Volume 3
No. 2
pp. 21-38
Sep 2012

The pebbling number of the square of an odd cycle

A.Lourdusamy ${ }^{1}$, C.Muthulakhmi @ Sasikala², and T.Mathivanan ${ }^{3}$
${ }^{1}$ Department of Mathematics, St. Xavier's College, Palayamkottai-627 002, India. lourdusamy15@gmail.com
${ }^{2}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurichi, India.
${ }^{3}$ Department of Mathematics, St. Xavier's College, Palayamkottai-627 002, India. tahit_van_man@yahoo.com

Abstract

In graph pebbling games, one considers a distribution of pebbles on the vertices of a graph, and a pebbling move consists of taking two pebbles off one vertex and placing one on adjacent vertex. The pebbling number, $f(G)$, of a graph G is the smallest m such that for every initial distribution of m pebbles on $\mathrm{V}(\mathrm{G})$ and every target vertex x , there exists a sequence of pebbling moves leading to a distribution with at least one pebble at x. In this paper, we determine the pebbling number of the square of an odd cycle.

Keywords: Pebbling, Square of a graph.
(Received April 2012, Accepted August 2012)

1. Introduction

Pebbling in graphs was first studied by Chung [1]. Consider a connected graph with a fixed number of pebbles which are nonnegative integer weights distributed on the vertices. A pebbling move consists of taking two pebbles off one vertex and placing one pebble on an adjacent vertex. Chung defined the pebbling number of a vertex v in a graph G as the smallest number
$f(G, v)$ such that from every placement of $f(G, v)$ pebbles, it is possible to move a pebble to v by a sequence of pebbling moves. Then the pebbling number of a graph G, denoted by $f(G)$, is the maximum $f(G, v)$ over all the vertices v in G. There are some known results regarding $f(G)$ $[1,2,3,4]$. If one pebble is placed on each vertex other than the vertex v, then no pebble can be moved to v. Also, if u is at distance d from v, and $2^{2}-1$ pebbles are placed on u, and then no pebble can be moved to v . So it is clear that $f(G)=\max \left\{V(G), 2^{2}-1\right\}$, where $V(G)$ is the number of vertices of the graph G and d is the diameter of the graph G.

Furthermore, we know from [1] that $f\left(K_{n}\right)=n$, where K_{n} is the complete graph on n vertices, and $f\left(P_{n}\right)=2^{n-1}$, where P_{n} is the path on n vertices. In this paper we determine the pebbling number of the square of an odd cycle.

2. The pebbling number of the square of an odd cycle

Definition 2.1. [4] Let $G=(V(G), E(G))$ be a connected graph. Then $G^{p}(p>1)$ (the pth power of G) is the graph obtained from G by adding the edge (u, v) to G whenever $2 \leq \operatorname{dist}(\mathrm{u}, \mathrm{v}) \leq \mathrm{p}$ in G . Hence $\mathrm{G}^{\mathrm{p}}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}) \cup\{(\mathrm{u}, \mathrm{v}): 2 \leq \operatorname{dist}(\mathrm{u}, \mathrm{v}) \leq$ p in G$\}$. If $\mathrm{p}=1$, we define $\mathrm{G}^{1}=\mathrm{G}$.

Since $\mathrm{C}_{5}{ }^{2} \equiv \mathrm{~K}_{5}$ and $\mathrm{f}\left(\mathrm{K}_{5}\right)=5$ [1], we get $\mathrm{f}\left(\mathrm{C}_{5}^{2}\right)=5$. Also $\mathrm{f}\left(\mathrm{P}_{2 \mathrm{k}+\mathrm{r}}{ }^{2}\right)=2^{\mathrm{k}}+\mathrm{r}$ [4]. Let $\mathrm{C}_{4 \mathrm{k}-1}$: $\operatorname{va}_{1} a_{2} \ldots a_{2 k-2} x y b_{2 k-2} \ldots b_{2} b_{1} v$ and $C_{4 k+1}: v a_{1} a_{2} \ldots a_{2 k-2} w x y z b_{2 k-2} \ldots b_{2} b_{1} v$, where $k \geq 2$. Without loss of generality, we assume that v is the target, and $p(v)=0$, where $p(v)$ denotes the number of pebbles on the vertex v . Let $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right)$ denotes the number of pebbles on the square of the path P_{A}.

Theorem 2.2. For the square of the cycle $\mathrm{C}_{7}, \mathrm{f}\left(\mathrm{C}_{7}{ }^{2}\right)=7$.
Proof. Put one pebble each on the vertices of $\mathrm{C}_{7}{ }^{2}$, except the vertex v. Then we cannot move a pebble to v . Thus $\mathrm{f}\left(\mathrm{C}_{7}{ }^{2}\right) \geq 7$.

Now consider the distribution of seven pebbles on the vertices of $\mathrm{C}_{7}{ }^{2}$. If one of the vertices of $\mathrm{V}\left(\mathrm{C}_{7}{ }^{2}\right)-\{\mathrm{v}, \mathrm{x}, \mathrm{y}\}$ contains two or more pebbles then clearly we are done. So, assume that $p\left(a_{i}\right) \leq 1, p\left(b_{i}\right) \leq 1$ for $i=1,2$. Thus $p(x)+p(y) \geq 3$. Without loss of generality, let $\mathrm{p}(\mathrm{x}) \geq 2$. Let us assume that $\mathrm{p}(\mathrm{x})=2$ or 3 . If $\mathrm{p}\left(\mathrm{a}_{1}\right)=1$ or $\mathrm{p}\left(\mathrm{a}_{2}\right)=1$ or $p\left(b_{2}\right)=1$ then we can move a pebble to v. Otherwise, $p(x) \geq 4$ and hence we are done since $\mathrm{d}(\mathrm{v}, \mathrm{x})=2$.

Thus $f\left(\mathrm{C}_{7}{ }^{2}\right) \leq 7$.

Theorem 2.3. For the square of the cycle $\mathrm{C}_{9}, \mathrm{f}\left(\mathrm{C}_{9}{ }^{2}\right)=9$.
Proof. Put one pebble each on the vertices of $\mathrm{C}_{9}{ }^{2}$, except the vertex v. Then we cannot move a pebble to v. Thus $f\left(\mathrm{C}_{9}{ }^{2}\right) \geq 9$.

Now consider the distribution of nine pebbles on the vertices of $\mathrm{C}_{9}{ }^{2}$. If $p\left(\mathrm{a}_{1}\right) \geq 2$ or $p(w) \geq 4$ then clearly we are done. So assume that $p\left(a_{1}\right) \leq 1$ and $p(w) \leq 3$. For the same reason, we assume that $\mathrm{p}\left(\mathrm{a}_{2}\right) \leq 1, \mathrm{p}\left(\mathrm{b}_{1}\right) \leq 1, \mathrm{p}\left(\mathrm{b}_{2}\right) \leq 1, \mathrm{p}(\mathrm{x}) \leq 3, \mathrm{p}(\mathrm{y}) \leq 3$ and $\mathrm{p}(\mathrm{z})$ ≤ 3.

Since $p\left(a_{i}\right) \leq 1$ for all $i=1,2$ and $p\left(b_{j}\right) \leq 1$ for all $j=1,2$, we get $p(w)+p(x)+p(y)+$ $p(z) \geq 5$. Clearly any one of the vertex, say w, receives at least two pebbles. If $p\left(a_{1}\right)=$ 1 or $\mathrm{p}\left(\mathrm{a}_{2}\right)=1$ or $\mathrm{p}(\mathrm{x}) \geq 2$ then we can move a pebble to v easily. Otherwise the path $\mathrm{vb}_{1} \mathrm{~b}_{2} \mathrm{zy}$ contains at least five pebbles and we are done since $\mathrm{f}\left(\mathrm{P}_{5}{ }^{2}\right)=5$. Similarly we are done if $\mathrm{p}(\mathrm{z}) \geq 2$. So assume that $\mathrm{p}(\mathrm{w}) \leq 1$ and $\mathrm{p}(\mathrm{z}) \leq 1$. This implies that $\mathrm{p}(\mathrm{x})+$ $\mathrm{p}(\mathrm{y}) \geq 3$.

Let $p(x) \geq 2$. Clearly we are done if $p\left(a_{2}\right)=1$. So assume that $p\left(a_{2}\right)=0$. Thus $p(x)+$ $\mathrm{p}(\mathrm{y}) \geq 4$.

Case 1: $\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})=4$.
Clearly both $p\left(a_{1}\right)$ and $p(w)$ cannot be one and both $p(z)$ and $p\left(b_{1}\right)$ cannot be one (otherwise one pebble could be moved to v). But any one of the above possibilities should be true for this case and hence we are done.

Case 2: $\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y}) \geq 5$.
This implies that, either $\mathrm{p}(\mathrm{x}) \geq 2$ and $\mathrm{p}(\mathrm{y}) \geq 3$ or $\mathrm{p}(\mathrm{x}) \geq 3$ and $\mathrm{p}(\mathrm{y}) \geq 2$. In either case, we can always make a vertex (x or y) with at least four pebbles and hence we are done.

In a similar way, we can move a pebble to v , if $\mathrm{p}(\mathrm{y}) \geq 2$.
Thus $\mathrm{f}\left(\mathrm{C}_{9}{ }^{2}\right) \leq 9$.
Theorem 2.4. For the square of the cycle $\mathrm{C}_{11}, \mathrm{f}\left(\mathrm{C}_{11}{ }^{2}\right)=11$.
Proof. Let $P_{A}: v a_{1} a_{2} a_{3} a_{4}$ and $P_{B}: v b_{1} b_{2} b_{3} b_{4}$. Note that $f\left(P_{A}{ }^{2}\right)=f\left(P_{B}{ }^{2}\right)=5$. Without loss of generality, we assume that $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq \mathrm{p}\left(\mathrm{P}_{\mathrm{B}}{ }^{2}\right)$. Clearly $\mathrm{f}\left(\mathrm{C}_{11}{ }^{2}\right) \geq 11$.

Now consider the distribution of eleven pebbles on the vertices of $\mathrm{C}_{11}{ }^{2}$.
Case 1: If $\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y}) \leq 2$ then $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq 5$ and hence we are done.
Case 2: If $\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})=3$ or 4 then $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq 5$.
Note that both x and y are adjacent to a_{4}. Since $p(x)+p(y)=3$ or 4 , either $p(x) \geq 2$ or $p(y) \geq 2$. Thus $P_{A}{ }^{2}$ receives one more pebble from x or y and hence we are done.

Case 3: If $\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})=5$ or 6 then $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq 3$.
We can move two pebbles to a_{4} from x and y so that $\mathrm{P}_{\mathrm{A}}{ }^{2}$ obtains five pebbles and hence we are done.

Case 4: If $\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})=7$ or 8 then $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq 2$.
This case is similar to the Case 3 . We can move three pebbles to a_{4} from x and y and hence we are done.

Case 5: If $\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y}) \geq 9$ then $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right)+\mathrm{p}\left(\mathrm{P}_{\mathrm{B}}{ }^{2}\right) \leq 2$.
If $\mathrm{p}(\mathrm{x}) \geq 8$ or $\mathrm{p}(\mathrm{y}) \geq 8$ then we are done since $\mathrm{d}(\mathrm{v}, \mathrm{x})=\mathrm{d}(\mathrm{v}, \mathrm{y})=3$. Otherwise both the vertices x and y receive at least four pebbles each or one vertex, say x, receives at least two pebbles (at most three pebbles) and y receives at least six pebbles. So we can move four pebbles to a_{4} and hence we are done, since $\mathrm{d}\left(\mathrm{v}, \mathrm{a}_{4}\right)=2$.

Thus $\mathrm{f}\left(\mathrm{C}_{11}{ }^{2}\right) \leq 11$.
Theorem 2.5. For the square of the cycle $\mathrm{C}_{13}, \mathrm{f}\left(\mathrm{C}_{13}{ }^{2}\right)=13$.
Proof. Let $P_{A}: \operatorname{va}_{1} a_{2} a_{3} a_{4}$ and $P_{B}: \operatorname{vb}_{1} b_{2} b_{3} b_{4}$. Note that $f\left(P_{A}{ }^{2}\right)=f\left(P_{B}{ }^{2}\right)=5$. Without loss of generality, we assume that $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq \mathrm{p}\left(\mathrm{P}_{\mathrm{B}}{ }^{2}\right)$. Clearly $\mathrm{f}\left(\mathrm{C}_{13}{ }^{2}\right) \geq 13$.

Now consider the distribution of thirteen pebbles on the vertices of $\mathrm{C}_{13}{ }^{2}$.
Case 1: If $\mathrm{p}(\mathrm{w})+\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})+\mathrm{p}(\mathrm{z}) \leq 4$ then $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq 5$ and hence we are done.
Case 2: If $\mathrm{p}(\mathrm{w})+\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})+\mathrm{p}(\mathrm{z})=5$ or 6 then $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq 4$.
If $p\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq 5$ then clearly we are done. So assume that $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right)=4$. Also assume that $\mathrm{p}(\mathrm{w}) \leq 1$ and $\mathrm{p}(\mathrm{x}) \leq 1$ (otherwise, one pebble can be moved to a_{4} so that $\mathrm{P}_{\mathrm{A}}{ }^{2}$ obtains five pebbles and hence we are done). This implies that $\mathrm{p}(\mathrm{y})+\mathrm{p}(\mathrm{z}) \geq 3$. Clearly either
x or y contains at least two pebbles. If $p\left(P_{B}^{2}\right)=4$ or $p(x)=1$ then clearly we are done. So we assume that $p\left(P_{B}^{2}\right) \leq 3$ and $p(x)=0$. Thus $p(y)+p(z) \geq 5$ and hence one pebble can be moved to a_{4} from the vertices z and y through the vertex x.

Case 3: If $\mathrm{p}(\mathrm{w})+\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})+\mathrm{p}(\mathrm{z})=7$ or 8 then $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq 3$.
If $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq 5$ then clearly we are done. So assume that $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right)=3$ or 4 .
Case 3.1. Let $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right)=4$.
If $p(w) \geq 2$ or $p(x) \geq 2$ then we are done. So assume that $p(w) \leq 1$ and $p(x) \leq 1$. Thus $\mathrm{p}(\mathrm{y})+\mathrm{p}(\mathrm{z}) \geq 5$ and hence we are done (as in Case 2).

Case 3.2. Let $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right)=3$.
If $\mathrm{p}(\mathrm{w}) \geq 4$ or $\mathrm{p}(\mathrm{x}) \geq 4$ or $(\mathrm{p}(\mathrm{x}) \geq 2$ and $\mathrm{p}(\mathrm{w}) \geq 2)$ then clearly we are done. So assume that $\mathrm{p}(\mathrm{w})+\mathrm{p}(\mathrm{x}) \leq 4$ such that one vertex (either w or x) receives at most one pebble. This implies that $p(y)+p(z) \geq 3$. Also, note that, if $p(x)=3$ then we are done. Indeed, we can move one pebble to x from y or z and then two pebbles could be moved to a_{4} from x so that $\mathrm{P}_{\mathrm{A}}{ }^{2}$ obtains five pebbles. So assume that $\mathrm{p}(\mathrm{x}) \leq 2$.

If $p(w)=2$ or 3 , then $p(x) \leq 1$. Since, either y or z contains at least two pebbles, one pebble could be moved to a_{4} through x if $\mathrm{p}(\mathrm{x})=1$. And also we can move a pebble to a_{4} from w and hence we are done. So assume that $p(x)=0$. This implies that $p(y)+p(z) \geq 4$. If $p(y)+p(z) \geq 5$, then two pebbles could be moved to a_{4} from the vertices w, y and z. If $p(y)+p(z)=4$ then $p(w)=3$. Clearly we can move a pebble to w from the vertices y and z and hence we are done.

If $p(w)=1$ then $p(y)+p(z) \geq 4$. If $p(x)=2$, then we are done easily. If $p(x)=1$, then $p(y)+p(z) \geq 5$. If $p\left(P_{B}{ }^{2}\right)=3$ then two pebbles can be moved to b_{4} from the vertices y and z and hence $P_{B}{ }^{2}$ obtains five pebbles, we are done. Otherwise, we can send one pebble each to the vertices w and x, from the vertices y and z and hence we are done. If $\mathrm{p}(\mathrm{x})=0$ then the induced subgraph $<\mathrm{V}\left(\mathrm{P}_{\mathrm{B}}{ }^{2}\right) \cup\{\mathrm{z}, \mathrm{y}\}>\equiv \mathrm{P}_{\mathrm{B}+}{ }^{2} \equiv \mathrm{P}_{7}$ contains at least nine pebbles and hence we are done since $f\left(\mathrm{P}_{\mathrm{B}+}{ }^{2}\right)=\mathrm{f}\left(\mathrm{P}_{7}{ }^{2}\right)=9$.

If $\mathrm{p}(\mathrm{w})=0$ then $\mathrm{p}\left(\mathrm{P}_{\mathrm{B}+}{ }^{2}\right) \geq 8$. If $\mathrm{p}\left(\mathrm{P}_{\mathrm{B}+}{ }^{2}\right) \geq 9$ then clearly we are done. If $\mathrm{p}\left(\mathrm{P}_{\mathrm{B}+}{ }^{2}\right)=8$ then $p(x)=2$. So we can move a pebble to z , and hence we are done.

Case 4: If $\mathrm{p}(\mathrm{w})+\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})+\mathrm{p}(\mathrm{z})=9$ or 10 then $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq 2$. The same process in Case 3 can be used.

Case 5: If $\mathrm{p}(\mathrm{w})+\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})+\mathrm{p}(\mathrm{z})=11$ or 12 then $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq 1$.
Let $P_{A_{+}}{ }^{2}=v a_{1} a_{2} a_{3} a_{4} w x$. If $p(w)+p(x) \geq 8$ then $p\left(P_{A_{+}}{ }^{2}\right) \geq 9$ and hence we are done.
Case 5.1. If $p(w)+p(x)=6$ or 7 then $p(y)+p(z)=5$ or 6 (or) 4 or 5 . So we can move two pebbles (or) one pebble to x . Thus $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}^{+}}{ }^{2}\right)=9$ and hence we are done.

Case 5.2. If $\mathrm{p}(\mathrm{w})+\mathrm{p}(\mathrm{x})=4$ or 5 then $\mathrm{p}(\mathrm{y})+\mathrm{p}(\mathrm{z})=7$ or 8 (or) 6 or 7 .
If $p\left(P_{B}{ }^{2}\right)=1$ then we move one or two pebbles to y, so that $P_{B+}{ }^{2}$ obtains nine pebbles and hence we are done. Otherwise $p\left(P_{A}^{2}\right)=2$ and we are done since $p(w)+p(x)+$ $\left\lfloor\frac{p(y)+p(z)}{2}\right\rfloor \geq 7$ implies $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}^{+}}{ }^{2}\right) \geq 9$.

Case 5.3. If $\mathrm{p}(\mathrm{w})+\mathrm{p}(\mathrm{x}) \leq 3$ then $\mathrm{p}(\mathrm{y})+\mathrm{p}(\mathrm{z}) \geq 8$.
Clearly we are done if $\mathrm{p}\left(\mathrm{P}_{\mathrm{B}}{ }^{2}\right) \geq 1$ or $\mathrm{p}(\mathrm{w}) \geq 2$ or $\mathrm{p}(\mathrm{x}) \geq 2$. Otherwise, $\mathrm{p}(\mathrm{y})+\mathrm{p}(\mathrm{z}) \geq 9$ and hence we are done since $\mathrm{p}\left(\mathrm{P}_{\mathrm{B}+}^{2}\right) \geq 9$.

Case 6: Let $\mathrm{p}(\mathrm{w})+\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})+\mathrm{p}(\mathrm{z})=13$.
Without loss of generality, $\mathrm{p}(\mathrm{w})+\mathrm{p}(\mathrm{x}) \geq \mathrm{p}(\mathrm{y})+\mathrm{p}(\mathrm{z})$.
Case 6.1. If $p(w)+p(x) \geq 9$ then we are done since $f\left(P_{A_{+}}{ }^{2}\right)=9$.
Case 6.2. If $\mathrm{p}(\mathrm{w})+\mathrm{p}(\mathrm{x})=7$ or 8 then $\mathrm{p}(\mathrm{y})+\mathrm{p}(\mathrm{z})=6$ or 5 . So we can move two pebbles or one pebble to x from y and z . Thus we are done since $\mathrm{P}_{\mathrm{A}+}{ }^{2}$ obtains nine pebbles and $f\left(\mathrm{P}_{\mathrm{A}+}{ }^{2}\right)=9$.

Thus $\mathrm{f}\left(\mathrm{C}_{13}{ }^{2}\right) \leq 13$.
Theorem 2.6. For $\mathrm{C}_{4 \mathrm{k}-1}{ }^{2}, \mathrm{f}\left(\mathrm{C}_{4 \mathrm{k}-1}{ }^{2}\right)=2^{\mathrm{k}}+1$ where $\mathrm{k} \geq 4$.
Proof. Consider the following distribution: $p(x)=2^{k-1}-1, p(y)=2^{k-1}+1$ and $p\left(a_{i}\right)=$ $p\left(b_{i}\right)=0$ for all $i(1 \leq i \leq 2 k-2)$. Clearly we can send $2^{k-1}-1$ pebbles to $a_{2 k-2}$ or $\mathrm{b}_{2 \mathrm{k}-2}$. But $\mathrm{d}\left(\mathrm{v}, \mathrm{a}_{2 \mathrm{k}-2}\right)=\mathrm{d}\left(\mathrm{v}, \mathrm{b}_{2 \mathrm{k}-2}\right)=\mathrm{k}-1$. So we cannot move a pebble to v from these pebbling moves. We have another one set of pebbling moves. That is, we move $\left\lfloor\frac{p(x)}{2}\right\rfloor$ pebbles to $\mathrm{a}_{2 \mathrm{k}-3}$ or $\mathrm{b}_{2 \mathrm{k}-2}$ and $\left\lfloor\frac{p(y)}{2}\right\rfloor$ pebbles to $\mathrm{a}_{2 \mathrm{k}-2}$ or $\mathrm{b}_{2 \mathrm{k}-3}$. So after these pebbling
moves, we get $p\left(a_{2 k-3}\right)+p\left(a_{2 k-2}\right)=2^{k-1}-1$ or $p\left(b_{2 k-3}\right)+p\left(b_{2 k-2}\right)=2^{k-1}-1$. But $f\left(P_{A}{ }^{2}\right)=2^{k-}$ ${ }^{1}+1$ and $f\left(P_{B}{ }^{2}\right)=2^{k-1}+1$, where $P_{A}: \operatorname{va}_{1} a_{2} \ldots a_{2 k-2}$ and $P_{B}: b_{1} b_{2} \ldots b_{2 k-2}$. So we cannot move a pebble to v in anyways. Thus $\mathrm{f}\left(\mathrm{C}_{4 \mathrm{k}-1}{ }^{2}\right) \geq 2^{\mathrm{k}}+1$.

Now consider the distribution of $2^{\mathrm{k}}+1$ pebbles on the vertices of $\mathrm{C}_{4 \mathrm{k}-1}{ }^{2}$. Without loss of generality, we assume that $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq \mathrm{p}\left(\mathrm{P}_{\mathrm{B}}{ }^{2}\right)$. Also note that, if $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq 2^{\mathrm{k}-1}+1$ or $p\left(a_{2 k-2}\right)=2^{k-1}$ then we can move a pebble to v, since $P_{A}{ }^{2} \equiv P_{2(k-1)+1}{ }^{2}$ or $d\left(v, a_{2 k-2}\right)=k-1$ respectively.

Case 1: $\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})=2^{\mathrm{k}}+1$.
If $p(x) \geq 2^{k}$ or $p(y) \geq 2^{k}$ then we can move a pebble to v since $d(v, x)=k=d(v, y)$.
Let $\mathrm{p}(\mathrm{x})=2^{\mathrm{k}}-\mathrm{i}$. Then $\mathrm{p}(\mathrm{y})=\mathrm{i}+1$. We move $\frac{p(x)}{2}$ and $\frac{p(y)}{2}$ pebbles to $\mathrm{a}_{2 \mathrm{k}-2}$.
If i is odd, then consider the following pebbling moves:

$$
\left.\begin{array}{l}
x \xrightarrow{x \xrightarrow{\frac{2^{k}-i-1}{2}} a_{2 k-2}} \\
y \xrightarrow[2 k-2]{ }
\end{array}\right\} \Rightarrow a_{2 k-2} \text { obtains } 2^{k-1} \text { pebbles and hence we are done. }
$$

If i is even, then consider the following pebbling moves:

$$
\left.\begin{array}{l}
x \xrightarrow{\frac{2^{k}-i}{2}} a_{2 k-2} \\
y \xrightarrow{\frac{i}{2}} a_{2 k-2}
\end{array}\right\} \Rightarrow a_{2 k-2} \text { obtains } 2^{k-1} \text { pebbles and hence we are done. }
$$

Case 2: $\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})=2^{\mathrm{k}}$ or $2^{\mathrm{k}}-1$.
This implies that $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq 1$ and let $\mathrm{p}\left(\mathrm{a}_{\mathrm{j}}\right)=1(1 \leq \mathrm{j} \leq 2 \mathrm{k}-2)$.
If j is even, then consider the following pebbling moves:
$\left.\begin{array}{c}x \xrightarrow{\left\lfloor\frac{p(x)}{2}\right\rfloor} \\ y \xrightarrow[2 k-2]{ } \\ a_{2 k-2}\end{array}\right\} \Rightarrow a_{2 k-2}$ obtains $2^{k-1}-1$ pebbles and we have $\mathrm{p}\left(\mathrm{a}_{\mathrm{j}}\right)=1$.

Thus we are done since the path $\operatorname{va}_{1} a_{2} \ldots a_{j} a_{j+2} \ldots a_{2 k-4} a_{2 k-2}$ of length $k-1$ contains 2^{k-1} pebbles and $f\left(P_{k}\right)=2^{k-1}$.

If j is odd, then let $\mathrm{d}\left(\mathrm{a}_{\mathrm{j}}, \mathrm{x}\right)=\mathrm{i}$ where $\mathrm{j} \geq 3$. Thus $\mathrm{d}\left(\mathrm{v}, \mathrm{a}_{\mathrm{j}-1}\right)=\mathrm{k}-\mathrm{i}-1$, since $\mathrm{d}\left(\mathrm{v}, \mathrm{a}_{\mathrm{j}}\right)=\mathrm{k}-\mathrm{i}$. If $p(x) \geq 2^{i}$, then we move a pebble to a_{j} and then we send a pebble to a_{j-1}. Now consider the following pebbling moves:

We have $\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y}) \geq 2^{\mathrm{k}}-2^{\mathrm{i}}-1$ or $2^{\mathrm{k}}-2^{\mathrm{i}}$.
$\left.\underset{y \xrightarrow{\left\lfloor\frac{p(y)}{2}\right\rfloor} a_{2 k-2}}{x \xrightarrow{\left\lfloor\frac{p(x)-2^{i}}{2}\right\rfloor}} a_{2 k-2}\right\} \Rightarrow a_{2 k-2}$ obtains $2^{k-1}-2^{i-1}$ pebbles.
Since $d\left(a_{j-1}, a_{2 k-2}\right)=i$, we can send $2^{k-i-1}-1$ pebbles to a_{j-1}. This implies that a_{j-1} obtains $2^{\mathrm{k}-\mathrm{i}-1}$ pebbles and hence we are done.

Let $p(x)<2{ }^{i}$. We take d pebbles from the vertex y so that we move $\left\lfloor\frac{p(x)}{2}\right\rfloor+\frac{d}{4}=2^{i-1}$ pebbles to $\mathrm{a}_{2 \mathrm{k}-3}$. That is, $\frac{\mathrm{p}(\mathrm{x})-1}{2}+\frac{d}{4}=2^{i-1}$.

Now we have $p(y)-\mathrm{d} \geq 2^{\mathrm{k}}-3\left(2^{\mathrm{i}}\right)+4^{\left\lfloor\frac{p(x)}{2}\right\rfloor}$ pebbles on the vertex y. So we can move $\frac{\mathrm{p}(\mathrm{y})-\mathrm{d}}{2} \geq 2^{k-1}-2^{i-1}$ pebbles to $\mathrm{a}_{2 \mathrm{k}-2}$ and hence we are done.

Indeed, consider the following pebbling moves:

pebbles and $\mathrm{d}\left(\mathrm{v}, \mathrm{a}_{\mathrm{j}-1}\right)=\mathrm{k}-\mathrm{i}-1$.
Let $p\left(a_{1}\right)=1$. Clearly we are done if $p(x) \geq 2^{k-1}$. Otherwise $p(y) \geq 2^{k-1}$. Then we consider the following pebbling moves:

$$
\left.\begin{array}{l}
y \xrightarrow{\frac{p(y)}{4} \text { or } \frac{p(y)-1}{4}} a_{2 k-3} \\
x \xrightarrow{\left\lfloor\frac{p(x)}{2}\right\rfloor} a_{2 k-3}
\end{array}\right\} \Rightarrow a_{2 k-3} \text { obtains } 2^{k-2}+\frac{p(x)-2}{4} \geq 2^{k-2} \text { pebbles, if } p(x) \geq 2
$$

If $\mathrm{p}(\mathrm{x}) \leq 1$ then $\mathrm{p}(\mathrm{y}) \geq 2^{\mathrm{k}}-2$. Let $\mathrm{p}(\mathrm{x})=1$. Consider the following pebbling moves:
$\left.\begin{array}{l}y \xrightarrow{1} x \xrightarrow{1} a_{2 k-3} \\ x \xrightarrow{\frac{2^{k}-4}{2}} a_{2 k-2} \xrightarrow{2^{k-2}-1} a_{2 k-3}\end{array}\right\} \Rightarrow a_{2 k-3}$ obtains 2^{k-2} pebbles and hence we are done since $\mathrm{d}\left(\mathrm{a}_{1}, \mathrm{a}_{2 \mathrm{k}-3}\right)=\mathrm{k}-2$ and $\mathrm{p}\left(\mathrm{a}_{1}\right)=1$.

Let $p(x)=0$. If $p(y)=2^{k}$ then clearly we are done. So assume that $p(y)=2^{k}-1$. If $p\left(P_{B}{ }^{2}\right)=1$ then we are done since $v b_{1} b_{3} \ldots b_{2 k-5} b_{2 k-3} y$ or $v b_{2} b_{4} \ldots b_{2 k-4} b_{2 k-2} y$ of length k contains 2^{k} pebbles. Otherwise $p\left(P_{A}{ }^{2}\right)=2$ with $p\left(a_{1}\right)=1$. So we can move $2^{k-1}-1$ pebbles to $a_{2 k-3}$ from y. Since $p\left(P_{A}{ }^{2}\right)=2$, there exists a vertex a_{h} such that $p\left(a_{h}\right)=1$ $(h \neq 1)$. Let $d\left(a_{h}, a_{2 k-3}\right)=h_{1}$, if h is odd and let $d\left(a_{h}, a_{2 k-2}\right)=h_{2}$, if h is even.

For h is odd, consider the following pebbling moves: $a_{2 k-3} \xrightarrow{2^{k-2-h_{1}}} a_{h} \Rightarrow a_{\mathrm{h}}$ obtains $2^{k-2-h_{\mathrm{h}}}$ pebbles and we are done, since $\mathrm{d}\left(a_{1}, a_{\mathrm{h}}\right)=\mathrm{k}-2-\mathrm{h}_{1}$.

For h is even, we move $2^{k-1-h_{2}}$ pebbles to a_{h} and hence we are done since $d\left(v, a_{h}\right)=$ $\mathrm{k}-1-\mathrm{h}_{2}$.

In a similar way, we can reach the vertex v, if $p(y)=4 m+2$ or $4 m+3$.
Case 3: $\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})=2^{\mathrm{k}}+1-\mathrm{p}\left(3 \leq \mathrm{p} \leq 2^{\mathrm{k}}-1\right)$.
Case 3.1. Let p is even. This implies that $\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})$ is odd.

That is, either $\mathrm{p}(\mathrm{x})$ is odd or $\mathrm{p}(\mathrm{y})$ is odd. Without loss of generality, let $\mathrm{p}(\mathrm{x})$ is odd. Since
$\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})=2^{\mathrm{k}}+1-\mathrm{p}$, we can move $2^{\mathrm{k}-1}-\frac{p}{2}$ pebbles to the vertex $\mathrm{a}_{2 \mathrm{k}-2}$. We have $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq \frac{\frac{p}{2}}{2}$.
Thus $\mathrm{P}_{\mathrm{A}}{ }^{2}$ obtains $2^{\mathrm{k}-1}$ pebbles. If $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq 2^{\frac{p}{2}+1}$ then we are done since $\mathrm{f}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right)=2^{\mathrm{k}-1}+1$.

So assume that $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right)=\frac{\frac{p}{2}}{2}$. Then $\mathrm{p}\left(\mathrm{P}_{\mathrm{B}}{ }^{2}\right)=\frac{\frac{p}{2}}{2}$. Also, note that

$$
\left.\left.\begin{array}{l}
\left.\begin{array}{ll}
p(x)=4 a+1 \& p(y)=4 b & ----(1) \\
p(x) & =4 a+3 \& p(y)=4 b+2 \\
----(2)
\end{array}\right\} \text { if } \frac{p}{2} \text { is even, where } a \geq 0 \& b \geq 0 \text {. } \\
\begin{array}{ll}
p(x) & =4 a+1 \& p(y)=4 b+2
\end{array} \\
p(x)
\end{array}=4 a+3 \& p(y)=4 b \quad---(3)\right\} \text {---(4) }\right\} \text { if } \frac{p}{2} \text { is odd, where } a \geq 0 \& b \geq 0 .
$$

Subcase (a): Let $\sum_{i=1}^{2 k-4} p\left(a_{i}\right)=\frac{p}{2}$.
This implies that $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-3}\right)+\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-2}\right)=0$.
Let $\mathrm{P}_{\mathrm{A}^{+}}: \mathrm{va}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{2 \mathrm{k}-5} \mathrm{a}_{2 \mathrm{k}-4}$. Note that $\mathrm{f}\left(\mathrm{P}_{\mathrm{A}^{+}}{ }^{2}\right)=2^{\mathrm{k}-2}+1$.
For $\mathrm{p} / 2$ is even, we consider the following pebbling moves:
$\left.\begin{array}{l}x \xrightarrow{\frac{p(x)-1}{4} o r \frac{p(x)+1}{4}} a_{2 k-4} \\ y \xrightarrow{\frac{p(y)}{2} o r \frac{p(y)-2}{2}} a_{2 k-4}\end{array}\right\} \Rightarrow a_{2 k-4}$ obtains $\frac{p(x)+p(y)-1}{4}$ pebbles.
Thus $\mathrm{P}_{\mathrm{A}+}{ }^{2}$ obtains $2^{\mathrm{k}-2}+\frac{p}{4} \geq 2^{\mathrm{k}-2}+1(\mathrm{p} \geq 4)$ and hence we are done.
For $\mathrm{p} / 2$ is odd, clearly we can move $\frac{p(x)+p(y)-1}{4}$ pebbles to $\mathrm{a}_{2 \mathrm{k}-4}$ (see (3) \& (4)).
Thus $\mathrm{P}_{\mathrm{A}+}^{2}$ obtains $\frac{2^{k}-p-2+2 p}{4} \geq 2^{\mathrm{k}-2}+1(\mathrm{p} \geq 6)$ and hence we are done.

Subcase (b):

$$
\text { Let } \sum_{i=1}^{2 k-4} p\left(a_{i}\right)=\frac{p}{2} \Rightarrow p\left(a_{2 k-3}\right)+p\left(a_{2 k-2}\right)=\frac{p}{2} .
$$

For $\mathrm{p} / 2$ is even, we have both $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-3}\right)$ and $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-2}\right)$ are even or odd.

Suppose both $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-3}\right)$ and $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-2}\right)$ are even.
From (1) \& (2), clearly we can move $\frac{p(x)-1+p(y)}{4}$ pebbles to $\mathrm{a}_{2 \mathrm{k}-4}$. Also we can move $\mathrm{p} / 4$ pebbles to $\mathrm{a}_{2 \mathrm{k}-4}$, from the vertices $\mathrm{a}_{2 \mathrm{k}-3}$ and $\mathrm{a}_{2 \mathrm{k}-2}$. Thus the vertex $\mathrm{a}_{2 \mathrm{k}-4}$ obtains $\frac{2^{k}-p}{4}+\frac{p}{4}=2^{k-2}$ pebbles and hence we are done since $\mathrm{d}\left(\mathrm{v}, \mathrm{a}_{2 \mathrm{k}-4}\right)=\mathrm{k}-2$.

Suppose both $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-3}\right)$ and $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-2}\right)$ are odd.
Consider the following pebbling moves:
If $p(x)=4 a+1$ then

If $p(x)=4 a+3$ then
$x \xrightarrow{1} a_{2 k-3} \xrightarrow{\frac{p\left(a_{2 k-3}\right)+1}{2}} a_{2 k-4}$
$\underset{y \xrightarrow{\frac{1}{4}} a_{2 k-2}}{\substack{\frac{p(x)-3}{4}}} a_{2 k-4}$
$y \xrightarrow{\frac{p(y)-2}{4}} a_{2 k-4}$

For $\mathrm{p} / 2$ is odd, we have either $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-3}\right)$ or $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-2}\right)$ is odd. First we move pebbles to $\mathrm{a}_{2 \mathrm{k}-4}$. Then using the remaining pebbles from the vertices x and y , we can move a pebble to either $\mathrm{a}_{2 \mathrm{k}-3}$ or $\mathrm{a}_{2 \mathrm{k}-2}$ which vertex contains odd number of pebbles.
Thus $\mathrm{a}_{2 \mathrm{k}-4}$ obtains $\frac{p(x)+p(y)-3}{4}+\frac{\left(\frac{p}{2}+1\right)}{2}=2^{k-2}$ pebbles and hence we are done.

Subcase(c):

Let $\sum_{i=1}^{2 k-4} p\left(a_{i}\right)=1 \Rightarrow p\left(a_{2 k-3}\right)+p\left(a_{2 k-2}\right)=\frac{p}{2}-1$.
Since $\sum_{i=1}^{2 k-4} p\left(a_{i}\right)=1$, there exists a vertex a_{j} such that $\mathrm{p}\left(\mathrm{a}_{\mathrm{j}}\right)=1(1 \leq \mathrm{j} \leq 2 \mathrm{k}-4)$.
Suppose j is even $(\mathrm{j} \geq 2)$.
For $\frac{p}{2}$ is odd $\Rightarrow \frac{p}{2}-1$ is even

$$
\Rightarrow \text { both } \mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-3}\right) \text { and } \mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-2}\right) \text { are odd or even. }
$$

From (3) \& (4), we obtain the following:
If both $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-3}\right)$ and $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-2}\right)$ are odd then we can move
$\frac{p(x)+p(y)-7}{4}+\frac{\left(\frac{p}{2}-1\right)+2}{2}=2^{k-2}-1$ pebbles to $\mathrm{a}_{2 \mathrm{k}-4}$.
If both $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-3}\right)$ and $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-2}\right)$ are even then we can move $\frac{p(x)+p(y)-3}{4}+\frac{\left(\frac{p}{2}-1\right)}{2}=2^{k-2}-1$
pebbles to $\mathrm{a}_{2 \mathrm{k}-4}$
Thus the path $v a_{2} \ldots a_{j} a_{j+2} \ldots a_{2 k-6} a_{2 k-4}$ of length $k-2$ contains 2^{k-2} pebbles and hence we are done.

For $\frac{p}{2}$ is even $\Rightarrow \frac{p}{2}-1$ is odd \Rightarrow either $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-3}\right)$ or $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-2}\right)$ is odd.

If $\mathrm{p}(\mathrm{x})=4 \mathrm{a}+1$ then $\frac{p(x)-1}{4}+\frac{p(y)-2}{4}+\frac{\left(\frac{p}{2}-1\right)+1}{2}$ pebbles to $\mathrm{a}_{2 \mathrm{k}-4}$. That is, $\mathrm{a}_{2 \mathrm{k}-4}$ obtains $2^{\mathrm{k}-2}-1$ pebbles.

If $\mathrm{p}(\mathrm{x})=4 \mathrm{a}+3$ then $\frac{p(x)-1}{4}+\frac{p(y)-2}{4}+\frac{\left(\frac{p}{2}-1\right)+1}{2}=2^{k-2}-1$ pebbles to $\mathrm{a}_{2 \mathrm{k}-4}$. Thus we are done since the path $v a_{2} \ldots a_{j} a_{j+2} \ldots a_{2 k-6} a_{2 k-4}$ of length $k-2$ contains 2^{k-2} pebbles.

Suppose $\mathrm{p}\left(\mathrm{a}_{1}\right)=1$. We have $p\left(a_{2 k-3}\right)+p\left(a_{2 k-2}\right)=\frac{p}{2}-1$. and $\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})=$ $2^{k}+1-p\left(3 \leq p \leq 2^{k}-1\right)$.

For $\frac{p}{2}$ is even, we get $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-3}\right)+\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-2}\right)$ is odd.
This implies that either $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-3}\right)$ or $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-2}\right)$ is odd.

Let $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-2}\right)=\mathrm{x}_{1}$ is odd. Thus $p\left(a_{2 k-3}\right)=\frac{p}{2}-1-x_{1}$.
$(1) \rightarrow \frac{p(x)+1}{2}+\frac{\left(\frac{p(y)-2}{2}+p\left(a_{2 k-2}\right)\right)}{2}$ pebbles are moved to $\mathrm{a}_{2 \mathrm{k}-3}$.
$(2) \rightarrow \frac{p(x)-3}{2}+\frac{p(y)-2}{4}+\frac{p\left(a_{2 k-2}\right)+1}{2}+1$ pebbles are moved to $\mathrm{a}_{2 \mathrm{k}-3}$.

Thus $\mathrm{a}_{2 \mathrm{k}-3}$ obtains $2^{k-2}+\frac{p+4 a-2 x_{1}-2}{4} \geq 2^{k-2}$ pebbles, since $\mathrm{p}-2 \mathrm{x}_{1} \geq 2-4 \mathrm{a}$ and $1 \leq x_{1} \leq(p / 2)-1$. Therefore we are done since $d\left(a_{1}, a_{2 k-3}\right)=k-2$ so that a_{1} obtains two pebbles.

Let $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-3}\right)$ is odd.
$(1) \rightarrow \frac{p(x)-1}{2}+\frac{p(y)}{2}+\frac{p\left(a_{2 k-2}\right)}{2}$ pebbles are moved to $\mathrm{a}_{2 \mathrm{k}-3}$.
$(2) \rightarrow \frac{p(x)+1}{2}+\frac{p(y)-2}{4}+\frac{p\left(a_{2 k-2}\right)}{2}$ pebbles are moved to $\mathrm{a}_{2 k-3}$.
 done since a_{1} obtains two pebbles.

In a similar way, we can prove that $\mathrm{a}_{2 \mathrm{k}-3}$ obtains $2^{\mathrm{k}-2}$ pebbles from (3) \& (4) so that a_{1} obtains two pebbles and hence we are done.

Suppose j is odd and $\mathrm{j} \geq 3$.
Let $d\left(a_{j}, x\right)=i$. If $p(x) \geq 2^{i}$, then we move a pebble to a_{j} and then we move a pebble to a_{j-1}. Now x contains $p(x)-2^{1}$ pebbles.

For $\frac{p}{2}$ is even $\Rightarrow \frac{p}{2}-1$ is odd
\Rightarrow either $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-3}\right)$ or $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-2}\right)$ is odd.

$$
\left.\begin{array}{rl}
& \frac{p(x)-2^{i}-1-2}{4}+\frac{p(y)}{4}+\frac{\left(\frac{p}{2}-1\right)+1}{2} \quad \text { or } \\
& \left.\frac{p(x)-2^{i}-1}{4}+\frac{p(y)}{4}+\frac{\left(\frac{p}{2}-1\right)-1}{2}\right) \\
& \frac{p(x)-2^{i}-1-2}{4}+\frac{p(y)-2}{4}+\frac{\left(\frac{p}{2}-1\right)-1}{2} \\
(2) \rightarrow & \text { or pebbles can be moved to } \mathrm{a}_{2 k-4} . \\
& \frac{p(x)-2^{i}-1}{4}+\frac{p(y)-2}{4}+\frac{\left(\frac{p}{2}-1\right)+1}{2}
\end{array}\right\} \text { pebbles can be moved to } \mathrm{a}_{2 k \cdot 4} .
$$

Thus $a_{2 k-4}$ obtains $2^{k-2}-2^{i-2}-1$ pebbles. Since $d\left(a_{j-1}, a_{2 k-4}\right)=i-1$, we can move $\frac{2^{\mathrm{k}-2}-2^{\mathrm{i}-2}-1}{2^{\mathrm{i}-1}} \geq 2^{k-i-1}-1(i \geq 2)$
pebbles to a_{j-1}. Thus a_{j-1} obtains 2^{k-i-1} pebbles and hence we are done since $\mathrm{d}\left(\mathrm{v}, \mathrm{a}_{\mathrm{j}-1}\right)=\mathrm{k}-\mathrm{i}-1$.

If $\mathrm{p}(\mathrm{x})<2^{i}$ then we take b pebbles from the vertex y such that $\frac{\mathrm{p}(\mathrm{x})-1}{2}+\frac{b}{4}=2^{i-1}$. We move these amount of pebbles to $\mathrm{a}_{2 \mathrm{k}-3}$ so that a_{j} obtains two pebbles and hence we move one pebble to $\mathrm{a}_{\mathrm{j}-1}$. Now, the vertex y contains $\mathrm{p}(\mathrm{y})$-b pebbles.

$$
\left.\begin{array}{rl}
& \frac{p(y)-b}{4}+\frac{\left(\frac{p}{2}-1\right)-1}{2} \\
(1) \rightarrow & \frac{p(y)-b-2}{4}+\frac{\left(\frac{p}{2}-1\right)+1}{2}
\end{array}\right\} \text { pebbles can be moved to } \mathrm{a}_{2 k-4} .
$$

If we simplify this, then $\mathrm{a}_{2 \mathrm{k}-4}$ obtains $2^{\mathrm{k}-2}-2^{\mathrm{i}-1}$ pebbles when $\mathrm{a} \geq 1$ and hence we are done since $d\left(a_{j-1}, a_{2 k-4}\right)=i-1$. If $p(x)=1$ or $p(x)=3$ then we can move a pebble to v easily.

In a similar way, we can move a pebble to v for the case $p / 2$ is odd [using (3) and (4)] and j is odd $(\mathrm{j} \geq 3)$.

Subcase(d):

Let $\sum_{i=1}^{2 k-4} p\left(a_{i}\right)=q \Rightarrow p\left(a_{2 k-3}\right)+p\left(a_{2 k-2}\right)=\frac{p}{2}-q$ where $2 \leq q \leq \frac{p}{2}-1$.
For $\mathrm{p} / 2$ is even, we have (1) \& (2).
Suppose q is odd. Then $\frac{p}{2}-q$ is odd. This implies that either $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-3}\right)$ or $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-2}\right)$ is odd.
$(1) \rightarrow \frac{p(x)-1}{4}+\frac{p(y)}{4}+\frac{\left(\frac{p}{2}-q\right)-1}{2}$
(2) $\left.\rightarrow \frac{p(x)+1}{4}+\frac{p(y)-2}{4}+\frac{\left(\frac{p}{2}-q\right)-1}{2}\right\}$ pebbles can be moved to $\mathrm{a}_{2 \mathrm{k}-4}$.

Thus $\mathrm{a}_{2 \mathrm{k}-4}$ obtains $\frac{2^{k}-p}{4}+\frac{2\left(\frac{p}{2}\right)-2 q-2}{4}$ pebbles. That is, a $\mathrm{a}_{2 \mathrm{k}-4}$ obtains $2^{k-2}-\left(\frac{2 q+2}{4}\right)$ pebbles. Thus, $\mathrm{P}_{\mathrm{A}^{+}}{ }^{2}$ obtains $2^{k-2}-\left(\frac{2 q+2}{4}\right)+q \geq 2^{k-2}+1$ pebbles (since $\mathrm{q} \geq 3$) and hence we are done.

Suppose q is even. Then $\frac{p}{2}-q$ is even. This implies that both $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-3}\right)$ and $\mathrm{p}\left(\mathrm{a}_{2 \mathrm{k}-2}\right)$ are odd or even.
$\left.\begin{array}{l}(1) \rightarrow \frac{p(x)-5}{4}+\frac{p(y)}{4}+\frac{\left(\frac{p}{2}-q\right)+2}{2} \\ (2) \rightarrow \frac{p(x)-3}{4}+\frac{p(y)-2}{4}+\frac{\left(\frac{p}{2}-q\right)+2}{2}\end{array}\right\}$ pebbles can be moved to $\mathrm{a}_{2 \mathrm{k}-4}$.

Thus $\mathrm{a}_{2 \mathrm{k}-4}$ obtains $2^{k}-\frac{2 q}{4}$ pebbles. So $\mathrm{P}_{\mathrm{A}^{+}}{ }^{2}$ obtains $\frac{2^{k}}{4}-\left(\frac{2 q}{4}\right)+q \geq 2^{k-2}+1$ pebbles (since $\mathrm{q} \geq 2$) and hence we are done.

For $\mathrm{p} / 2$ is odd, we do the similar thing as described above using (3) \& (4) so that the square of path $\mathrm{P}_{\mathrm{A}+}{ }^{2}$ obtains $2^{\mathrm{k}-2}+1$ pebbles.

Case 3.2: Let p is odd. Then $\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})$ is even. This implies that both $\mathrm{p}(\mathrm{x})$ and $\mathrm{p}(\mathrm{y})$ are odd or even.

If both $\mathrm{p}(\mathrm{x})$ and $\mathrm{p}(\mathrm{y})$ are odd, then we do the similar methods as described in Case 3.1. If both $p(x)$ and $p(y)$ are even, then $P_{A}{ }^{2}: v a_{1} a_{2} \quad \ldots \quad a_{2 k-3} a_{2 k-2}$ obtains $\frac{p(x)}{2}+\frac{p(y)}{2}+\frac{p+1}{2}=\frac{2^{k}+1-p+p+1}{2} \geq 2^{k-1}+1$ pebbles and hence we are done.

Case 4: Let $\mathrm{p}(\mathrm{x})+\mathrm{p}(\mathrm{y})=0$ or 1 .
Then $\mathrm{p}\left(\mathrm{P}_{\mathrm{A}}{ }^{2}\right) \geq 2^{\mathrm{k}-1}$.
If $p\left(P_{A}{ }^{2}\right) \geq 2^{k-1}+1$ then clearly we are done. If $p\left(P_{A}{ }^{2}\right)=2^{k-1}$ then $p\left(P_{B}{ }^{2}\right)=2^{k-1}$ and either $p(x)=0$ or $p(y)=0$. Without loss of generality, let $p(y)=0$. So $p(x)=1$. If $p\left(b_{2 k-2}\right)$ ≥ 2 or $\mathrm{p}\left(\mathrm{b}_{2 \mathrm{k}-3}\right)+\mathrm{p}\left(\mathrm{b}_{2 \mathrm{k}-2}\right)>3$ then we can move a pebble x and then a pebble could be moved to $\mathrm{a}_{2 \mathrm{k}-4}$. Thus we are done. Also, we are done, if $\mathrm{p}\left(\mathrm{b}_{2 \mathrm{k}-3}\right)=2$ and $\mathrm{p}\left(\mathrm{b}_{2 \mathrm{k}-2}\right)=1$. Finally, let $p\left(b_{2 k-3}\right) \leq 3$ and $p\left(b_{2 k-2}\right)=0$, then $P_{B+}{ }^{2}$ contains $2^{k-1}-3 \geq 2^{k-2}+\left(2^{k-2}-3\right) \geq 2^{k-2}+1$ (since $\mathrm{k} \geq 4$) and hence we are done.

Conjecture 2.7. For $\mathrm{C}_{4 \mathrm{k}+1}^{2}(\mathrm{k} \geq 4), f\left(C_{4 k+1}^{2}\right)=\left\lceil\frac{2^{k+2}+4}{3}\right\rceil$.
For k is even, consider the following distribution on $\mathrm{C}_{4 \mathrm{k}+1}{ }^{2}: \mathrm{va}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{2 \mathrm{k}-2 \mathrm{Wxyz}} \mathrm{b}_{2 \mathrm{k}-2} \ldots$ $\mathrm{b}_{2} \mathrm{~b}_{1} \mathrm{v}$:
$p(v)=0, p\left(a_{i}\right)=0$ for all $i, p\left(b_{j}\right)=0$ for all $j, p(w)=p(z)=3$ and $p(x)=p(y)=\frac{2^{k+1}-8}{3}$.

However the pebbling moves are made, we cannot move a pebble to v. So $2\left(\frac{2^{k+1}-8}{3}\right)+6=\frac{2^{k+2}+2}{3}$ pebbles are not enough to put a pebble at v .

Thus, $f\left(C_{4 k+1}^{2}\right) \geq \frac{2^{k+2}+5}{3}$.
Similarly, we consider the following distribution for k is odd:
$p(v)=0, p\left(a_{i}\right)=0$ for all i, $p\left(b_{j}\right)=0$ for all $j, p(w)=p(z)=5 \& p(x)=\frac{2^{k+1}-13}{3}$,
$p(y)=\frac{2^{k+1}-16}{3}$.
Thus, $f\left(C_{4 k+1}^{2}\right) \geq \frac{2^{k+2}+4}{3}$.

References

[1] F.R.K. Chung, Pebbling in hypercubes, SIAM J. Discrete Math. 2 (4) (1989), 467-472.
[2] T.A. Clarke, R.A. Hochberg, G.H. Hurlbert, Pebbling in diameter two graphs and products of paths, J. Graph Theory 25 (1997), 119-128.
[3] D. Moews, Pebbling graphs, J. Combin. Theory Ser. B 55 (1992), 244-252.
[4] L. Pachter, H. Snevily, B. Voxman, On pebbling graphs, Congr. Numer. 107 (1995), 65-80.
[5] Yongsheng Ye, Pengfei Zhang, Yun Zhang, The pebbling number of squares of even cycles, Preprint.

