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Abstract-We propose a quantum search method based on 
Grover’s algorithm. This algorithm is described and we show 
that to search for a single marked element from an unsorted 
search space of N elements, the number of queries are required 
using this algorithm  when compared to   for the 
Grover algorithm. 
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I. INTRODUCTION 
A computation is a physical process. It may be performed 

by a piece of electronics, on an abacus, or in our brain. But it 
is a process that takes place in nature and as such, it is subject 
to the laws of physics. Application of principles of quantum 
mechanics in the development of techniques for computation 
and information processing has given birth to the science of 
quantum computation. According to Feynman [1], the 
computers based on laws of quantum mechanics instead of 
classical physics could be used to model quantum mechanical 
systems and other large scale computations. Quantum 
computers are machines that rely on quantum phenomena 
such as quantum interference and quantum entanglement in 
order to perform the computation [2-4].  

The quantum mechanically produced computers will 
speedup certain computations dramatically. But one of the 
main difficulties of quantum computers is that de-coherence 
destroys the information in the superposition of states 
contained in a quantum computer, thus making long 
computations impossible. It has been shown [5] how to reduce 
the effect of de-coherence for information stored in quantum 
memory. Quantum computers offer an essential speed 
advantage over classical computers [6]. Some recent reviews 
[7, 8] have attempted to explain how a quantum computer 
differs from a classical, conventional computer.  

In order to solve a particular problem, computers, be it 
classical ones or quantum, follow a precise set of instructions 
called an algorithm. But the kinds of search algorithms that 
can be run on a quantum computer are qualitatively different 
from those that run on classical computers [9]. 

Over the past years, several quantum algorithms have 
emerged. Some are exponentially faster than their best 
classical counterparts [10]; others are polynomial-faster [11]. 
While a polynomial speed up less than we would like ideally, 
quantum search has proven to be considerably more versatile 
than the quantum algorithms exhibiting exponential speedups. 

In this paper we propose a fast quantum search algorithm 
inspired by Grover’s search algorithm [11]. It has shown that 
using the same technique as Grover’s algorithm but by 

dividing the register with  elements into 32
n

M
 
  =  

sub-registers, we can find a marked element in 

( )[ ]( )1
32 / 4O Nπ + steps instead of ( )O N as in 

Grover’s algorithm. 

The contents of this paper can be summarized as follows. 
Section II describes the Grover’s quantum search algorithm 
for an unsorted database. In Sec. III, we give the details of our 
fast quantum search algorithm based on the idea of sub-
registers. In the last section, we will explain and discuss our 
results. 

II. GROVER’S QUANTUM SEARCH ALGORITHM 
Quantum mechanics can speed up range of search 

applications over unsorted data. Consider a search problem 
having an unsorted database containing N elements, out of 
which just one element satisfies a given condition that it is 
marked. The problem is to find this marked element. Once an 
element is examined, it is possible to tell whether or not it 
satisfies the condition in one-step. However, there do not exist 
any sorting on the database that would aid its selection. 
Classically, searching an unsorted database requires linear 
search, i.e, examine the items in database one by one. One has 
to keep track of the examined elements so that it is not 
checked again. To find marked elements with a probability of 
50% any classical algorithm, deterministic or probabilistic, 
will need to access the database a minimum of 0.5 N times 
(and N times in the worst case). Quantum mechanical systems 
can be in a superposition of states and simultaneously 
examine multiple elements; therefore, it can speed up the 
search. Grover’s quantum search algorithm shows that by 
using the same amount of hardware as in the classical case, 
but having input and output in superposition of states, we can 

find an element in ( )O N  quantum mechanical steps 

instead of ( )O N  classical steps. It provides a quadratic 
speedup over its classical counterpart, which is considerable 
when N is large. Grover’s algorithm is probabilistic in the 
sense that it gives the correct answer with high probability. 

III.  MODIFIED QUANTUM SEARCH ALGORITHM 
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Consider a search space D of 2nN = elements. If there is 
a single marked element in this search space, we can find that 

element by applying ( )O N   number of Grover’s iteration 

on D. Assume that there is no marked element in the search 
space. A basic question arises. “What will be the number of 
oracle queries required to know about the absence of the 
marked element in the search space?” Before doing Grover’s 
iteration, we have to initialize the search space, that is, to 
create equal superposition of states. It is done by applying the 
Walsh- Hadamard operator H. For a single qubit, it is 
represented by the following matrix: 

  
1 11
1 12

H =
−

 
 
 

          (1) 

i.e., a bit in state 0  is transformed into a superposition in 

two states: ( )1 1,
2 2

. Similarly a bit in state 1  is 

transformed to ( )1 1,
2 2
− ; i.e., the magnitude of the 

amplitude in each state is 1
2

, but the phase of amplitude 

in the state 1  is inverted. For a search space of 
dimension , we can perform H on each bit 
independently in sequence thus changing the state of the 
system. This superposition can be obtained 
in ( )logO N steps. The matrix representing this operation 

will be of dimension 2n x 2n. If all n bits are in state 0 , the 
resultant configuration will have identical amplitude of 2-n/2 in 
each of the 2n states. Now start with Grover’s iteration: 

  0 ( ) 1
n n

f xQ H R H Rπ π⊗ ⊗
== −            (2) 

Each quantum mechanical step consists of an elementary 
unitary operation. The phase transformation operator 0Rπ , 

rotates the state 00...0  by π radians. For single qubit state, 
it takes the form: 

 0
0

0 0
x

R x xπ

≠

= − +∑             (3) 

While the function of phase rotation operator ( ) 1f xRπ
=     is 

to rotate the marked element by a phase of π radians and is 
defined by 

 ( ) ( )
( ) 1 1 f x

f x
x

R x xπ
= = −∑             (4) 

If there is no marked element, the phase rotation operator 
is just an identity operator i.e. 

 ( ) 1f x
x

R x x Iπ
= = =∑             (5) 

Grover’s iteration reduces to 

 0
n nQ H R Hπ⊗ ⊗′ = −             (6) 

Now if we apply Q′ on the search space, with same 
amplitude of all the elements, it has no effect and the search 
space remains in an equal superposition of states. Hence it 
may be concluded that by using a single query it can be found 
whether the marked element is present or not in the search 
space. Our fast quantum search algorithm is based on this 
observation. In this algorithm, we split the main register into 
small sub-registers. First we look for the sub-register that 
contains the marked element by linear search method. Once 
we find the sub-register containing the marked element, then 
we have to apply Grover’s iteration only on that sub-register 
and as result we require less number of queries to reach the 
desired element as compared to the Grover’s original quantum 
search algorithm. 

In order to describe the operation of the algorithm we first 
introduce a register, 1 2, nx x x x=  , of   n-qubits, and an 

ancillary qubit, q .We also introduce a quantum oracle, a 
unitary operator O. The oracle performs the following unitary 
operation on computational basis states of the register 0  and 

of the ancillary q . That is, 

 ( )O x q x q f x= ⊕             (7) 

Where ⊕ denotes the addition modulo 2. The oracle 
recognizes marked state in the sense that if x is a marked 

element of the search space, ( )f x =1, the oracle flips the 

ancillary qubit from 0 to 1  and vice versa, while for 
unmarked state the ancillary is unchanged. Thus, the only 
effect of the oracle is to apply a phase of -1 if x is a marked 
state and no phase change if x is unmarked. 

A. The Algorithm 
This algorithm can be summarized as follows: 

Inputs: 1- A black box oracle O, whose action is defined 
by Eq. (7) 

 2- n +1 qubits in the state  x 0
q

            . 

Output: 1- A candidate for a marked m   . 

B. Procedure 
1-Initialize the system to the 

superposition ( )1 ,1 , 1N N N ; that is 
amplitude of all states is same. It is done by applying 
Hadamard gate to each qubit in the register, and the gate HX 
to the ancilla, where X is the NOT-gate. The matrices are 

written with respect to the computational basis ( )0 , 1 . 
The resulting state is 

 
0 11

2x q

x
N

 − 
 
 

∑           (8) 
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This superposition can be obtained in ( )logO N steps. 

2- Split the register 1 2, nx x x x=    into M numbers 

of equal size sub-registers, such that 1 2, Mx y y y=  . 

3- Search the sub-register having the marked element. It is 
done by applying Grover’s iteration Eq. (1) on each sub-
register one by one. First, apply the Grover’s iteration on sub-
register y1 and select y1, if the amplitude of elements is 
changed. Reject it if remains in equal superposition state. 
Continue this process successively on the sub-registers of the 
register x , until a sub-register is found in which the 
amplitude of one element is changed. On average, selection of 
desired sub-register requires 2M  oracle queries. 

4-Apply Grover’s iterations on the selected sub-register k 

times, where 
4

k N Mπ
=  and at this point the 

probability of finding the marked state will be a maximum. 
Now the total number of queries required to search the 
marked state is given by 

 
4 2

N Mk
M

π
= +             (9) 

5- Measure the selected sub-register in the computational 
basis.  

From Eq.(7), it is clear that in step-2 the precise number of 
sub-registers is important. Table 1 shows the required number 
of queries, for different numbers of sub-registers and for 
different sizes of registers.  

TABLE I NUMBER OF QUERIES REQUIRED FOR DIFFERENT SIZED REGISTERS 
AND NUMBER OF SUB-REGISTERS (SEE TEXT FOR DETAILS) 

 
Analysis shows that required numbers of queries are 

minimum for the number of sub-registers   32 nM   =  , 
where, [ ]/ 3n is the smallest integer value. Hence, each sub-

register will be consisting of elements 32 nn  −  . 

Now Eq. (9) takes the form 

 
3

3

2
4 22

n

n

Nk π   

  
= +     (10) 

As 2nN = , so  

 ( )
3

1
3

3

2 2
4 2 42

n

n

Nk Nπ π  

  

+
= + =          (11) 

The above relation gives good results if the number of 
qubits n in the search space is a multiple of 3. There is little 
discrepancy in the result when n is not multiple of 3. It is due 

to the fact that we take smallest integer value of 3
n 
  in 

selecting the number of sub-registers. This discrepancy can be 
removed by introducing a factor µ  in the Eq. (11) that is 

 ( )1 32
4

k Nπ µ+
=           (12) 

Analysis shows that the value of  µ  is 

 0.9943027µ =  for 1, 4,7,10,n =   

 1.0144727µ =  for 2,5,8,11,n =   

Hence, our Algorithm requires fewer queries as compared 
to Grover’s algorithm, a comparison that is illustrated in Fig. 
(1). 

 
Fig. 1  Performance of Grover’s algorithm and the one described in this paper 

A comparison of Grover’s algorithm and our modified 
algorithm is given below:  

GROVER’S ALGORITH  

1 
Search Space of dimensions 2nN =  

2 
Register with n-qubits: 1 2, nx x x x=   

3 Prepare the initial state by applying Walsh-Hadamard operator in 

( )logO N  steps 

4 
Apply Grover’s Iteration 0 ( ) 1

n n
f xQ H R H Rπ π⊗ ⊗

== −  to find 

marked element 

5 

4
k Nπ
=   number of total queries needed to find marked 

element 

6 Measure the final state 

MODIFIED ALGORITH 

1 
Search Space of dimensions 2nN =  
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2 
Register with n-qubits: 1 2, nx x x x=   

3 Prepare the initial state by applying Walsh-Hadamard operator in  

( )logO N  steps 

4 
Split the register in 

32 nM   =   numbers of sub-registers: 
 

1 2, Mx y y y= 
 

5 
Each sub-register will have 

32 nn  −   number of elements 
6 

Apply Grover’s iteration 0 ( ) 1
n n

f xQ H R H Rπ π⊗ ⊗
== −  on each 

sub-register 
7 2M   number of queries needed to find the sub-register with 

marked element 
8 

Apply Grover’s iteration 0 ( ) 1
n n

f xQ H R H Rπ π⊗ ⊗
== −   to the 

selected sub-register 
4

k N Mπ
=   times 

9 
( )

1
32

4
k Nπ +
= number of total queries needed to find 

marked element 
10 Measure the selected sub-register 

IV. RESULTS AND DISCUSSION 
Consider a search space of dimension N= 2n. In order to 

find the marked element one needs ( )O N  number of 

queries, in its exact form 
4

Nπ
 queries. Now if we divide 

the register in M numbers of sub- registers, one of the sub 
register will have a marked element. If for example there is no 
marked element, the Phase Rotation Operator will just be an 
identity operator, application of Grover's iteration will have 
no effect, and search space will remain in an equal 
superposition of states. But if we have a marked element only 
one application of Grover’s iteration, on M sub-registers, will 
allow us identify the sub-register having the marked element. 
Because only the sub-register has marked element, the Phase 
rotation operator will change the phase of marked state by π  
and one application of Grover’s iteration will increase the 
amplitude of marked state. This process is like a linear search, 
and on average by M/2 queries we can identify the sub- 
register with the marked element. Now we have to apply 
Grover’s iteration only on the selected sub-register 

4
N Mπ

times. It is found that the required numbers of 

queries are a minimum if the number of sub-registers is 32 n   , 
where [n/3]   is the smallest integer value. It can be explained 
with the help of Table 1. The first column of the table shows 
number of sub-register from 21 to 28, while first row indicates 
the size of register, which starts from 29 to 220, all other rows 
show the  number of queries required for different sizes of the 
register. In the fourth row, for the  number of sub- register 
equal to 23,  number of queries are 10.28 for size of register 
29 ,  12.88 for 210 and 16.56 for 211, second, third and forth 
columns respectively. These are the minimum values for the 
sizes of the register. The size of register 29 means n=9 which 
implies M=9/3 =3, while n=10 means M=10/3= 3.33 and 
similarly for n=11. For n=12 we get M= 12/3= 4 and one can 
see from forth row, for sub register M= 24, that number of 

queries are minimum for size of register 212, 213 and 214, given 
in columns 5, 6 and 7, respectively. These minimum queries 
terms are highlighted with * as a superscript on each term. 
Hence, we can say if the number of n is a multiple of 3, then 
we get accurate result; but if it is not a multiple, then there is a 
little discrepancy which is removed by introducing a factor of 
µ in Eq. (12). 

V. CONCLUSIONS 
We studied the effect of Grover’s iteration on a search 

space, with same amplitude of all elements concluding that by 
using a single query it can be known whether marked element 
is present or not in the search space. Based on this finding, we 
have proposed a fast quantum search algorithm. It has been 
shown that by using the same technique as Grover’s algorithm 
but dividing the register with N elements into M  sub-
registers, we can find a marked element in  

( )( )1
32 / 4O Nπ +    steps instead of ( )O N as in 

Grover’s algorithm. 
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