2Gγxz and 2Gγyz, respectively
(Chakrabarty, 1987), we can write the non-zero stresses
as

Although this formulation seems to be identical to the
linear elastic torsion problem, stresses and the governing
Eq.(1.6) are given in completely different forms.   
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It is almost impossible to find the open form of φ
satisfying both the equation (1.6) and the boundary
condition φ=0. Instead of that, we will try to find the
shear stresses in terms of the partial derivatives of a
special function ψ which depends on φ.

Let us make use of the transformations

from which we can write

where ψx and ψy are the partial derivatives of the function
ψ with respect to x and y, respectively. Then, Eq.(1.6)
reduces to well known Laplace equation

after making a second transformation in the form of
ψ=ψ1-(A/4)(x2+y2), where A=2Gθ/k. 

Now, on the other hand, considering the boundary
condition φ=constant, we can also write φx/φy= -dy/dx on
the boundary curve. Employing equation (1.10), we have

Shear stresses τxz and τyz and the twisting moment T
(Chakrabarty, 1987) can be written in terms of ψx and ψy

without using φx and φy since it is not possible to find an
expression for φx and φy because of the nonlinear relation
between ψx, ψy and φx, φy (Chakrabarty, 1987):

Our aim is to find the functions ψx and ψy both  
satisfying Eqs.(1.6) and (1.12).

Elliptical and Circular Cross Sections:

We assume that the boundary condition of the cross
section is an ellipse, whose equation is given by
b2x2+a2y2=a2b2 where a and b are semiaxes. Then, we
have for the slope of the curve that -dy/dx=(b2/a2)(x/y).
Substituting  this expression into (1.12), we have

On the other hand, since the function ψ1 satisfies Laplace
equation, it can be written as the real parts of the complex
function z=(x+iy)β, which will be found for the integer
values of β. Among these solutions, the unique one which
is compatible with the boundary condition (1.10) is x2-y2.
Therefore, ψ must be taken in the form of
from which we find that

Substituting Eq.(1.16) in Eq.(1.14) and finding m out, we
obtain
and

Then, Eqs.(1.16) give
The stresses τxz, τyz and the torque T are given by
Using Eqs.(1.5), strain components γxz and γyz are
obtained as
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It is observed from Eqs.(1.20) that the elastic-plastic
boundary on which τxz

2+τyz
2=k2, where k is the yield

stress, is again an ellipse for an elliptical cross section.
For circular cross section where a=b, elastic-plastic
boundary is circle, as is clear from Eqs.(1.20).

4. RESULTS AND CONCLUSIONS

It has been shown here that, in a bar made of work
hardening material, it is possible to solve the governing
equation and to find the stress distribution for the
elliptical and circular cross sections in an analytical way.
One important point that has been observed in this
analysis is that stresses τxz, τyz and the torque T do not
depend on the constant n in the stress strain law (see,
Eq.(1.3)) for a work hardening material. These results are
also supported by numerical technics (Chakrabarty,
1987). Indeed, it is seen in the case of square cross
section that the twisting moment gives very near values
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for the values between 1 and 9 of n (Chakrabarty, 1987).
However, It must be reminded here that it is not possible
to find the value of λ in an analytical way (Chakrabarty,
1987, Hodge and Prager, 1951, Prager, 1947). It is also
beneficial to say a few words about square cross section.
Since, by Eq.(1.10), the function

ψ is also constant on the surface, the conditions in this
problem are identical with those in the torsion problem of
linear elastic shafts and therefore φx and φy in there can
directly be taken as ψx and ψy in this problem (Shames,
1992, Pala, 1994).
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