The system of Diophantine equations
 $(u-1) x^{2}-4 u y^{2}=-12 u-8$ and
 $(u+2) x^{2}-4 u y^{2}=-12 u+8$

Lionel Bapoungué

* Université de Yaoundé 1, École normale supérieure, BP 47, Yaoundé - Cameroun Email:lbapoungue@hotmail.com

Abstract : Let $\mathbf{u} \geq \mathbf{5}$ be an odd integer. The three numbers $\mathbf{u}-\mathbf{2}, \mathbf{w}+\mathbf{2}$ and $\mathbf{4} \boldsymbol{u}$ have the property that the product of any two distinct, increased by $\mathbf{4}$, is a perfect square. That property allows the solvability of the Diophantine quations $(\boldsymbol{u}-\mathbf{2}) \mathbf{x}^{\mathbf{2}}-\mathbf{4} \boldsymbol{u} \boldsymbol{y}^{\mathbf{2}}=-\mathbf{1 2} \boldsymbol{u}-\mathbf{z}$ and $(u+2) x^{\mathbf{2}}-\mathbf{4} \boldsymbol{u}^{\mathbf{2}}=-\mathbf{1 2} \mathbf{u}-\mathbf{8}$. The integers solutions of the system of these two equations are given by $\mathbf{x}=\mathbf{\pm} \mathbf{2}, \mathbf{\Psi}\left(\mathbf{4} \boldsymbol{u}^{\mathbf{2}}-\mathbf{2}\right)$, $\boldsymbol{y}=\mathbf{\pm 2}, \mathbf{\pm}\left(2 \boldsymbol{u}^{\mathbf{2}}-\mathbf{2 u}-\mathbf{2}\right), \mathbf{z}=\mathbf{\pm 2}, \mathbf{\pm}\left(2 u^{\mathbf{2}}+\mathbf{2 u}-\mathbf{2}\right)$. We prove with the aid of simultaneous rational approximations and linear forms in logarithms of quadratic numbers that there is no other solution.

2010 Mathematics Subject Classifications: 11D09, 11J68, 11J86.
Keywords and Phrases : Diophantine equations, system of Diophantine equations, linear forms in logarithms, simultaneous rational approximations.

1 Introduction

In paper [2], we have studied the system of Diophantine equations
$3 x^{2}-21 y^{2}=-68$
and
$7 x^{2}-20 x^{2}=-52$
the discussion involving clearly the well-known following notion :
Definition 1 : Let \boldsymbol{w} be a nonzero integer. A set of \boldsymbol{v} positive integers $\left[\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{\boldsymbol{v}}\right.$] is called a $\boldsymbol{D}(\boldsymbol{w})-\boldsymbol{v}-$ tupple if $\boldsymbol{a}_{\boldsymbol{i}} \boldsymbol{a}_{\boldsymbol{j}}+\boldsymbol{w}$ is a square for all \boldsymbol{i} and \boldsymbol{i} with $\mathbf{1} \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{v}$.

Looking at the coefficients of $\mathbf{x}^{\mathbf{2}}, \boldsymbol{y}^{\mathbf{2}}$ and $\boldsymbol{z}^{\mathbf{2}}$ in the equations above, we can write respectively
$3=w-2, \quad 7=u+2, \quad 20=4 u$
with $\boldsymbol{u}=\mathbf{5}$.
Consider for all integer $u \geq$, the three numbers $\boldsymbol{u}-\mathbf{2} \quad \boldsymbol{u}+\mathbf{2}$ and $\boldsymbol{4} \boldsymbol{u}$.
If $\mathbf{u \in [0 . 1 . 2]}$, then the set of those three numbers is not a $\boldsymbol{D}(\mathbf{4})$-triple ; but if $\mathbf{u} \geq \mathbf{3}$ that set forms a $\boldsymbol{D}(\mathbf{4})$ - triple. Thus, for all integer $\mathbf{u} \geq \mathbf{3}$, we shall employ the following notations:

$$
T_{x}=\{u-2, u+3,4 u\}
$$

$\boldsymbol{Q}_{\mathbf{x}}=\mathbf{t}-\mathbf{2} \boldsymbol{u}+\mathbf{2}, \mathbf{4} \boldsymbol{u}, \boldsymbol{d} \mathbf{z}$ where d is a positive integer.
Suppose that $\mathbf{Q}_{\mathbf{I}}$ is a $\boldsymbol{D}(\mathbf{4})$ - $\boldsymbol{q u a d r c p l e}$ with $\boldsymbol{d} \boldsymbol{>} \mathbf{4} \boldsymbol{u}$; then, there exist integers $\mathbf{x}, \boldsymbol{y}, \boldsymbol{z}$ such that:
(1.1) $\quad x^{2}=4 u d+4 . \quad y^{2}=(u-2) d+4 \quad z^{2}=(u+2) d+4$.

Eliminating $\boldsymbol{d}^{\boldsymbol{d}}$ from (1.1), we obtain the simultaneous Diophantine equations
$\left(E_{1}\right)$
$(u-2) x^{2}-4 u y 2=-12 u-8$
And
$\left(E_{2}\right) \quad(u+2) x^{2}-4 u z^{2}=-12 u+5$
where $\boldsymbol{u} \geq \mathbf{3}$ is a positive integer.
We denote by (\boldsymbol{E}) the system of $\left(\boldsymbol{E}_{\mathbf{1}}\right)$ and $\left(\boldsymbol{E}_{\mathbf{2}}\right)$.
The objective of this paper is the generalization of [2]. More precisely, it deals with the complete treatment of the solvability of (\boldsymbol{E}).

If $\boldsymbol{u}=\mathbf{3}$. we valid (\boldsymbol{E}) because of the results of [5].
On the other hand, when \boldsymbol{u} is even: $\mathbf{u}=\mathbf{2} \boldsymbol{J},\left(\boldsymbol{E}_{\mathbf{1}}\right)$ and $\left(\boldsymbol{E}_{\mathbf{2}}\right)$ become respectively
$(\boldsymbol{U}-1) \mathbf{x}^{2}-4 U y^{2}=-12 U-4$
and
$(J+1) x^{2}-4 U z^{2}=-12 J+4$
So, it is easy to see that the three numbers $\boldsymbol{U}-\mathbf{1}, \boldsymbol{U}+\mathbf{1}$ and $\mathbf{4} \boldsymbol{U}$ form a $\boldsymbol{D}(\mathbf{1})$ - triple . Therefore, we may assume that $\mathbf{u} \geq \mathbf{5}$ an integer with \boldsymbol{u} odd.
Then, we remark immediately that (\boldsymbol{E}) possesses the obvious solutions
$(\mathbf{z}, \boldsymbol{y}, \mathrm{z})=(\mathbf{+ 2} \mathbf{+ 2} \mathbf{+} \mathbf{2})$
Definition 2: The obvious solutions above are called the trivial solutions of (\boldsymbol{E}).
Replacing the trivial solutions of (\boldsymbol{E}) in $(\mathbf{1 . 1})$, we get $\boldsymbol{d}=\boldsymbol{e}$.
Definition 3: The solution $\boldsymbol{d}=$ above is called the trivial extension from $\mathbf{T}_{\mathbf{I I}}$ to $\mathbf{Q u}_{\text {. }}$.
The problem of finding the nontrivial solutions of (\boldsymbol{E}) involves in an essential way the determination of the extension $\boldsymbol{d} \in \mathbf{Q}_{\boldsymbol{\pi}} \quad \boldsymbol{d} \boldsymbol{\neq}$, from $\mathbf{T}_{\boldsymbol{\pi}}$ to $\mathbf{Q}_{\mathbf{I}}$; the key of that problem is the utilization of the following conjecture claimed in [4]:

Conjecture 4 : There does not exist a $\boldsymbol{D}(\mathbf{4})$ - quinduple . Moreover, if $\{\boldsymbol{a}, \boldsymbol{b}, \mathbf{c} \boldsymbol{C} \boldsymbol{d}\}$ is a $\boldsymbol{D}(4)$ - quadrupile with $a<b<c<d$ then $d=a+b+c+\frac{a b c+\tau s t}{2}$. where $\boldsymbol{\Gamma}, \mathbf{s}, \boldsymbol{t}$ are positive integers defined by:
$a b+4=r^{2} ; \quad a c+4=s^{2} ; \quad b c+4=t^{2}$.
Applying the second assertion of this result to $\mathbf{Q}_{\mathbf{n}}$ we get $\boldsymbol{d}=\mathbf{4 u}\left(\mathbf{4} \boldsymbol{u}^{\mathbf{2}}-\mathbf{1}\right)$.
In Section 2, we give the family of nontrivial solutions of each separate equation of (E) (Propositions 9 and 10) by the same arguments as in the following lemma proved in [4]:
Lemma 5: Let $[\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}]$ be a $\boldsymbol{D}(\mathbf{4})$-triple where $\mathbf{0}<\boldsymbol{a}<\boldsymbol{b}<\boldsymbol{c}$, and let $\boldsymbol{r}, \mathbf{s}, \boldsymbol{E}$ be positive integers defined by $a b+4=r^{2}, a c+4=s^{2}, b c+4=t^{2}$.

$\boldsymbol{i}=\mathbf{1}, \ldots \boldsymbol{j}$ with the following properties:

$$
\begin{equation*}
\alpha x^{2}-c y^{2}=4(a-c) \tag{1.2}
\end{equation*}
$$

and
(1.3)

$$
b x^{2}-c z^{2}=4(b-c)
$$

(14)

$$
1 \leq y_{a}^{a} \leq \sqrt{\frac{a(c-a)}{s-2}}, F_{a}^{a} \left\lvert\, \leq \sqrt{\frac{(s-2)(c-a)}{a}}\right.
$$

$$
1 \leq x_{1}^{(j)} \leq \sqrt{\frac{b(c-b)}{t-2}}, z_{1}^{(j)} \left\lvert\, \leq \sqrt{\frac{(t-2)(c-b)}{b}}\right.
$$

$\boldsymbol{P}_{\mathbf{z}}$ - If $(\mathbf{z}, \boldsymbol{y})$ and (\mathbf{z}, \mathbf{z}) are positive solutions of (12) and (13) respectively, then there exist $\bar{i} \in\left(\mathbf{1}, \ldots, i_{0}\right]_{j} \boldsymbol{j} \in\left[\mathbf{1}, \ldots, \boldsymbol{j}_{0}\right]$ and integers $\boldsymbol{m}, \boldsymbol{\pi} \geq$ such that
(16) $\quad x \sqrt{a}+y \sqrt{c}=\left(x_{a}^{a} \sqrt{a}+y_{a}^{m} \sqrt{c}\right)\left(\frac{s+\sqrt{a c}}{2}\right)^{m}$.
(1.7) $\quad x \sqrt{b}+z \sqrt{c}=\left(x_{i}^{(j)} \sqrt{b}+z_{i}^{(j)} \sqrt{c}\right)\left(\frac{t+\sqrt{b c}}{2}\right)^{\pi}$.

Assuming the solvability of (\mathbb{E}), we introduce in Section 3 the recursive sequences connected to the families of nontrivial solutions of $\left(\boldsymbol{E}_{\mathbf{1}}\right)$ and $\left(\boldsymbol{E}_{\mathbf{Z}}\right)$
(Proposition 11). The solvability of (\boldsymbol{E}) in nontrivial integers imposes clearly that $\mathbf{x} \equiv \mathbf{0}(\bmod \mathbf{2})$. Therefore, our study will be based on $\boldsymbol{X}=\frac{\mathbf{x}}{\mathbf{2}}$. Thus, in Section 4 we put up a vision of linear forms in logarithms of quadratic numbers (Theorem 13). We study in Section 5 simultaneous rational approximations (Theorem 15) with the aid of the following result proved in [7] (see also [6]):

Proposition 6: If $\mathbf{u} \geq \mathbf{6 3}$ is an integer, then the numbers
$a_{1}=\sqrt{\frac{w-2}{u}}$
and
$a_{3}=\sqrt{\frac{u+2}{u}}$
satisfy
$\max \left\{\left|a_{1}-\frac{p_{1}}{q}\right|,\left|a_{2}-\frac{p_{2}}{q}\right|\right\}>\left(22-\operatorname{cow}^{-1} q^{-1-\lambda}\right.$
for all integers $\boldsymbol{P}_{\mathbf{1}}, \boldsymbol{P}_{\mathbf{z}} \boldsymbol{q}$ with $\boldsymbol{q} \boldsymbol{>}$, where
$\lambda=\frac{\log (11.2 u)}{\log \left(0.197 u^{2}\right)}<1$.
In Section 6, we describe the nontrivial solutions of (\mathbf{E}) (Theorem 18): for $\boldsymbol{u}<\mathbf{6 3}$, we bound $\boldsymbol{l}_{\boldsymbol{G}} \boldsymbol{X}$ and also the positive integer $\boldsymbol{\pi}$ in terms of which \boldsymbol{X} is expressed by (3.6) below (Lemma 16) ; so, we use the following results proved respectively in [1] and [3]:

Theorem 7: For a linear form $\boldsymbol{A} \neq$ in logarithms of \boldsymbol{k} algebraic numbers
$\boldsymbol{a}_{\mathbf{1}}, \ldots, \boldsymbol{a}_{\boldsymbol{k}}$ with rational coefficients $\boldsymbol{b}_{\mathbf{1}}, \ldots, \boldsymbol{b}_{\boldsymbol{k}}$, we have:
$\log |A| \geq-18(k+1)!k^{k+1}(32 \delta)^{k+2} \boldsymbol{k}^{\prime}\left(\alpha_{1}\right) k^{\prime}\left(\alpha_{2}\right)-\hbar^{r}\left(\alpha_{k}\right) \log (2 k \delta) \log b$
where
$b=\max \left(\|_{1} \downarrow, \ldots, b_{k} D ; s=\left[Q\left(\alpha_{1}, \ldots, \alpha_{k}\right): Q\right]\right.$
and
$E^{\prime}(\alpha)=\frac{1}{\delta} \max (t(\alpha)-|\log \alpha|, 1)$
with the standard logarithmic Weil height $\boldsymbol{\mu}(\boldsymbol{\alpha})$ of $\boldsymbol{\alpha}$.
Lemma 8: Let \boldsymbol{M} be a positive integer. Let $\frac{\boldsymbol{P}}{\boldsymbol{q}}$ the convergent of the continued fraction expansion of $\boldsymbol{\theta}$ such that $\boldsymbol{q}>\mathbf{6 M}$. Put

where II. II denotes the distance from the nearest integer. If $\boldsymbol{\epsilon} \boldsymbol{\boldsymbol { e }}$, then the inequality $0<m \boldsymbol{m}-\boldsymbol{m}+\mu<A B^{-\pi}$
has no solution in the range
$\frac{\log \left(\frac{A q}{E}\right)}{\log B} \leq \pi<M$.
Next, for $\boldsymbol{u} \geq \mathbf{6 3}$, we prove that the set $\boldsymbol{Q}_{\mathbf{I}}$ is a $\boldsymbol{D}(\mathbf{4})$ - quadraple if and only if $\boldsymbol{d}=\mathbf{4 u}\left(\mathbf{4 u}^{\mathbf{2}}-\mathbf{1}\right)$ (Lemma 17). The paper is ended in Section 7 with the complete set of integer solutions of (\boldsymbol{E}) (Theorem 19).

2 The families of nontrivial solutions of $\left(\boldsymbol{E}_{\mathbf{1}}\right)$ and $\left(\boldsymbol{E}_{\mathbf{Z}}\right)$

In this section, we give: using the arguments of lemma 5, the family of nontrivial solutions of each separate equation of (\boldsymbol{E}).

2.1 The family of $\left(\boldsymbol{E}_{\boldsymbol{1}}\right)$

It is clear that if $(\mathbf{x}, \boldsymbol{y})$ is a solution of $\left(\boldsymbol{F}_{\mathbf{1}}\right)$, then so is $(-\mathbf{x},-\boldsymbol{y})$. Therefore, we may assume that $(\mathbf{x}, \boldsymbol{y})$ is positive. We prove the following proposition:
Proposition 9: Let $\boldsymbol{u} \geq \mathbf{5}$ be an odd integer. Then, the nontrivial solutions in pairs of natural numbers $(\mathbf{x}, \boldsymbol{y})$ of $\left(\boldsymbol{E}_{\mathbf{1}}\right)$ comprise the values of the sequences $\left(x_{m} y_{m}\right)(m \geq 1)$ by setting:
(21) $\quad x_{m} \sqrt{u-2}+2 y_{m} \sqrt{u}=(\pm 2 \sqrt{u-2}+4 \sqrt{u})(u-1+\sqrt{u(t-2)})^{m}$.

Proof. Let $(\mathbf{x}, \boldsymbol{y}) \in \boldsymbol{N}^{\mathbf{2}}$ be a solution of equation $\left(\boldsymbol{E}_{\mathbf{1}}\right)$. Then, taking
$\boldsymbol{a}=\mathbf{u}-2, \quad c=4 \boldsymbol{u}, \quad \mathbf{s}=\mathbf{2}(\boldsymbol{u}-\mathbf{1})$
in lemma 5, we see that there exists a particular solution $\left(\mathbf{z}_{\mathbf{w}}, \boldsymbol{y}_{\boldsymbol{0}}\right)$ of $\left(\boldsymbol{X}_{\mathbf{1}}\right)$ satisfying the following inequalities:
(22) $\quad 1 \leq y_{a \leq} \sqrt{\frac{(u-2)(4 u-u+2)}{2(u-1)-2}}=\sqrt{\frac{3 u+2}{2}}$.
$(23) \quad\left|x_{d}\right| \leq \sqrt{\frac{(2(u-1)-2)(4 u-u+2)}{u-2}}=\sqrt{2(3 u+2)}$.

Then, by (16) we have
(24) $\quad x \sqrt{u-2}+2 y \sqrt{u}=\left(x_{0} \sqrt{u-2}+2 y_{0} \sqrt{u}\right)(u-1+\sqrt{u(u-2)})^{m}$.
where $\boldsymbol{m} \geq \mathbf{1}$ is an integer. But from (22), we have in particular
$y_{a} \leq \sqrt{\frac{3 u+2}{2}} \Leftrightarrow-2 y^{2} \geq-3 u-2$
In that last inequality, $\mathbf{u} \geq \mathbf{5}$ imposes

$$
-2 y^{2} \geq-3 x-2 \geq-17
$$

This is only possible if $\mathbf{y}_{\mathbf{a}} \leq \sqrt{\frac{\mathbf{1 7}}{\mathbf{2}}}$. Therefore there are only two values of $\mathbf{y}_{\mathbf{a}}$:
$\boldsymbol{y}_{\mathbf{m}}=\mathbf{1}$: then, from $\left(\boldsymbol{E}_{\mathbf{1}}\right)$ we have $\mathbf{x}_{\mathbf{u}}=\mathbf{\pm \mathbf { 2 }} \sqrt{\frac{-2(\boldsymbol{u}+\mathbf{1})}{\boldsymbol{u}-\mathbf{2}}}$ which is not an integer;
$\boldsymbol{y}_{\mathbf{u}}=\mathbf{2}$: here $\mathbf{x}_{\mathbf{a}}=\mathbf{\pm} \mathbf{2}$.
It follows that from (24) we have
(25) $x \sqrt{u-2}+2 y \sqrt{u}=(\pm 2 \sqrt{u-2}+4 \sqrt{u})(u-1+\sqrt{u(u-2)})^{m}$.

Taking $\mathbf{x}=\mathbf{x}_{\boldsymbol{n}}, \boldsymbol{y}=\mathbf{y}_{\boldsymbol{n}}$ in (25), we obtain (21).

2.2 The family of (E_{z})

It is also clear that if (\mathbf{z}, \mathbf{z}) is a solution of $\left(\boldsymbol{E}_{\mathbf{z}}\right)$, then so is $(-\mathbf{x}, \mathbf{z})$. Therefore, we may assume that $(\mathbf{x}, \quad \mathbf{z})$ is positive. We prove also the following proposition:

Proposition 10: Let $\mathbf{u} \geq \mathbf{5}$ be an odd integer. Then, the nontrivial solutions in pairs of natural numbers $(\mathbf{z}, \boldsymbol{z})$ of $\left(\boldsymbol{E}_{\mathbf{2}}\right)$ comprise the values of the sequences $\left(\mathbf{x}_{\boldsymbol{r}}, \boldsymbol{z}_{\boldsymbol{m}}\right)(\boldsymbol{\pi} \geq \mathbf{1})$ by setting:
(26)

$$
x_{n} \sqrt{u+2}+2 z_{n} \sqrt{u}=(\pm 2 \sqrt{u+2}+4 \sqrt{u})(u+1+\sqrt{u(u+2)})^{m} .
$$

Proof. Let $(\mathbf{x}, \mathbf{z}) \in \boldsymbol{N}^{\mathbf{z}}$ be a solution of equation $\left(\boldsymbol{E}_{\mathbf{2}}\right)$. Then, taking
$b=u+2, \quad c=4 u, \quad t=2(u+1)$
in lemma 5, we see that there exists a particular solution $\left(\mathbf{x}_{\mathbf{1}}, \boldsymbol{z}_{\mathbf{1}}\right)$ of $\left(\boldsymbol{E}_{\mathbf{2}}\right)$ satisfying the following inequalities:
(27) $\quad 1 \leq z_{1} \leq \sqrt{\frac{(u+2)(4 u-u-2)}{2(u+1)-2}}=\sqrt{\frac{(u+2)(3 u-2)}{2 u}}$.
(28) $\left|x_{1}\right| \leq \sqrt{\frac{(2(u+1)-2)(4 u-u-2)}{u+2}}=\sqrt{\frac{2 u(3 u-2)}{u+2}}$.

Then, by (1.7) we have
(29) $x \sqrt{u+2}+2 z \sqrt{u}=\left(x_{1} \sqrt{u+2}+2 z_{1} \sqrt{u}\right)(u+1+\sqrt{u(w+2)})^{n}$.
where $\mathbf{n} \geq \mathbf{1}$ is an integer. But from (27), doing as above in proof of proposition 9,
we obtain $\boldsymbol{z}_{\mathbf{1}} \leq \sqrt{\frac{\mathbf{9 1}}{\mathbf{1 0}}}$. Therefore $\boldsymbol{z}_{\mathbf{1}}$ has only three possible values:
$\boldsymbol{z}_{\mathbf{1}}=\mathbf{1}$: then, from $\left(\boldsymbol{E}_{\mathbf{2}}\right)_{\text {we have }} \mathbf{x}_{\mathbf{1}}=\mathbf{\pm \mathbf { 2 }} \sqrt{\frac{-2(\boldsymbol{u}-\mathbf{1})}{\boldsymbol{u + 2}}}$ which is not an integer;
$\boldsymbol{z}_{\mathbf{1}}=\mathbf{2}$: whence $\mathbf{x}_{\mathbf{1}}=\mathbf{\pm 2}$.
$\mathbf{z}_{\mathbf{1}}=\mathbf{3}:$ then $\mathbf{x}_{\mathbf{1}}=\mathbf{\pm 2} \sqrt{\frac{2(\mathbf{3} \boldsymbol{u}+\mathbf{1})}{\boldsymbol{u}+\mathbf{2}}}$ which is not a solution because of $(\mathbf{2 B})$.
It follows that from (29) we have
(210) $x \sqrt{4+2}+2 z \sqrt{41}=(\pm 2 \sqrt{4+2}+4 \sqrt{11})(4+1+\sqrt{u(4+2)})^{n}$ -

Taking $\mathbf{x}=\mathbf{x}_{\boldsymbol{n}} \cdot \mathbf{z}=\boldsymbol{z}_{\boldsymbol{r}}$ in (210), we obtain (26).

3 Recursive sequences connected to the general solutions of $\left(\boldsymbol{E}_{\mathbf{1}}\right)$ and $\left(\boldsymbol{E}_{\mathbf{2}}\right)$
In this section, we consider the trivial solutions of $\boldsymbol{(\boldsymbol { E }})$ and formulae $(\mathbf{2 1})$ and (26).

Proposition 11: Let $\mathbf{u} \geq \mathbf{5}$ be an odd integer for which equations $\left(\mathbb{E}_{\mathbf{1}}\right)$ and $\left(\boldsymbol{E}_{\mathbf{2}}\right)$ have the general solutions given by definition 3 and formulae ($\mathbf{2 1}$) and (26) respectively. Then, besides the trivial sequences $\mathbf{x}_{\mathbf{m}}=\mathbf{\pm} \mathbf{2}$, the sequences $\left(\mathbf{x}_{\mathbf{m}}\right)$ and $\left(\boldsymbol{I}_{\boldsymbol{n}}\right)$ verify respectively the following recursive formulae:
i) $x_{1}(m+2)=2(w-1) x_{1}(m+1)-x_{1} m$,
in) $x_{1}\left(n^{n}+2\right)=2(u+1) x_{1}(n+1)-x_{1} n$,
for some integers $\boldsymbol{m}, \boldsymbol{\pi} \geq \mathbf{1}$.
Moreover, for these formulae, we have
$\mathbf{m} \equiv \mathbf{n} \equiv \mathbf{0 . 2 (\operatorname { m o d } 4)}$.
In other words,
$m=n=4 \boldsymbol{m}$ or $m=\pi=4+2$
Proof: It suffices to prove (i), the proof of (īi) is similar. We have of course $\mathbf{x}_{\mathbf{u}}= \pm \mathbf{2}, \mathbf{x}_{\mathbf{1}}=\mathbf{6} \boldsymbol{u}-\mathbf{2}$ or $\mathbf{2 u}+\mathbf{2}$ and we see that, even if $\mathbf{x}_{\mathbf{u}}=-\mathbf{2}$, other values of $\boldsymbol{x}_{\boldsymbol{n}}$ can be positive.
Next, relation (21) can be expressed in the form:
$x_{m+1} \sqrt{u-2}+2 y_{m+1} \sqrt{u}=2(\pm \sqrt{u-2}+2 \sqrt{u})(u-1+\sqrt{u(u-2)})^{m+1}$
or
$x_{m+1} \sqrt{u-2}+2 y_{m+1} \sqrt{u}=\left(x_{m} \sqrt{u-2}+2 y_{m} \sqrt{u}\right)(u-1+\sqrt{u(u-2)})$
whence
$x_{m+2} \sqrt{u-2}+2 y_{m+2} \sqrt{u}=\left(x_{m} \sqrt{u-2}+2 y_{m} \sqrt{u}\right)(u-1+\sqrt{u(u-2)})^{2}$.
But
$(x-1)^{2}+u^{2}-2 u=\left(2 u^{2}-4 u+2\right)-1$.

Therefore
$x_{m+2} \sqrt{u-2}+2 y_{m+2} \sqrt{u}=\left(x_{m} \sqrt{u-2}+2 y_{m} \sqrt{u}\right)\left[2(u-1)^{2}+2(u-1) \sqrt{u(u-2)}-1\right]$ so that
$x_{m+2} \sqrt{u-2}+2 y_{m+2} \sqrt{u}=2(u-1)\left(x_{m+1} \sqrt{u-2}+2 y_{m+1} \sqrt{u}\right)-\left(x_{m} \sqrt{u-2}+2 y_{m} \sqrt{u}\right)$ which gives:
$x_{m+2}=2(u-1) x_{m+1}-x_{m i} ;$
$y_{m+2}=\mathbf{z}(w-1) y_{m+1}-y_{m-}$
This proves (\boldsymbol{i}) and the first part of the proposition.
Considering relation $(\mathbf{2 1})$, we must find \boldsymbol{m} such that

$$
\begin{equation*}
(u-2) x_{m}^{2}-4 u y_{m}^{2}=-12 u-2 \tag{3.1}
\end{equation*}
$$

Using (i), modulo $\mathbf{2 (u - 1)}$ we have:

$$
\begin{array}{cccccc}
m & 0 & 1 & 2 & 3 & 4 \\
x_{\mathrm{m}} & 2 & -4 & -2 & 4 & 2
\end{array}
$$

Here, we see that the sequence $\left(\mathbf{x}_{\mathbf{m}}\right)$ is periodic with period 4. Then from
(3.1) we obtain
(3.2)

$$
(u-2) x_{m}^{2}-4 u y_{m}^{2}=-20(\bmod 2(u-1))
$$

This implies
$x_{m} \equiv \pm 2(\bmod 2(u-1))$
which imposes $\boldsymbol{m} \equiv \mathbf{0} \mathbf{0} \mathbf{2 (m o d} \mathbf{4}$)
We consider now relation (26). As above, we find \boldsymbol{n} such that
(3.3)

$$
(u+2) x_{n}^{2}-4 u z_{n}^{2}=-12 u+2
$$

Using (iii), modulo $2(\boldsymbol{u}+\mathbf{1})$ we have:

$$
\begin{array}{cccccc}
n & 0 & 1 & 2 & 3 & 4 \\
x_{n} & 2 & 4 & -2 & 4 & 2
\end{array}
$$

and we see that, the sequence $\left(\boldsymbol{I}_{\mathbf{I}}\right)$ is periodic with period 4 . Then from
(33) we obtain
(3.4)

$$
(u+2) x_{n}^{2}-4 u z_{n}^{2}=20(\bmod 2(u+1))
$$

This implies

$x_{n} \equiv \pm 2(\bmod 2(w+1))$

which imposes $\boldsymbol{n} \equiv \mathbf{0} \mathbf{2} \mathbf{2 (\operatorname { m o d } 4)} \mathbf{~}$
therefore \boldsymbol{m} and \boldsymbol{n} are both even. In other words, we may write $\boldsymbol{m}=\boldsymbol{\pi}$
$=\mathbf{4} \boldsymbol{u}$ or $\boldsymbol{m}=\boldsymbol{n}=\mathbf{4} \boldsymbol{u}+\mathbf{2}$. This proves the second part of the proposition and
completes the proof.
Remark 12 : Equations $\left(\boldsymbol{E}_{\mathbf{1}}\right)$ and $\left(\boldsymbol{E}_{\mathbf{2}}\right)$ impose that \mathbf{z} is even; if we put $\mathbf{x}=$ $\mathbf{2 X}$, then $\left(\boldsymbol{E}_{\mathbf{1}}\right)$ and $\left(\boldsymbol{E}_{\mathbf{2}}\right)$ become respectively

$$
\left(F_{1}\right) \quad(u-2) X^{2}-u y^{2}=-3 u-2
$$

and
$\left(F_{3}\right)$

$$
(u+2) x^{2}-w z^{2}=-3 u+2
$$

To simplify our study, we consider from now on $\left(\boldsymbol{F}_{\mathbf{1}}\right)$ and $\left(\boldsymbol{F}_{\mathbf{2}}\right)$.
We denote by (\boldsymbol{F}) the system of equations $\left(\boldsymbol{F}_{\mathbf{1}}\right)$ and $\left(\boldsymbol{F}_{\mathbf{2}}\right)$. We shall employ:
(35) $X_{\mathrm{mm}}=\left(\frac{e \sqrt{u-2}+2 \sqrt{u}}{2 \sqrt{u-2}}\right)(u-1+\sqrt{u(u-2)})^{m}-\left(\frac{-6 \sqrt{u-2}+2 \sqrt{u}}{2 \sqrt{u-2}}\right)(u-1-\sqrt{u(u-2)})^{m}$.
(3.6) $X_{n}=\left(\frac{(6 \sqrt{u+2}+2 \sqrt{u}}{2 \sqrt{u+2}}\right)(u+1+\sqrt{u(u+2)})^{n}-\left(\frac{-6 \sqrt{u+2}+2 \sqrt{u}}{2 \sqrt{u+2}}\right)(u+1-\sqrt{u(u+2)})^{n}$.
where $\boldsymbol{m}, \boldsymbol{\pi} \geq \boldsymbol{0}$ are integers and $\boldsymbol{\epsilon} \pm \mathbf{1}$.
We set
$\boldsymbol{X}=\boldsymbol{X}_{\mathbf{m}}=\boldsymbol{X}_{\mathbf{n}-}$
Then, the values $\boldsymbol{X}=\mathbf{\pm 1}$ correspond to $\boldsymbol{m}=\boldsymbol{\pi}=\boldsymbol{1}$ (3.5) and (3.6); those values are also called the nontrivial solutions of $\boldsymbol{(F)}$.

In the ensuing of this paper, we seek the nontrivial values of \boldsymbol{X} by methods using linear forms in logarithms of quadratic numbers and simultaneous rational approximations. According to the precedent proposition, we shall assume that \boldsymbol{m} and \boldsymbol{n} are both even $\geq \mathbf{2}$.

4 Linear forms in logarithms of quadratic numbers

The present section is devoted to one important theorem of linear forms.
Theorem 13: Let $\mathbf{u} \geq \mathbf{5}$ be an odd integer for which $\left(\boldsymbol{F}_{\mathbf{1}}\right)$ and $\left(\boldsymbol{F}_{\mathbf{2}}\right)$ have respectively nontrivial solutions given by (35) and (3.6). Let \boldsymbol{X} be a nontrivial solution of $\mathbf{(F)}$ for some even integers $\boldsymbol{m}, \boldsymbol{\pi} \geq \mathbf{2}$. Then the linear form

$$
\begin{equation*}
A=\pi \log _{5} \alpha_{2}-m \log _{5} \alpha_{1}+\log _{5} \alpha_{2} \tag{4.1}
\end{equation*}
$$

with
(4.2) $\quad \alpha_{1}=u-1+\sqrt{u(u-2)}, \quad \alpha_{2}=u+1+\sqrt{u(u-2)}, \quad \alpha_{3}=\frac{(E \sqrt{u+2}+2 \sqrt{u}) \sqrt{u-2}}{(E \sqrt{u-2}+2 \sqrt{u}) \sqrt{u+2}}$ satisfies

$$
\begin{equation*}
-\varepsilon A<\omega x_{2}^{-2 \pi} . \tag{4.3}
\end{equation*}
$$

Moreover, the integer n verifies the inequality

$$
\begin{equation*}
\frac{\pi}{2}<10^{4} \log _{5} \pi \log _{6}(2 u-1) \log _{6}\left(7 / u^{4}\right) . \tag{4.4}
\end{equation*}
$$

Proof. Consider (35) and (3.6). Then (as $\boldsymbol{X}=\boldsymbol{X}_{\mathbf{m}}=\boldsymbol{X}_{\boldsymbol{n}}$) we can write:

$$
\begin{aligned}
& x=\left(\frac{\epsilon \sqrt{u+2}+2 \sqrt{u}}{\sqrt{u+2}}\right)(u+1+\sqrt{u(u+2)})^{n}-\left(\frac{2 \sqrt{u}-\epsilon \sqrt{u+2}}{\sqrt{u+2}}\right)(u+1-\sqrt{u(u+2)})^{-n} \\
& =\left(\frac{\epsilon \sqrt{u-2}+2 \sqrt{u}}{\sqrt{u-2}}\right)(u-1+\sqrt{u(u-2)})^{m}-\left(\frac{2 \sqrt{u}-\epsilon \sqrt{u-2}}{\sqrt{u-2}}\right)(u-1+\sqrt{u(u-2)})^{-m}
\end{aligned}
$$

If we put:

then, that last relations give
(4.6) $P+\frac{3 u-2}{4 u+8} P^{-1}=Q+\frac{3 u+2}{4 u} Q^{-1}$

Since
$P-Q=\frac{3 u+2}{4 u} Q^{-1}-\frac{3 u-2}{4 u+8} P^{-1}$.
$\boldsymbol{u} \geq \mathbf{5}$ implies
$P-Q>\frac{13}{28} Q^{-1}-\frac{13}{28} P^{-1}=\frac{13}{28}(P-Q) P^{-1} Q^{-1}$.
and plainly $\boldsymbol{P}>\mathbf{1}, \boldsymbol{Q}>\mathbf{1}$ we must have $\boldsymbol{P}>\boldsymbol{Q}$. As we may assume that $\boldsymbol{n} \geq \mathbf{2}$ the inequality $\boldsymbol{u} \geq 5$ imposes
$P \geq \frac{\sqrt{7}+2 \sqrt{5}}{\sqrt{7}}(6+\sqrt{35})^{2}>605$
Relation (4.6) implies
$Q>P-\frac{17}{29} Q^{-1}>P-\frac{17}{20}-$
Hence
$P-Q=\frac{3 u+2}{4 u} Q^{-1}-\frac{3 u-2}{4 u+8} P^{-1}<\frac{17}{20}\left(P-\frac{17}{20}\right)^{-1}-\frac{13}{28} P^{-1}<\frac{1}{2} P^{-1}-$
It follows from
$0<\frac{P-Q}{P}<\frac{1}{2} P^{-2}=\frac{1}{2} \times 605^{-2}$
that
$0<\log _{5} \frac{P}{Q}=-\log _{5}\left(1-\frac{P-Q}{Q}\right)<\frac{1}{2} P^{-2}+\left(\frac{1}{2} P^{-2}\right)^{2}<\frac{1}{2} P^{-2}\left(1+\frac{1}{2} \times 605^{-2}\right)<0.5 P^{-2}-$
Since

$$
P^{-2}<(6+\sqrt{35})^{-2 \pi}
$$

substituting from (4.5) we obtain (4.1).
It remains to show inequality (4.4). Here, we have to apply theorem 7 with $\boldsymbol{k}=\mathbf{3}$ and relations (4.2). Thus, we can take $\boldsymbol{\delta}=\boldsymbol{4}, \boldsymbol{b}=\boldsymbol{\pi}$ and
$\mathbf{k}^{\prime}\left(\alpha_{1}\right)=\frac{1}{2} \log _{5} \alpha_{1}, \boldsymbol{k}^{\prime}\left(\alpha_{2}\right)=\frac{1}{2} \log _{8} \alpha_{2}-$
Denoting the conjugate of $\boldsymbol{\alpha}_{\mathbf{a}}$ by $\boldsymbol{\alpha}_{\mathbf{a}}{ }^{\boldsymbol{\sigma}}$. we may write

Then, by theorem 7 we have
$\log A>-18 \times 4!\frac{\left.\times 3^{4} 63 \times 4\right)^{51}}{2} \log \alpha_{1} \frac{1}{2} \log \alpha_{2}-\frac{1}{4} \log \left(77 u^{4}\right)$
$\log (24) \log \pi$.
But
$a_{1}=u-1+\sqrt{u^{2}-2 u}>2 u-1$.
Therefore, from (4.1) we deduce that
$\frac{n}{\log n}<1 \times 2 \times 10^{14} \log (2 u-1) \ln \left(77 u^{4}\right)$.
Lemma 14: With the notations of the preceding theorem, we have:
(4.7) $0 \in \Lambda \Rightarrow \pi \geq \pi$.

Proof. Suppose that $\boldsymbol{n}<\boldsymbol{m}$; then we have:
$A=m \log \alpha_{2}-m \log \alpha_{1}+\log \alpha_{3}<m \log \alpha_{2}-m \log \alpha_{1}+\log \alpha_{3}$
$=-m\left(\log \alpha_{1}-\log \alpha_{2}\right)+\log \alpha_{3}<\log \alpha_{1}-\log \alpha_{2}+\log \alpha_{3}$
$=\log \alpha_{2}+\log \left(\alpha_{1} \alpha_{3}\right) \leqslant \operatorname{l}$
which contradicts inequality (4.7). -

5. Simultaneous rational approximations

It is clear that if $(\boldsymbol{X}, \boldsymbol{y}, \mathbf{z})$ is a nontrivial positive solution of (\boldsymbol{F}), so is $(-\boldsymbol{X},-\boldsymbol{y},-\boldsymbol{z})$
Thus, we can suppose that $(\boldsymbol{X}, \boldsymbol{y}, \boldsymbol{z})$ is positive.
Let $(\boldsymbol{X}, \boldsymbol{y}, \mathbf{z})$ be a nontrivial positive solution of (\boldsymbol{F}). Then, we may write $\left(\boldsymbol{F}_{\mathbf{1}}\right)$ and $\left(\boldsymbol{F}_{\mathbf{2}}\right)$ respectively in the form

$$
\sqrt{\frac{x-2}{x}}-\frac{y}{x}=\left(\frac{x-2}{u}-\frac{y^{2}}{x^{2}}\right)\left(\sqrt{\frac{x-2}{x}}+\frac{y}{x}\right)^{-1}
$$

and
$\sqrt{\frac{u+2}{u}}-\frac{z}{x}=\left(\frac{u+2}{u}-\frac{z^{2}}{x^{2}}\right)\left(\sqrt{\frac{u+2}{u}+\frac{z}{x}}\right)^{-1}$
Then, taking the absolute values in these two last equalities, we obtain respectively
(5.1)

$$
\left|\sqrt{\frac{w-2}{u}}-\frac{y}{x}\right|=\frac{1}{w^{2}}|-3 u-2|\left|\sqrt{\frac{w-2}{u}}+\frac{y}{x}\right|^{-1}
$$

and
(5.2) $\left|\sqrt{\frac{w+2}{u}}-\frac{z}{X}\right|=\frac{1}{w X^{2}}|-3 u+2|\left|\sqrt{\frac{w+2}{u}}+\frac{z}{X}\right|^{-1}-$

Next, we prove the following theorem :
Theorem 15: Let $\mathbf{u} \geq \mathbf{6 3}$ be an odd integer such that $(\boldsymbol{X}, \boldsymbol{y}, \boldsymbol{z})$ is a nontrivial positive solution of (\boldsymbol{F}). Then $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ satisfies

$$
\begin{equation*}
(22-6 u)^{-1} X^{-1-1} 2^{1}<\max \left\{\left|\sqrt{\frac{u-2}{u}}-\frac{2 y}{x}\right|,\left|\sqrt{\frac{u+2}{u}}-\frac{2 z}{x}\right|\right\}<1.5 x^{-2} \tag{53}
\end{equation*}
$$

with

$$
\lambda=\frac{\log (11.2 u)}{\log \left(0.197 u^{2}\right)}<1
$$

Proof. Taking $\boldsymbol{p}_{\mathbf{1}}=\boldsymbol{y}, \boldsymbol{p}_{\mathbf{z}}=\boldsymbol{z}$ and $\boldsymbol{q}=\boldsymbol{X}$ in (5.1) and (52), by proposition 6 .
we see that the solution $(\boldsymbol{X}, \boldsymbol{y}, \boldsymbol{z})$ of $\boldsymbol{(F)}$ satisfies
$\max \left\{\left|\sqrt{\frac{u-2}{u}}-\frac{y}{\bar{X}}\right|,\left|\sqrt{\frac{w+2}{u}}-\frac{z}{X}\right|\right\}>(22-6 u)^{-1} X^{-1-1}$
with
$\lambda=\frac{\log (11.2 u)}{\log \left(0.197 u^{2}\right)}$.
It is also clear that $\mathbf{u} \geq \mathbf{6 3}$ implies $\boldsymbol{\lambda}<\mathbf{1}$. This proves the first inequality of $(\mathbf{5} \mathbf{3})$.
Let us show now the last inequality of (53). From (52) we have

Doing as above with equality (5.1), we also obtain
(55) $\left|\sqrt{\frac{w-2}{u}}-\frac{y}{X}\right|<15 x^{-2}$

From (54) and (5.5), we see that
$\operatorname{mex}\left\{\left|\sqrt{\frac{u-2}{u}}-\frac{y}{\bar{X}}\right| \cdot\left|\sqrt{\frac{u+2}{u}}-\frac{z}{\bar{X}}\right|\right\}<1.5 x^{-2}$
so that $(\mathbf{5} \mathbf{3})$ holds and the proof is now complete.
6 The nontrivial solutions of ${ }^{(5)}$
In this section, we have to examine two cases: $\mathbf{5} \leq \boldsymbol{u}<\mathbf{6 3}$ and $\boldsymbol{u} \geq \mathbf{6 3}$.
6.1 The case $5 \leq 4 \in 63$

In this case, we go on to prove the following lemma:
Lemma 16: Let \boldsymbol{u} be an odd integer such that $\mathbf{5} \leq \boldsymbol{u}<\mathbf{6 3}$. With the notations and hypotheses of theorem 13 , if $\boldsymbol{n} \geq \mathbf{2}$ is an even integer satisfying (4.3) and (4.4), then $\mathbf{n}=\mathbf{2}$.

Proof. Suppose that $\boldsymbol{n} \neq \mathbf{2}$, that is $\boldsymbol{n} \geq \mathbf{4}$. Then, inequalities (4.3) imply, after dividing by $\log \boldsymbol{a}_{\mathbf{1}}$ that
$0<\pi G-m+\mu<A B^{-r}$.
With
$\boldsymbol{\theta}=\frac{\log \alpha_{\mathbf{2}}}{\log \alpha_{\mathbf{1}}} \cdot \boldsymbol{\mu}=\frac{\log \alpha_{3}}{\log \alpha_{\mathbf{1}}} \boldsymbol{*}=\frac{\mathbf{0 . 5}}{\log \boldsymbol{a}_{\mathbf{1}}} \cdot \boldsymbol{B}=\boldsymbol{\alpha}_{\mathbf{2}-}^{\mathbf{2}}$ But lemma 14 and the last equalities of proposition 11 imply, since $\mathbf{u} \geq \mathbf{5}$,
$n \geq m \geq 4 u+2 \geq 22$
 lemma 8 , we see that we have to examine 29 cases for which the second convergent of \boldsymbol{G} with $\boldsymbol{q}>\mathbf{6 M}$ is needed only in two cases: $\boldsymbol{u}=\mathbf{5}$ and $\boldsymbol{u \geq 7}$, therefore $\mathbf{u} \geq \mathbf{5}$. This implies $\mathbf{n}<\mathbf{1 4}$ in which case the second step of reduction of lemma 8 with $\boldsymbol{M}=\mathbf{1 3}$ imposes $\boldsymbol{n}<\boldsymbol{4}$ which contradicts the supposition that $\boldsymbol{n} \geq \mathbf{4} . \square$

6.2 The case $¥ \geq 63$

In this case, we prove also the following lemma :
Lemma 17: Let $\boldsymbol{u} \geq \mathbf{6 3}$ be an odd integer. With the same notations and hypotheses as in lemma 16, the set $\mathbf{Q}_{\mathbf{I}}$ is a $\boldsymbol{D}(\mathbf{4})$ - quadrupte if and only if $\boldsymbol{d}=\boldsymbol{4} \boldsymbol{u}\left(\boldsymbol{u}^{\mathbf{2}}-\mathbf{1}\right)$.

Proof. If $\boldsymbol{d}=\mathbf{4 u}\left(\boldsymbol{u}^{\mathbf{2}}-\mathbf{1}\right)$, then by definition $1, \boldsymbol{Q}_{\mathbf{n}}$ is a $\boldsymbol{D}(\mathbf{4})$ - quadreple .
Conversely, suppose that $\boldsymbol{d} \neq \mathbf{\operatorname { s u }}\left(\mathbf{w}^{\mathbf{2}}-\mathbf{1}\right)$. Since \boldsymbol{X} is a nontrivial solution of $\left.\boldsymbol{F}\right)$, $-\boldsymbol{X}$ is also a nontrivial solution of (\boldsymbol{F}). Therefore, we may suppose that \boldsymbol{X} is positive. Then, from the first relation of (1.1) we have
$4 X^{2} \neq 16 u^{2}\left(x^{2}-1\right)+4$.
whence $\boldsymbol{X}>\boldsymbol{\theta})$
$X \neq 2 x^{\mathbf{2}}-1$.
Then, from (36) we may write (as $\boldsymbol{X}=\boldsymbol{X}_{\mathbf{m}}=\boldsymbol{X}_{\boldsymbol{\pi}}$ is positive) $\boldsymbol{X}=\boldsymbol{y}_{\boldsymbol{\pi}}$ for $\mathbf{n} \geq \mathbf{2}$, where
$\mathbf{Y}_{\pi}=\left(\frac{\sqrt{u-2}+2 \sqrt{u}}{2 \sqrt{u-2}}\right)\left(\frac{u-1}{u}+\sqrt{u^{2}-2 u}\right)^{n}-\left(\frac{-\sqrt{u-2}+2 \sqrt{u}}{2 \sqrt{u-2}}\right)\left(u-1-\sqrt{u^{2}-2 u}\right)^{n}$
Therefore we have
$Y_{n}>\left(u-1+\sqrt{u^{2}-2 u}\right)^{n}-\left(u-1-\sqrt{u^{2}-2 u}\right)^{n}>(2 u-3)^{n}-$
Then, taking the logarithms, we see that
$\boldsymbol{\operatorname { L o g } X}>\mathrm{n} \log (2 u-3)$ -

But from proposition 11 we have in particular $\boldsymbol{n}=\mathbf{4}+\mathbf{2}$ so that
(65) $\log X>(4 u+2) \log (2 u-3)$.

Next, from theorem 15, we have the inequality
(6.6) (22.6u) $)^{-1} X^{-1-\lambda}<1.5 x^{-2}, \quad \lambda<1$
so that
$\boldsymbol{X}^{1-\lambda}<35.03 u$
and taking again the logarithms of this last inequality we see that
$(6.7) \log X<\frac{\log (35-3 u)}{1-\lambda}$.
Since
$1-\lambda=1-\frac{\log (11.2 u)}{\log \left(0.197 u^{2}\right)}=\frac{\log (0.0175 u)}{\log \left(0.197 u^{2}\right)}$.
we have
$\frac{1}{1-\lambda}=\frac{\log \left(0.197 u^{2}\right)}{\log (0.0175 u)} \varepsilon \frac{2 \log (0.444 u)}{\log (0.0175 u)}-$
Thus, relations (6.5) and (6.7) imply
$2 u+1<\frac{\log (0.444 u) \log (35.03 u)}{\log (2 u-3) \log (0.0175 u)}$.
Set
(6.8) $\quad \beta(u)=\frac{\log (0.444 u) \log (35.03 u)}{\log (2 u-3) \log (0.0175 u)}$.

Then, from (6.8) we see that

$$
2 u-3<35.03 u, \quad 0.0175 u<0.444 u
$$

so that $\boldsymbol{\beta}(\boldsymbol{w})$ is decreasing. Further the inequality
$\beta(u)=\beta(63)<55$
imposes $\boldsymbol{u}<\mathbf{2 7}$ which contradicts the supposition that $\boldsymbol{u} \geq \mathbf{6 3} . \square$

6.3 Description of nontrivial solutions of (\boldsymbol{F})

Theorem 18: Let $\boldsymbol{u} \geq \mathbf{5}$ be an odd integer for which the Diophantine equations $\left(\boldsymbol{F}_{\mathbf{1}}\right)$ and $\left(\boldsymbol{F}_{\mathbf{2}}\right)$ have nontrivial solutions given respectively by $(\mathbf{3} \mathbf{5})$ and $(\mathbf{3 . 6})$. Then, all the nontrivial integer solutions of (\boldsymbol{F}) are given by:

$$
\left\{\begin{array}{c}
X= \pm\left(2 u^{2}-1\right) \\
y= \pm\left(2 u^{2}-2 u-2\right)- \\
z= \pm\left(2 u^{2}+2 u-2\right)
\end{array}\right.
$$

Proof. Easy calculations show that formulae above give nontrivial solutions for $\mathbf{(F)}$.
Conversely, let $\boldsymbol{X}, \boldsymbol{y}, \mathbf{z}$ be nontrivial integers such that we have (\boldsymbol{F}). Then, with conjecture 4 , we have got $\boldsymbol{d}=\mathbf{4 u}\left(\mathbf{4} \mathbf{z}^{\mathbf{z}}-\mathbf{1}\right)$ which yields the nontrivial solutions of (\boldsymbol{F}). Thus, from relations (1.1) we get:

$$
\left\{\begin{array}{c}
X^{2}=\left(u^{4}-4 u^{2}+1=\left(2 u^{2}-1\right)^{2}\right. \\
y^{2}=\left(2 u^{2}-2 u-2\right)^{2} \\
x^{2}=\left(2 u^{2}+2 u-2\right)^{2}
\end{array}\right.
$$

so that

$$
\left\{\begin{array}{c}
\boldsymbol{X}= \pm\left(2 u^{2}-1\right) \\
y= \pm\left(2 u^{2}-2 u-2\right) \\
z= \pm\left(2 u^{2}+2 u-2\right)
\end{array}\right.
$$

and lemmas 16 and 17 show that there is no other solution.

7 Complete set of solutions of (E)

Theorem 19: Let $\boldsymbol{u} \geq \mathbf{5}$ be an odd integer. Then, all the integer solutions of
(E) are given by:

$$
\left\{\begin{array}{c}
x= \pm 2 \pm\left(4 u^{2}-2\right) \\
y= \pm 2 \pm\left(2 u^{2}-2 u-2\right)- \\
z= \pm 2 \pm\left(2 u^{2}+2 u-2\right)
\end{array}\right.
$$

Proof. The trivial solutions of (\boldsymbol{E}) result from definitions 2 and 3 and the nontrivial solutions result (as $\mathbf{x}=\mathbf{2 X}$) from theorem 18.

Remark 20: If $\boldsymbol{u}=\mathbf{5}$, we have studied in [2] the system ($\mathbf{E}_{\mathbf{s}}$) of equations
$\mathbf{3} \mathbf{x}^{\mathbf{2}}-\mathbf{2 0} \boldsymbol{y}^{\mathbf{2}}=\mathbf{- 6 8}$ and $\mathbf{7 x ^ { \mathbf { 2 } }}-\mathbf{2} \mathbf{- 2} \mathbf{z}^{\mathbf{2}}=\mathbf{- 5 2}$. We have proved that all the solutions of
(E) are given by:
$\left\{\begin{array}{l}x= \pm 2 \pm 9 \\ y= \pm 2 \pm 3 \\ z= \pm 2 \pm 5\end{array}\right.$

References

[1] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), p. 19-62.
[2] L. Bapoungué, The system of Diophantine equations
 Number theory and Applications, Vol. 1, 1 (January-June 2009), pp. 1-11.
[3] A. Dujella and A. Pethö, A generalisation of a theorem of Baker and H.Davenport, Quart. J. Oxford ser. (2) 49 (1998), 291-306.
[4] A. Dujella and A. M. S. Ramasamy, Fibonacci numbers and sets with the property $D(4)$, Bull. Belg. Math. Soc. Simon Stevin, 12 (2005), 401-412.
[5] K. S. Kedlaya, Solving constrained Pell equations, Math. Comp. 67 (1998), p. 833-842.
[6] J. H. Rickert, Simultaneous rational approximations and related Diophantine Equations, Math. Proc. Cambridge Philos. Soc. 113 (1993), p. 461-472.
[7] M. Sudo, Rickert.s methods on simultaneous Pell equations, Reprinted from Technical Reports of Seikei Univ. 38 (2001), p. 41 - 50 (in Japanese).

