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Abstract : The t-pebbling number, f
t
(G), of a connected graph G, is the smallest

positive integer such that from every placement of f
t
(G) pebbles, t pebbles can be

moved to a specified target vertex by a sequence of pebbling moves, each move

taking two pebbles off a vertex and placing one on an adjacent vertex. We say a

graph G satisfies the odd 2t–pebbling property if, for any arrangement of pebbles

with at least 2f
t
 (G) – r + 1 pebbles, where r is the number of vertices with an odd

number of pebbles in the arrangement, it is possible to put 2t pebbles on any

target vertex using pebbling moves. We study the odd 2t-pebbling property of

graphs.
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1. Introduction : 

Let G be a simple connected graph. The pebbling number of G is the smallest number 

f(G) such that however these f(G) pebbles are placed on the vertices of G, we can 

move a pebble to any vertex by a sequence of moves, each move taking two pebbles 

off one vertex and placing one on an adjacent vertex [Chu 89]. 
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The
  
t-pebbling number of a vertex v in a graph G is the smallest number ft (v,G) with 

the property that from every placement of ft (v,G) pebbles on G, it is possible to move 

t pebbles to v by a sequence of pebbling moves where a pebbling move consists of the 

removal of two pebbles from a vertex, and the placement of one of those pebbles on 

an adjacent vertex [HH 98]. The t-pebbling number of the graph G, denoted by ft (G) 

is the maximum of ft  (v,G) over all vertices v in G [HH 98] 

Note that t is a positive integer here and f1(G) = f (G). 

x  stands for the largest integer    x and         

x  stands for the smallest integer  x  

2. Known Results  

We find the following results with regard to the t-pebbling number of a graph in [LS 

06]. 

Theorem 2.1 Let G be a connected graph on n vertices where n  2. Let there be a 

vertex v such that d(v) = n-1. Then ft (v, G) =2t+n-2. ■ 

Theorem 2.2 Let Kn be the complete graph on n vertices where n 2. 

Then ft  (Kn) = 2t + n-2. ■ 

Theorem 2.3. Let K1,n  be an n- star where n > 1. Then ft (K1,n) = 4t + n-2. ■ 

Theorem 2.4 Let Cn denote a simple cycle with n vertices where n  3. If n is even, 

then 

ft (Cn) = t (2 
n/2

). If n is odd, then 
f C tt n

n n( ) ( ) ( ) ./ /= + - + -1 1 2 2 2 12 2
3

2

■ 

Herscovici [Her 03] gives the t-pebbling number of all cycles as given in Theorem 

2.5.  

Theorem 2.5. The t-pebbling number of the cycles C2k and C2k+1 satisfy ft(C2k) = 2
k
.t,  

f C tt k

k k

k( )
( )

( ).2 1

2 22
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Snevily and Foster [SF 00] give the t- pebbling number of odd cycles as given in 

Theorem 2.6.  

Theorem 2.6 The t-pebbling number of C2k+1 satisfies 

f C tt k

kk

( ) ( ) .2 1

2
32 1 1 2

1

+
-
< + + -

+

■ 

Theorem 2.7 Let Pn be a path on n vertices. Then ft (Pn)  =  t (2
n-1

). ■ 

Theorem 2.8. Let Qn be the n- cube. Then ft (Qn) = t(2
n
). ■ 

3. Generalization of two – pebbling property. 

Fan R.K.Chung [Chu 89] defined the 2–pebbling property as follows: 

Definition 3.1. [Chu 89]. Suppose p pebbles are placed on a graph G in such a way 

that q vertices of G are occupied, i.e., there are exactly q vertices which have one 

pebble or more. We say the graph G satisfies the 2–pebbling property if we can put 

two pebbles on any specified vertex of G starting from every configuration in which 

p> 2f (G) – q + 1 or equivalently (p+q) > 2 f(G). 

S.S. Wang [Wan 01] referred to this as 2-pebbling graph and he defined odd          2–

pebbling graph in the same way, except that q is the number of vertices with an odd 

number of pebbles. 

The following theorems of [Chu 89] are used here. 

Theorem 3.2. [Chu 89]. All paths satisfy the 2-pebbling property. ■ 

Theorem 3.3. [Chu 89]. The n-cube Qn satisfies the 2-pebbling property. ■ 

We also find the following theorem in [HH 98]. 

Theorem 3.4 [HH 98]. The 5 cycle C5 satisfies the 2-pebbling property. ■ 

We now state the following results from [Her 03]. 

Natation 3.5 [Her 03]. Let the vertices of C
n
 be {x

0
, x

1
, ..., x

n-1
} in order. Without loss of

generality, assume x
0
 is the target vertex in C

n
. Given a configuration of pebbles on C

n
, let p

i

represent the number of pebbles on x
i
. If n is even, we suppose n = 2k, and if n is odd, we let

n = 2k+1. In either case, we define the vertex sets A and B by A = {x
1
, x

2
, ..., x

k-1
}, B = {x

n-

1
, x

n-2
, ..., x

n-k+1
}.
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S.S. Wang [Wan 01] referred to this as 2-pebbling graph and he defined odd 2–

pebbling graph in the same way, except that q is the number of vertices with an odd 
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We now state the following results from [Her 03]. 
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Theorem 3.6. [Her 03]. C2k satisfies the 2-pebbling property for all k> 2. ■ 

Theorem 3.7. [Her 03]. C2k+1 satisfies the 2-pebbling property for all k >2. ■ 

In [LS 006], we see the generalization of the concept, the 2-pebbling property as the 

2t-pebbling property. 

Definition 3.8 [LS 006]. Given a t-pebbling of G, let p be the number of pebbles on 

G, let q be the number of vertices with at least one pebble. We say that G satisfies the 

2t-pebbling property if it is possible to move 2t pebbles to any specified target vertex 

of G starting from every configuration in which p>2 ft(G) – q+1 or equivalently 

(p+q)>2ft(G). In this case we also say G is a 2t–pebbling graph. 

If q stands for the number of vertices with an odd number of pebbles, we call the 

property the odd 2t-pebbling property. 

Definition 3.9[LS 006].  We say a graph G satisfies the odd 2t–pebbling property if, 

for any arrangement of pebbles with at least 2ft (G) – r + 1 pebbles, where r is the 

number of vertices with an odd number of pebbles in the arrangement, it is possible to 

put 2t pebbles on any target vertex using pebbling moves. In this case we also say that 

G is an odd 2t–pebbling graph. 

It is easy to see that a graph which satisfies the 2t-pebbling property also satisfies the 

odd 2t-pebbling property. 

We find Lemma 3.10, Corollary 3.11 and Corollary 3.12 in [LS 006]. 

Lemma 3.10. Let G satisfy the 2-pebbling property. If ft (G) = t f (G) then G satisfies 

the 2t-pebbling property. 

Proof : Since G satisfies the 2-pebbling property, if (p+q)>2t f(G) then we can put 2t 

pebbles on any target vertex. We are given that ft (G) = t f (G). We now consider a 

configuration of pebbles on G in which p pebbles occupy q vertices where (p+q)>2ft 

(G). Since G satisfies the 2-pebbling property, we can move 2t pebbles to any target 

vertex. Hence G satisfies the 2t–pebbling property. ■ 

The odd 2t-pebbling property of graphs
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For t > 1,  p > 2f
t-1

 (C
5
) +6. We claim that there are at least eight pebbles on one of the paths

P
1
 and P

2
. If not, each path contains at most seven pebbles and so there are at most fourteen

pebbles on C
5
 which is a contradiction. So using eight pebbles lying on one of the paths we

can put two pebbles on x
3
. After using these eight pebbles the remaining number of pebbles

lying on the graph are at least 2f
t-1

 (C
5
) – 2. When we start with an odd number of pebbles on

A. Lourdusamy

Corollary 3.11. All paths satisfy the 2t-pebbling property. ■ 

Corollary 3.12. All even cycles satisfy the 2t–pebbling property. ■ 

Corollary 3.13. The n-cube Qn satisfies the 2t-pebbling property. ■ 

Since a graph which satisfies the 2t-pebbling property also satisfies the odd 2t-

pebbling property, all paths, all even cycles and the n-cube satisfy the odd 2t–

pebbling property. 

Let us now look at the odd 2t–pebbling property of odd cycles. 

Theorem 3.14. C3 satisfies the odd 2t-pebbling property. ■ 

Theorem 3.15. C5 satisfies the odd 2t-pebbling property.  

We prove Theorem 3.15. Proving Theorem 3.14 is straight forward and hence it is left 

to the reader. 

Proof of Theorem 3.15: Let C5=(x1,x2,x3,x4,x5). Assume the target vertex to be x3.          

Consider the paths P1={x1,x2,x3 } and P2 = {x3,x4,x5}. 

Consider a configuration of pebbles  on C5 in which p pebbles occupy r  vertices with 

an odd number of pebbles where p> 2ft (C5)-r+1=8t+3-r. Clearly r< 5. So we get the 

following cases: 

Case 1: r < 2 

Now p > 4 (2t) + 1. So 2t pebbles can be moved to x3. 

Case 2: r=3 

No p>2ft (C5) – 2 = 8t. Let us now use induction on t to prove that 2t pebbles can be 

moved to x3. 

For t = 1, the result is true by Theorem 3.4. 
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a particular vertex, after some pebbling moves, the vertex should have at least one pebble as

every pebbling move uses two pebbles. So there are still three vertices with an odd number of

pebbles. Now by induction the remaining pebbles are sufficient to put 2(t-1) additional pebbles

on x
3
.

Case 3: r = 4 

Now p> 2ft (C5) – 3. Let us use induction on t to prove that we can put 2t pebbles on 

x3. 

For t = 1, the result is true by Theorem 3.4. 

For t > 1, p > 2ft-1(C5) +5. We claim that there are at least eight pebbles on one of the 

paths P1 and P2. If not, each path contains at most seven pebbles and so there are at 

most fourteen pebbles on C5 which is a contradiction. So using eight pebbles lying on 

one of the paths we can put two pebbles on x3. After using these eight pebbles the 

remaining number of pebbles lying on the graph are at least 2ft-1(C5) – 3. We note that 

there are still four vertices with an odd number of pebbles as each move uses two 

pebbles. Now by induction the remaining pebbles are sufficient to put 2(t-1) 

additional pebbles on x3. 

Case 4: r=5. Now p>2ft(C5)-4. Let us use induction on t to prove that 2t pebbles can 

be put on x3. For t = 1, the result is true by Theorem 3.4. 

For t > 1, p>2ft-1(C5) +4. That is, p>14. We claim that there are at least eight pebbles 

on one of the paths P1 and P2. Suppose not, then both P1 and P2 have at most seven 

pebbles. Now we note that x3 lies on both paths and x3 has at least one pebble since         

r = 5. So the total number of pebbles on C5 are at most thirteen which is a 

contradiction. So there are at least eight pebbles on one of the paths. Using these eight 

pebbles lying on one of the paths we can put two pebbles on x3. After using these 

eight pebbles, the remaining number of pebbles on C5 are at least 2ft-1(C5) – 4. We 

note that there are still five vertices with an odd number of pebbles as each move uses 

two pebbles. By induction, the remaining pebbles are sufficient to put 2(t-1) 

additional pebbles on x3. ■ 

The odd 2t-pebbling property of graphs
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Theorem 3.16. C2k+1 satisfies the odd 2t–pebbling property for all k>3. 

Proof : Consider a configuration of pebbles on C2k+1 in which p pebbles occupy r 

vertices with an odd number of pebbles where (p+r)>2ft(C2k+1)+1. Without loss of 

generality we may assume that x0 has zero pebbles. 

The proof is by induction on t. For t = 1 we get the result by Theorem 3.7. 

For t > 1, (p+r)>2ft-1(C2k+1)+2
k+1

+1. We claim that either A{xk} or B{xk+1}has at 

least 2
k+1

 pebbles. If not, then the total number of pebbles placed is less than 2
k+2

. 

Then 2
k+2

 +r>p+r>2ft(C2k+1) +1. That is, 
r t k k> + - + -+3 3 2 4 2 11 2

3( ) ( )
 for some t>2 

and for some k>3. This implies r>2k+1 for some k>3. This is a contradiction since 

r<2k+1. 

So either A{xk} or B{xk+1} has at least 2
k+1

 pebbles. Using only 2
k+1

 pebbles of 

either A{xk} or B{xk+1}we can put two pebbles on x0. Then there remain at least 

2ft-1(C2k+1) – r+1 pebbles. When we start with an odd number of pebbles on a 

particular vertex, after some pebbling moves, the vertex should have at least one 

pebble as every pebbling move uses two pebbles. So there are still r vertices with an 

odd number of pebbles. By induction the remaining pebbles are sufficient to put 2(t-

1) additional pebbles on x0. ■ 

Theorem 3.17. All cycles satisfy the odd 2t-pebbling property. 

Proof :  Follows from Corollary 3.12, Theorem 3.14, Theorem 3.15, and Theorem 

3.16. ■ 

We find the following definitions, Example 3.20, and Theorem 3.21 in [Moe 92]. 

3.17 Path - partition of a rooted tree. Let T be a tree and v be a vertex of  T. Let T
v 
be the

rooted tree obtained from T by directing all edges towards v, which becomes the root. For a

rooted tree U, we shall call a vertex v of U a leaf it is of indegree 0. We shall call v, a parent of

w if there is a directed edge from w to v, and an ancestor of w if there is a directed path from

w to v. We call v, a vertex of level n if the directed path from v to the root has n edges; the

A. Lourdusamy
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3.18. Maximum Path-partition of a rooted tree. Path - partitions of a rooted tree U 

with height h can be formed in the following way. First we consider the subtree U1 of 

U induced by all leaves of level h and their ancestors and construct a path-partition P1 

of U1 such that every path in P1 touches a leaf. Then we let  U11 be the subtree of U 

induced by all leaves of level h or h-1 and their ancestors and extend P1 to a path-

partition P11 of U11 by adding paths, which touch the level h-1 leaves of U. We 

continue in this manner until we have a path-partition P of all of U. A path-partition 

constructed in this way is called maximum. 

3.19. Path - size sequence. The path-size sequence of a path-partition {P
1
,P

2
,....,P

n
} is 

an n-tuple (a
1
, a

2
,...,a

n
), where a

j
 is the length of P

j
 (i.e., the number of edges in it). 

Example 3.20. Let us construct a maximum path-partition of the tree U in figure 1. 

We start with the subtree U1 of U induced by the vertex i, the unique vertex of U of 

level 4, and its ancestors b,e, f and h. There is a unique path-partition of U1 such that 

every path touches a leaf, namely the path-partition with just one path, {{ib, be, ef, 

fh}}. Now we extend this path-partition to a path-partition of the subtree of U 

induced by the set {a,e,i,b,f,h} of all vertices of level 3 or 4 and their ancestors. This 

produces the path-partition {{ae}, {ib,be,ef,fh}}. Another extension gives us 

{{cg,gh},{ae},{ib,be,ef,fh}}, and another extension gives us the maximum path-

partition of U, namely {{cg, gh},{ae},{ib,be,ef,fh},{dh}}. In this case, the maximum 

path-partition is unique, but this is not always the case. For example, if the vertex i 

and the edge ib were removed from U,U would have two maximum path-partitions 

{{ae,ef,fh},{be},{cg, gh},{dh}} and {{be,ef,fh}, {ae},{cg,gh},{dh}}. 

height of a tree is the maximum level of its vertices. A path-partition of a rooted tree U is a

partition of the edges of U such that each set of edges in the partition forms a directed path.

The odd 2t-pebbling property of graphs
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Figure 1. A rooted Tree 

Theorem 3.21. [Moe 92] Let U be a rooted tree and v be the root of U. If the 

path-size sequence of some maximum path-partition for U is (a
1
,a

2
,...,a

n
), then  

1

( , ) 2 1i

n
a

i

f v U n


   .■ 

We find Theorem3.22 in [LS 06]. 

Theorem 3.22.  Let U be a rooted tree and v be the root of  U. Let (a
1
, a

2
,...,a

n
), be 

the path-size sequence for some maximum path-partition for U. Without loss of 

generality a
1 
can be  taken to be h where h is the height of the tree. Then 

2

( , ) 2 2 1i

n
ah

t

i

f v U t n


    .■ 

We find Definition 2.7 in [HH 98]. 

Definition 3.23. Given a pebbling of G, a transmitting subgraph of G is a path 

x
0
,x

1
,...,x

k
 such  that there are at least two pebbles on x

0
 and at least one pebble on 

each of the other vertices in the path, except possibly x
k
. In this case, we can transmit 

a pebble from x
0
 to x

k
. 

A. Lourdusamy

Figure 1. A rooted Tree
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The following theorem of [Chu 89] is also used here. 

Theorem 3.24[Chu 89]. A Tree satisfies the 2-pebbling property. ■  

We will now prove that a tree satisfies the odd 2t-pebbling property. 

Theorem 3.25. A tree satisfies the odd 2t-pebbling property. 

Proof : Let T be a tree and v be a vertex of T. Let U be the rooted tree obtained from 

T by directing all edges towards v, which becomes the root. 

Let (a
1
,a

2
,...,a

n
) be the path-size sequence for some maximum path-partition for U. 

Without loss of generality a
1
 can be taken to be h where h is the height of the tree.  

Then by Theorem 3.22, 

2

( , ) 2 2 1i

n
ah

t

i

f v U t n


     

Consider a configuration of 2f
t 
(v,U)-q+1 pebbles where q is the number of vertices 

with an odd number of pebbles. We use induction on t to prove that v satisfies the odd 

2t-pebbling property. For t=1, the result is true by Theorem 3.24.  

For t>1, the number of pebbles on the tree will be at least 

12 1

1

2

2 2 2 3 2 ( , ) 1 2i

n
ah h

t

i

n q f v U q
 





         

where q is the number of vertices with an odd number of pebbles. Let p be the 

number of pebbles on U. We claim that there will be at least one P
i
 with at least 2 ia

 

pebbles. Otherwise, the total number of pebbles placed on T will be at most 

11

2

2 2 i

n
ah

i

n




  . 

Then 11

2

2 ( , ) 1 2 2 i

n
ah

t

i

f v U p q q n




        

That is, 
1 11 1

2 2

2 2 2 2 2 2i i

n n
a ah h

i i

t n q n
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That is, (t-1) 2 h + 1 - 2n+3< q-n 

That is, (t-1) 2 h + 1 + 3< q+n 

That is, (t-1) 2 h + 1 +3 < 2 |V( U )| since n<  |V( U )|  and q <  |V( U )|  

That is, (t-1) 2h + (3/2) <  |V( U )|  for all t > 1. 

This is a contradiction. 

So we can put two pebbles on v using 2 ia
 pebbles lying on P

i
. So at most 2 h+1

 
pebbles 

will be used to put two pebbles on v. Then the remaining number of pebbles on U will 

be at least 2 f 
t-1

(v,U)-q+1 where q is the number of vertices with an odd number of 

pebbles. By induction, these pebbles would suffice to put 2(t-1) additional pebbles on 

v. 

As v is arbitrary, every vertex in T satisfies the odd 2t-pebbling property. Hence T 

satisfies the odd 2t-pebbling property. ■ 

4. t-pebbling the product of graphs. 

We now define the direct product of two graphs, and discuss some results on the t-

pebbling number of direct product of two graphs. 

Definition 4.1 [HH98]. If G=(VG,EG) and H=(VH,EH)are two graphs, the direct 

product of G and H is the graph, GH, whose vertex set is the cartesian product                           

VGH = VG  VH = {(x,y): x  VG, yVH} and  whose edges are given by                        

EGH = {((x,y),(x
1
,y

1
)) : x =x

1
 and (y,y

1
) EH or (x,x

1
)  EG and y = y

1
}. 

We write {x}H (respectively G{y} for the subgraph of vertices whose projection 

onto VG is the vertex x (respectively whose projection onto VH is y). If the vertices of 

G are labeled xi then for any distribution of pebbles on GH, we write pi for the 

number of pebbles on {xi} H and qi for the number of occupied vertices of {xi}H. 

Fan R.K. Chung [Chu 89] credited Conjecture 4.2 to Graham. 

Conjecture 4.2. For any connected graphs G and H, we have f(GH)<f (G) f(H) 

where GH represents the direct product of graphs. ■ 

A. Lourdusamy
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We find from [LS 0006], the generalization of Graham’s conjecture as follows: 

Conjecture 4.3[LS 0006]. [Generalization of Graham’s Conjecture]. For any 

connected graphs G and H, We have ft(GH<f(G) ft(H) where GH represents the 

direct product of graphs G and H. ■ 

We take Lemma 4.4 from [HH 98]. It describes how many pebbles we can transfer 

from one copy of H to an adjacent copy of H in GH. It is also called transfer 

Lemma. 

Lemma 4.4 [Transfer Lemma]. Let (xi, xj) be an edge in G. Suppose that in GH, 

we have pi pebbles occupying qi vertices of {xi} H. If (qi –1) < k < pi and if k and pi 

have the same parity then k pebbles can be retained on {xi}H while moving (pi-k)/2 

pebbles onto {xj}H. If k and pi have opposite parity we must leave k+1 pebbles on 

{xi}H, so we can only move (pi – (k + 1))/2 pebbles onto {xj}H. In particular we 

can always move at least (pi-qi)/2 pebbles onto {xj}H. ■ 

We find Theorem 4.5 in [LS 006] which will prove Conjecture 4.3 when G is a path 

and H satisfies the 2t–pebbling property. 

Theorem 4.5. Let Pm be a path on m vertices. When G satisfies the 2t-pebbling 

property, ft(Pm  G) < 2
m-1

 ft(G). ■ 

We find Theorem 4.6 and Theorem4.7 in [LS 006] 

Theorem 4.6. Let Pm be a path on m vertices. The ft(Pm Pn)< t 2
m+n-1

. ■ 

Theorem 4.7. Suppose G satisfies the 2t–pebbling property. Let Pm = {x1,x2, ..., xm} 

be a path on m vertices where m is odd. Consider the graph PmG. Let k = (m+1)/2. 

Then ft({xk}  G < f(xk,Pm)ft(G) = (2
k
-1) ft (G). ■ 

5. Open problems   

The Generalization of Graham’s Conjecture can be seen in the following forms also. 

Now we state the following conjectures for all connected graphs G and H. 

The odd 2t-pebbling property of graphs
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Conjecture 4.4.  f
t 
(G×H) < f

t
(G) f(H). ■ 

Conjecture 4.5. f
 
(G×H) < min {f (G) f

t
(H), f

t
(G) f(H)}. ■ 

Conjecture 4.3 discusses the t-pebbling number of the graph as a whole. To discuss 

the t-pebbling number of a specific vertex, we state Conjecture 4.6 which is a stronger 

form of Conjecture 4.3. 

Conjecture 4.6. The t-pebbling number of every vertex (v,w) in G×H satisfies 

f
t 
((v,w),G×H) < f(v,G) f

t
 (w,H). ■ 

Conjecture 4.7. Conjecture 4.3 is true for a graph which is the direct product of a tree 

with a tree. ■ 
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