Volume 4
No. 1
pp. 21-34
March 2013

The odd 2t-pebbling property of graphs

A. Lourdusamy
* Department of Mathematics
St. Xavier's College (Autonomous),
Palayamkottai - 627 002, India. mail:loursusamy15@gmail.com

Abstract

The t-pebbling number, $f_{t}(G)$, of a connected graph G, is the smallest positive integer such that from every placement of $f_{t}(G)$ pebbles, t pebbles can be moved to a specified target vertex by a sequence of pebbling moves, each move taking two pebbles off a vertex and placing one on an adjacent vertex. We say a graph G satisfies the odd 2 t -pebbling property if, for any arrangement of pebbles with at least $2 f_{t}(G)-r+1$ pebbles, where r is the number of vertices with an odd number of pebbles in the arrangement, it is possible to put $2 t$ pebbles on any target vertex using pebbling moves. We study the odd 2t-pebbling property of graphs.

Key words : Pebbling, Graham's Conjecture, Direct products, Graph parameters.

1. Introduction :

Let G be a simple connected graph. The pebbling number of G is the smallest number $f(G)$ such that however these $f(G)$ pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex [Chu 89].

The t-pebbling number of a vertex v in a graph G is the smallest number $f_{t}(v, G)$ with the property that from every placement of $f_{t}(v, G)$ pebbles on G, it is possible to move t pebbles to v by a sequence of pebbling moves where a pebbling move consists of the removal of two pebbles from a vertex, and the placement of one of those pebbles on an adjacent vertex [HH 98]. The t-pebbling number of the graph G, denoted by $f_{t}(G)$ is the maximum of $f_{t}(v, G)$ over all vertices v in G [HH 98]
Note that t is a positive integer here and $f_{1}(G)=f(G)$.
$\lfloor\mathrm{x}\rfloor$ stands for the largest integer $\leq \mathrm{x}$ and
$\lceil\mathrm{x}\rceil$ stands for the smallest integer $\geq \mathrm{x}$

2. Known Results

We find the following results with regard to the t-pebbling number of a graph in [LS 06].

Theorem 2.1 Let G be a connected graph on n vertices where $n \geq 2$. Let there be a vertex v such that $d(v)=n-1$. Then $f_{t}(v, G)=2 t+n-2$.

Theorem 2.2 Let K_{n} be the complete graph on n vertices where $\mathrm{n} \geq 2$.
Then $\mathrm{f}_{\mathrm{t}}\left(\mathrm{K}_{\mathrm{n}}\right)=2 \mathrm{t}+\mathrm{n}-2$.
Theorem 2.3. Let $\mathrm{K}_{1, \mathrm{n}}$ be an n - star where $\mathrm{n}>1$. Then $\mathrm{f}_{\mathrm{t}}\left(\mathrm{K}_{1, \mathrm{n}}\right)=4 \mathrm{t}+\mathrm{n}-2$.
Theorem 2.4 Let C_{n} denote a simple cycle with n vertices where $n \geq 3$. If n is even, then
$f_{t}\left(C_{n}\right)=t\left(2^{n / 2}\right)$. If n is odd, then $f_{t}\left(C_{n}\right)=1+(t-1) 2^{\lfloor n / 2\rfloor}+2\left\lceil\frac{2}{3}\left(2^{\lfloor n / 2\rfloor}-1\right)\right\rceil$.
Herscovici [Her 03] gives the t-pebbling number of all cycles as given in Theorem 2.5.

Theorem 2.5. The t-pebbling number of the cycles $C_{2 k}$ and $C_{2 k+1}$ satisfy $f_{t}\left(C_{2 k}\right)=2^{k} . t$, $f_{t}\left(C_{2 k+1}\right)=\frac{2^{k+2}-(-1)^{k+2}}{3}+2^{k}(t-1)$.

Snevily and Foster [SF 00] give the t- pebbling number of odd cycles as given in Theorem 2.6.

Theorem 2.6 The t-pebbling number of $\mathrm{C}_{2 \mathrm{k}+1}$ satisfies $\mathrm{f}_{\mathrm{t}}\left(\mathrm{C}_{2 \mathrm{k}+1}\right)<2\left\lfloor\frac{2^{k+1}}{3}\right\rfloor+1+(\mathrm{t}-1) 2^{\mathrm{k}}$.

Theorem 2.7 Let P_{n} be a path on n vertices. Then $f_{t}\left(P_{n}\right)=t\left(2^{n-1}\right)$.
Theorem 2.8. Let Q_{n} be the n - cube. Then $f_{t}\left(Q_{n}\right)=t\left(2^{n}\right)$.

3. Generalization of two - pebbling property.

Fan R.K.Chung [Chu 89] defined the 2 -pebbling property as follows:
Definition 3.1. [Chu 89]. Suppose p pebbles are placed on a graph G in such a way that q vertices of G are occupied, i.e., there are exactly q vertices which have one pebble or more. We say the graph G satisfies the 2 -pebbling property if we can put two pebbles on any specified vertex of G starting from every configuration in which $\mathrm{p} \geq 2 \mathrm{f}(\mathrm{G})-\mathrm{q}+1$ or equivalently $(\mathrm{p}+\mathrm{q})>2 \mathrm{f}(\mathrm{G})$.
 BebBling graph in the same way, except that q is the pumber 8 f vertices with an bdd number of pebbbles:
The following theorems of [Chu 89] are used here.
Theorem 3.2. Thu 89. All paths satisfy the 2-pebbling property.
Theorem 3.3. Thu 89]. The n-cube Q_{n} satisfies the 2-pebbling property.
Theorem 3.3. [Chu 89]. The n-cube Q_{n} satisfies the 2-pebbling property.
We also find the following theorem in [HH 98].
We also find the following theorem in [HH 98].
Theorem 3.4 [HH 98]. The $5{\text { cycle } C_{5} \text { satisfies the 2-pebbling property. }}^{2}$
Theorem 3.4 [HH 98]. The 5 cycle C_{5} satisfies the 2-pebbling property.
We now state the following results from [Her 03].
We now state the following results from [Her 03].
Natation 3.5 [Her 03]. Let the vertices of C_{n} be $\left\{\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}-1}\right\}$ in order. Without loss of generality, assume x_{0} is the target vertex in C_{n}. Given a configuration of pebbles on C_{n}, let p_{i} represent the number of pebbles on x_{i}. If n is even, we suppose $n=2 k$, and if n is odd, we let $\mathrm{n}=2 \mathrm{k}+1$. In either case, we define the vertex sets A and B by $\mathrm{A}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}-1}\right\}, B=\left\{\mathrm{x}_{\mathrm{n}}\right.$ $\left.1, x_{n-2}, \ldots, x_{n-k+1}\right\}$.

Theorem 3.6. [Her 03]. $\mathrm{C}_{2 \mathrm{k}}$ satisfies the 2-pebbling property for all $\mathrm{k} \geq 2$.
Theorem 3.7. [Her 03]. $\mathrm{C}_{2 \mathrm{k}+1}$ satisfies the 2-pebbling property for all $\mathrm{k} \geq 2$.
In [LS 006], we see the generalization of the concept, the 2-pebbling property as the 2t-pebbling property.

Definition 3.8 [LS 006]. Given a t-pebbling of G, let p be the number of pebbles on G , let q be the number of vertices with at least one pebble. We say that G satisfies the $2 t$-pebbling property if it is possible to move 2 t pebbles to any specified target vertex of G starting from every configuration in which $p \geq 2 f_{t}(G)-q+1$ or equivalently $(\mathrm{p}+\mathrm{q})>2 \mathrm{f}_{\mathrm{t}}(\mathrm{G})$. In this case we also say G is a $2 t$-pebbling graph.

If q stands for the number of vertices with an odd number of pebbles, we call the property the odd 2 t-pebbling property.
Definition 3.9[LS 006]. We say a graph G satisfies the odd $2 t$-pebbling property if, for any arrangement of pebbles with at least $2 \mathrm{f}_{\mathrm{t}}(\mathrm{G})-\mathrm{r}+1$ pebbles, where r is the number of vertices with an odd number of pebbles in the arrangement, it is possible to put $2 t$ pebbles on any target vertex using pebbling moves. In this case we also say that G is an odd $2 t$-pebbling graph.

It is easy to see that a graph which satisfies the 2 t -pebbling property also satisfies the odd 2 t-pebbling property.
We find Lemma 3.10, Corollary 3.11 and Corollary 3.12 in [LS 006].
Lemma 3.10. Let G satisfy the 2-pebbling property. If $f_{t}(G)=t f(G)$ then G satisfies the 2 t -pebbling property.

Proof : Since G satisfies the 2-pebbling property, if $(p+q)>2 t f(G)$ then we can put $2 t$ pebbles on any target vertex. We are given that $f_{t}(G)=t f(G)$. We now consider a configuration of pebbles on G in which p pebbles occupy q vertices where $(p+q)>2 f_{t}$ (G). Since G satisfies the 2-pebbling property, we can move 2 t pebbles to any target vertex. Hence G satisfies the $2 t$-pebbling property.

Corollary 3.11. All paths satisfy the 2t-pebbling property.
Corollary 3.12. All even cycles satisfy the $2 \mathrm{t}-$ pebbling property.
Corollary 3.13. The n-cube Q_{n} satisfies the $2 t$-pebbling property.
Since a graph which satisfies the 2 t -pebbling property also satisfies the odd 2 t pebbling property, all paths, all even cycles and the n-cube satisfy the odd $2 t$ pebbling property.

Let us now look at the odd 2 t -pebbling property of odd cycles.
Theorem 3.14. C_{3} satisfies the odd 2t-pebbling property.
Theorem 3.15. C_{5} satisfies the odd 2t-pebbling property.
We prove Theorem 3.15. Proving Theorem 3.14 is straight forward and hence it is left to the reader.

Proof of Theorem 3.15: Let $C_{5}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$. Assume the target vertex to be x_{3}. Consider the paths $\mathrm{P}_{1}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right\}$ and $\mathrm{P}_{2}=\left\{\mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}\right\}$.

Consider a configuration of pebbles on C_{5} in which p pebbles occupy r vertices with an odd number of pebbles where $p \geq 2 f_{t}\left(C_{5}\right)-r+1=8 t+3$-r. Clearly $r \leq 5$. So we get the following cases:

Case 1: $\mathrm{r} \leq 2$
Now $p \geq 4(2 t)+1$. So $2 t$ pebbles can be moved to x_{3}.
Case 2: $\mathrm{r}=3$
No $p \geq 2 f_{t}\left(C_{5}\right)-2=8 t$. Let us now use induction on t to prove that $2 t$ pebbles can be moved to x_{3}.

For $\mathrm{t}=1$, the result is true by Theorem 3.4.
For $\mathrm{t}>1, \mathrm{p} \geq 2 \mathrm{f}_{\mathrm{t}-1}\left(\mathrm{C}_{5}\right)+6$. We claim that there are at least eight pebbles on one of the paths P_{1} and P_{2}. If not, each path contains at most seven pebbles and so there are at most fourteen pebbles on C_{5} which is a contradiction. So using eight pebbles lying on one of the paths we can put two pebbles on x_{3}. After using these eight pebbles the remaining number of pebbles lying on the graph are at least $2 \mathrm{f}_{\mathrm{t}-1}\left(\mathrm{C}_{5}\right)-2$. When we start with an odd number of pebbles on
a particular vertex, after some pebbling moves, the vertex should have at least one pebble as every pebbling move uses two pebbles. So there are still three vertices with an odd number of pebbles. Now by induction the remaining pebbles are sufficient to put $2(\mathrm{t}-1)$ additional pebbles on X_{3}.

Case 3: $\mathrm{r}=4$
Now $\mathrm{p} \geq 2 \mathrm{f}_{\mathrm{t}}\left(\mathrm{C}_{5}\right)-3$. Let us use induction on t to prove that we can put 2 t pebbles on X_{3}.

For $\mathrm{t}=1$, the result is true by Theorem 3.4.
For $\mathrm{t}>1, \mathrm{p} \geq 2 \mathrm{f}_{\mathrm{t}-1}\left(\mathrm{C}_{5}\right)+5$. We claim that there are at least eight pebbles on one of the paths P_{1} and P_{2}. If not, each path contains at most seven pebbles and so there are at most fourteen pebbles on C_{5} which is a contradiction. So using eight pebbles lying on one of the paths we can put two pebbles on x_{3}. After using these eight pebbles the remaining number of pebbles lying on the graph are at least $2 f_{t-1}\left(\mathrm{C}_{5}\right)-3$. We note that there are still four vertices with an odd number of pebbles as each move uses two pebbles. Now by induction the remaining pebbles are sufficient to put $2(\mathrm{t}-1)$ additional pebbles on x_{3}.

Case 4: $\mathrm{r}=5$. Now $\mathrm{p} \geq 2 \mathrm{f}_{\mathrm{t}}\left(\mathrm{C}_{5}\right)-4$. Let us use induction on t to prove that 2 t pebbles can be put on x_{3}. For $\mathrm{t}=1$, the result is true by Theorem 3.4.
For $\mathrm{t}>1, \mathrm{p} \geq 2 \mathrm{f}_{\mathrm{t}-1}\left(\mathrm{C}_{5}\right)+4$. That is, $\mathrm{p} \geq 14$. We claim that there are at least eight pebbles on one of the paths P_{1} and P_{2}. Suppose not, then both P_{1} and P_{2} have at most seven pebbles. Now we note that x_{3} lies on both paths and x_{3} has at least one pebble since $\mathrm{r}=5$. So the total number of pebbles on C_{5} are at most thirteen which is a contradiction. So there are at least eight pebbles on one of the paths. Using these eight pebbles lying on one of the paths we can put two pebbles on x_{3}. After using these eight pebbles, the remaining number of pebbles on C_{5} are at least $2 f_{t-1}\left(C_{5}\right)-4$. We note that there are still five vertices with an odd number of pebbles as each move uses two pebbles. By induction, the remaining pebbles are sufficient to put $2(\mathrm{t}-1)$ additional pebbles on x_{3}.

Theorem 3.16. $\mathrm{C}_{2 \mathrm{k}+1}$ satisfies the odd $2 \mathrm{t}-\mathrm{pebbling}$ property for all $\mathrm{k} \geq 3$.
Proof : Consider a configuration of pebbles on $\mathrm{C}_{2 \mathrm{k}+1}$ in which p pebbles occupy r vertices with an odd number of pebbles where $(\mathrm{p}+\mathrm{r}) \geq 2 \mathrm{f}_{\mathrm{t}}\left(\mathrm{C}_{2 \mathrm{k}+1}\right)+1$. Without loss of generality we may assume that x_{0} has zero pebbles.

The proof is by induction on t . For $\mathrm{t}=1$ we get the result by Theorem 3.7.
For $\mathrm{t}>1,(\mathrm{p}+\mathrm{r}) \geq 2 \mathrm{f}_{\mathrm{t}-1}\left(\mathrm{C}_{2 \mathrm{k}+1}\right)+2^{\mathrm{k}+1}+1$. We claim that either $\mathrm{A} \cup\left\{\mathrm{x}_{\mathrm{k}}\right\}$ or $\mathrm{B} \cup\left\{\mathrm{x}_{\mathrm{k}+1}\right\}$ has at least $2^{\mathrm{k}+1}$ pebbles. If not, then the total number of pebbles placed is less than $2^{\mathrm{k}+2}$. Then $2^{k+2}+r>p+r \geq 2 f_{t}\left(C_{2 k+1}\right)+1$. That is, $r>3+(t-3) 2^{k+1}+4\left\lceil\frac{2}{3}\left(2^{k}-1\right)\right\rceil$ for some $t \geq 2$ and for some $k \geq 3$. This implies $r>2 k+1$ for some $k \geq 3$. This is a contradiction since $\mathrm{r} \leq 2 \mathrm{k}+1$.
So either $A \cup\left\{x_{k}\right\}$ or $B \cup\left\{x_{k+1}\right\}$ has at least 2^{k+1} pebbles. Using only 2^{k+1} pebbles of either $\mathrm{A} \cup\left\{\mathrm{x}_{\mathrm{k}}\right\}$ or $\mathrm{B} \cup\left\{\mathrm{x}_{\mathrm{k}+1}\right\}$ we can put two pebbles on x_{0}. Then there remain at least $2 f_{t-1}\left(\mathrm{C}_{2 \mathrm{k}+1}\right)-\mathrm{r}+1$ pebbles. When we start with an odd number of pebbles on a particular vertex, after some pebbling moves, the vertex should have at least one pebble as every pebbling move uses two pebbles. So there are still r vertices with an odd number of pebbles. By induction the remaining pebbles are sufficient to put $2(t-$ 1) additional pebbles on x_{0}.

Theorem 3.17. All cycles satisfy the odd $2 t$-pebbling property.
Proof : Follows from Corollary 3.12, Theorem 3.14, Theorem 3.15, and Theorem 3.16.

We find the following definitions, Example 3.20, and Theorem 3.21 in [Moe 92].
3.17 Path - partition of a rooted tree. Let T be a tree and v be a vertex of T. Let T_{v} be the rooted tree obtained from T by directing all edges towards v , which becomes the root. For a rooted tree U, we shall call a vertex v of U a leaf it is of indegree 0 . We shall call v, a parent of w if there is a directed edge from w to v , and an ancestor of w if there is a directed path from w to v . We call v , a vertex of level n if the directed path from v to the root has n edges; the
height of a tree is the maximum level of its vertices. A path-partition of a rooted tree U is a partition of the edges of U such that each set of edges in the partition forms a directed path.
3.18. Maximum Path-partition of a rooted tree. Path - partitions of a rooted tree U with height h can be formed in the following way. First we consider the subtree U^{1} of U induced by all leaves of level h and their ancestors and construct a path-partition P^{1} of U^{1} such that every path in P^{1} touches a leaf. Then we let U^{11} be the subtree of U induced by all leaves of level h or $\mathrm{h}-1$ and their ancestors and extend P^{1} to a pathpartition P^{11} of U^{11} by adding paths, which touch the level h-1 leaves of U . We continue in this manner until we have a path-partition P of all of U . A path-partition constructed in this way is called maximum.
3.19. Path - size sequence. The path-size sequence of a path-partition $\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}\right\}$ is an n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, where a_{j} is the length of P_{j} (i.e., the number of edges in it).

Example 3.20. Let us construct a maximum path-partition of the tree U in figure 1. We start with the subtree U^{1} of U induced by the vertex i, the unique vertex of U of level 4 , and its ancestors b, e, f and h. There is a unique path-partition of U^{1} such that every path touches a leaf, namely the path-partition with just one path, \{ \{ib, be, ef, $\mathrm{fh}\}\}$. Now we extend this path-partition to a path-partition of the subtree of U induced by the set $\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{b}, \mathrm{f}, \mathrm{h}\}$ of all vertices of level 3 or 4 and their ancestors. This produces the path-partition $\{\{\mathrm{ae}\},\{\mathrm{ib}, \mathrm{be}, \mathrm{ef}, \mathrm{fh}\}\}$. Another extension gives us $\{\{\mathrm{cg}, \mathrm{gh}\},\{\mathrm{ae}\},\{\mathrm{ib}, \mathrm{be}, \mathrm{ef}, \mathrm{fh}\}\}$, and another extension gives us the maximum pathpartition of U , namely $\{\{\mathrm{cg}, \mathrm{gh}\},\{\mathrm{ae}\},\{\mathrm{ib}, \mathrm{be}, \mathrm{ef}, \mathrm{fh}\},\{\mathrm{dh}\}\}$. In this case, the maximum path-partition is unique, but this is not always the case. For example, if the vertex i and the edge ib were removed from U, U would have two maximum path-partitions $\{\{\mathrm{ae}, \mathrm{ef}, \mathrm{fh}\},\{\mathrm{be}\},\{\mathrm{cg}, \mathrm{gh}\},\{\mathrm{dh}\}\}$ and $\{\{\mathrm{be}, \mathrm{ef}, \mathrm{fh}\},\{\mathrm{ae}\},\{\mathrm{cg}, \mathrm{gh}\},\{\mathrm{dh}\}\}$.

Figure 1. A rooted Tree
Theorem 3.21. [Moe 92] Let U be a rooted tree and v be the root of U. If the path-size sequence of some maximum path-partition for U is ($a_{1}, a_{2}, \ldots, a_{n}$), then

$$
f(v, U)=\sum_{i=1}^{n} 2^{a_{i}}-n+1
$$

We find Theorem3.22 in [LS 06].
Theorem 3.22. Let U be a rooted tree and v be the root of U. Let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, be the path-size sequence for some maximum path-partition for U . Without loss of generality a_{1} can be taken to be h where h is the height of the tree. Then
$f_{t}(v, U)=t 2^{h}+\sum_{i=2}^{n} 2^{a_{i}}-n+1$.
We find Definition 2.7 in [HH 98].
Definition 3.23. Given a pebbling of G, a transmitting subgraph of G is a path $\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{k}$ such that there are at least two pebbles on x_{0} and at least one pebble on each of the other vertices in the path, except possibly x_{k}. In this case, we can transmit a pebble from x_{0} to x_{k}.

The following theorem of [Chu 89] is also used here.
Theorem 3.24[Chu 89]. A Tree satisfies the 2-pebbling property.
We will now prove that a tree satisfies the odd 2 t-pebbling property.
Theorem 3.25. A tree satisfies the odd 2t-pebbling property.
Proof : Let T be a tree and v be a vertex of T. Let U be the rooted tree obtained from T by directing all edges towards v , which becomes the root.

Let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be the path-size sequence for some maximum path-partition for U. Without loss of generality a_{1} can be taken to be h where h is the height of the tree.

Then by Theorem 3.22,
$f_{t}(v, U)=t 2^{h}+\sum_{i=2}^{n} 2^{a_{i}}-n+1$
Consider a configuration of $2 \mathrm{f}_{\mathrm{t}}(\mathrm{v}, \mathrm{U})-\mathrm{q}+1$ pebbles where q is the number of vertices with an odd number of pebbles. We use induction on t to prove that v satisfies the odd 2 t -pebbling property. For $\mathrm{t}=1$, the result is true by Theorem 3.24.

For $t>1$, the number of pebbles on the tree will be at least
$2^{h+2}+\sum_{i=2}^{n} 2^{a_{i}+1}-2 n+3-q=2 f_{t-1}(v, U)-q+1+2^{h+1}$
where q is the number of vertices with an odd number of pebbles. Let p be the number of pebbles on U . We claim that there will be at least one P_{i} with at least $2^{a_{i}}$ pebbles. Otherwise, the total number of pebbles placed on T will be at most $2^{h+1}+\sum_{i=2}^{n} 2^{a_{i}+1}-n$.

Then $2 f_{t}(v, U)+1 \leq p+q \leq 2^{h+1}+\sum_{i=2}^{n} 2^{a_{i}+1}+q-n$
That is, $t 2^{h+1}+\sum_{i=2}^{n} 2^{a_{i}+1}-2 n+2 \leq 2^{h+1}+\sum_{i=2}^{n} 2^{a_{i}+1}+q-n$

That is, (t-1) $2^{\mathrm{h}+1}-2 \mathrm{n}+3 \leq \mathrm{q}-\mathrm{n}$
That is, ($\mathrm{t}-1$) $2^{\mathrm{h}+1}+3 \leq \mathrm{q}+\mathrm{n}$
That is, ($\mathrm{t}-1$) $2^{\mathrm{h}+1}+3 \leq 2|\mathrm{~V}(\mathrm{U})| \quad$ since $\mathrm{n} \leq|\mathrm{V}(\mathrm{U})|$ and $\mathrm{q} \leq|\mathrm{V}(\mathrm{U})|$
That is, $(\mathrm{t}-1) 2^{\mathrm{h}}+(3 / 2) \leq|\mathrm{V}(\mathrm{U})| \quad$ for all $\mathrm{t}>1$.
This is a contradiction.
So we can put two pebbles on v using $2^{a_{i}}$ pebbles lying on P_{i}. So at most $2{ }^{\mathrm{h}+1}$ pebbles will be used to put two pebbles on v . Then the remaining number of pebbles on U will be at least $2 \mathrm{f}_{\mathrm{t}-1}(\mathrm{v}, \mathrm{U})-\mathrm{q}+1$ where q is the number of vertices with an odd number of pebbles. By induction, these pebbles would suffice to put 2(t-1) additional pebbles on v.

As v is arbitrary, every vertex in T satisfies the odd 2t-pebbling property. Hence T satisfies the odd 2 t-pebbling property.

4. t-pebbling the product of graphs.

We now define the direct product of two graphs, and discuss some results on the t pebbling number of direct product of two graphs.
Definition 4.1 [HH98]. If $\mathrm{G}=\left(\mathrm{V}_{\mathrm{G}}, \mathrm{E}_{\mathrm{G}}\right)$ and $\mathrm{H}=\left(\mathrm{V}_{\mathrm{H}}, \mathrm{E}_{\mathrm{H}}\right)$ are two graphs, the direct product of G and H is the graph, $\mathrm{G} \times \mathrm{H}$, whose vertex set is the cartesian product $\mathrm{V}_{\mathrm{G} \times \mathrm{H}}=\mathrm{V}_{\mathrm{G}} \times \mathrm{V}_{\mathrm{H}}=\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x} \in \mathrm{V}_{\mathrm{G}}, \mathrm{y} \in \mathrm{V}_{\mathrm{H}}\right\}$ and whose edges are given by $\mathrm{E}_{\mathrm{G} \times \mathrm{H}}=\left\{\left((\mathrm{x}, \mathrm{y}),\left(\mathrm{x}^{1}, \mathrm{y}^{1}\right)\right): \mathrm{x}=\mathrm{x}^{1}\right.$ and $\left(\mathrm{y}, \mathrm{y}^{1}\right) \in \mathrm{E}_{\mathrm{H}}$ or $\left(\mathrm{x}, \mathrm{x}^{1}\right) \in \mathrm{E}_{\mathrm{G}}$ and $\left.\mathrm{y}=\mathrm{y}^{1}\right\}$.

We write $\{\mathrm{x}\} \times \mathrm{H}$ (respectively $\mathrm{G} \times\{\mathrm{y}\}$ for the subgraph of vertices whose projection onto V_{G} is the vertex x (respectively whose projection onto V_{H} is y). If the vertices of G are labeled x_{i} then for any distribution of pebbles on $G \times H$, we write p_{i} for the number of pebbles on $\left\{x_{i}\right\} \times H$ and q_{i} for the number of occupied vertices of $\left\{x_{i}\right\} \times H$. Fan R.K. Chung [Chu 89] credited Conjecture 4.2 to Graham.
Conjecture 4.2. For any connected graphs G and H, we have $f(G \times H) \leq f(G) f(H)$ where $\mathrm{G} \times \mathrm{H}$ represents the direct product of graphs.

We find from [LS 0006], the generalization of Graham's conjecture as follows:
Conjecture 4.3[LS 0006]. [Generalization of Graham's Conjecture]. For any connected graphs G and H, We have $f_{t}\left(G \times H \leq f(G) f_{t}(H)\right.$ where $G \times H$ represents the direct product of graphs G and H .

We take Lemma 4.4 from [HH 98]. It describes how many pebbles we can transfer from one copy of H to an adjacent copy of H in $G \times H$. It is also called transfer Lemma.

Lemma 4.4 [Transfer Lemma]. Let $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$ be an edge in G. Suppose that in $\mathrm{G} \times \mathrm{H}$, we have p_{i} pebbles occupying q_{i} vertices of $\left\{x_{i}\right\} \times H$. If $\left(q_{i}-1\right) \leq k \leq p_{i}$ and if k and p_{i} have the same parity then k pebbles can be retained on $\left\{\mathrm{X}_{\mathrm{i}}\right\} \times \mathrm{H}$ while moving $\left(\mathrm{p}_{\mathrm{i}}-\mathrm{k}\right) / 2$ pebbles onto $\left\{\mathrm{x}_{\mathrm{j}}\right\} \times H$. If k and p_{i} have opposite parity we must leave $\mathrm{k}+1$ pebbles on $\left\{\mathrm{x}_{\mathrm{i}}\right\} \times \mathrm{H}$, so we can only move $\left(\mathrm{p}_{\mathrm{i}}-(\mathrm{k}+1)\right) / 2$ pebbles onto $\left\{\mathrm{x}_{\mathrm{j}}\right\} \times \mathrm{H}$. In particular we can always move at least $\left(\mathrm{p}_{\mathrm{i}}-\mathrm{q}_{\mathrm{i}}\right) / 2$ pebbles onto $\left\{\mathrm{x}_{\mathrm{j}}\right\} \times \mathrm{H}$.

We find Theorem 4.5 in [LS 006] which will prove Conjecture 4.3 when G is a path and H satisfies the $2 \mathrm{t}-\mathrm{pebbling}$ property.

Theorem 4.5. Let P_{m} be a path on m vertices. When G satisfies the 2t-pebbling property, $\mathrm{f}_{\mathrm{t}}\left(\mathrm{P}_{\mathrm{m}} \times \mathrm{G}\right) \leq 2^{\mathrm{m}-1} \mathrm{f}_{\mathrm{t}}(\mathrm{G})$.

We find Theorem 4.6 and Theorem4.7 in [LS 006]
Theorem 4.6. Let P_{m} be a path on m vertices. The $f_{t}\left(P_{m} \times P_{n}\right) \leq t 2^{m+n-1}$.
Theorem 4.7. Suppose G satisfies the $2 t$-pebbling property. Let $P_{m}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ be a path on m vertices where m is odd. Consider the graph $P_{m} \times G$. Let $k=(m+1) / 2$. Then $f_{t}\left(\left\{x_{k}\right\} \times G \leq f\left(x_{k}, P_{m}\right) f_{t}(G)=\left(2^{k}-1\right) f_{t}(G)\right.$.

5. Open problems

The Generalization of Graham's Conjecture can be seen in the following forms also. Now we state the following conjectures for all connected graphs G and H.

Conjecture 4.4. $f_{t}(G \times H) \leq f_{t}(G) f(H)$.
Conjecture 4.5. $\mathrm{f}(\mathrm{G} \times \mathrm{H}) \leq \min \left\{\mathrm{f}(\mathrm{G}) \mathrm{f}_{\mathrm{t}}(\mathrm{H}), \mathrm{f}_{\mathrm{t}}(\mathrm{G}) \mathrm{f}(\mathrm{H})\right\}$.
Conjecture 4.3 discusses the t-pebbling number of the graph as a whole. To discuss the t-pebbling number of a specific vertex, we state Conjecture 4.6 which is a stronger form of Conjecture 4.3.

Conjecture 4.6. The t-pebbling number of every vertex (v,w) in $\mathrm{G} \times \mathrm{H}$ satisfies
$f_{t}((v, w), G \times H) \leq f(v, G) f_{t}(w, H)$.
Conjecture 4.7. Conjecture 4.3 is true for a graph which is the direct product of a tree with a tree.

References :

[1] [Chu 89] Fan R.K. Chung, Pebbling in hypercubes, SIAM J. Discrete Math 2 (1989), 467-472.
[2] [Her 03] David S. Herscovici, Graham's pebbling Conjecture on product of cycles, J. Graph theory, Vol 42 (2) (2003) 141-154.
[3] [HH 98] David S. Herscovici, Aparna W. Higgins, The pebbling number of $\mathrm{C}_{5} \times \mathrm{C}_{5}$, Discrete Mathematics 187 (1998), $123-135$.
[4] [LS 06] A. Lourdusamy, S. Somasundaram., The t-pebbling number of graphs, South East Asian Bulletin of Mathematics, Springer - Verlag. 30 (2006), 907-914.
[5] [LS 006] A. Lourdusamy, t-pebbling the product of graphs, Acta Ciencia Indica, Vol XXXII M. No. 1, (2006), 171-176.
[6] [Moe 92] David Moews, Pebbling Graphs, J. Combin. Theory series B, 55 (1992),244-252
[7] [SF 00] Hunter S. Snevily and James A. foster, The 2-pebbling property and a Conjecture of Graham's, Graphs and Combinatorics, Vol. 16(2) (2000), 231 - 244.
[8] [Wan 01] S.S. Wang, Pebbling and Graham's Conjecture, Discrete Math. Vol. 226 (1-3) (2001), 431-438.

