Sciencia Acta Xaveriana
An International Science Journal ISSN. 0976-1152

Volume 3
No. 2
pp. 9-20
Sep 2012

Maximum Independent Set Cover Pebbling Number of a Binary Tree

A.Lourdusamy ${ }^{1}$, C.Muthulakhmi @ Sasikala² and T.Mathivanan ${ }^{3}$
${ }^{1}$ Department of Mathematics, St. Xavier's College, Palayamkottai-627 002, India. lourdusamy15@gmail.com
${ }^{2}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurichi, India.
${ }^{3}$ Department of Mathematics, St. Xavier's College, Palayamkottai-627 002, India.
tahit_van_man@yahoo.com

Abstract

A pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex. A graph is said to be cover pebbled if every vertex has a pebble on it after a series of pebbling moves. The maximum independent set cover pebbling number of a graph G is the minimum number, $\rho(\mathrm{G})$, of pebbles required so that any initial configuration of $\rho(\mathrm{G})$ pebbles can be transformed by a sequence of pebbling moves so that after the pebbling moves the set of vertices that contains pebbles form a maximum independent set S of G. In this paper, we determine the maximum independent set cover pebbling number of a binary tree.

Key words : graph pebbling, cover pebbling, maximum independent set cover pebbling, binary tree.
(Received May 2012, Acepted August 2012)

1. Introduction

Given a graph G, distribute k pebbles on its vertices in some configuration, call it as C. Assume that G is connected in all cases. A pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex. [1] The pebbling number $\boldsymbol{\pi}(\mathbb{G})$ is the minimum number of pebbles that are sufficient, so that for any initial configuration of $\boldsymbol{\pi}(\boldsymbol{G})$ pebbles, it is possible to move a pebble to any root vertex v in G. [2] The cover pebbling number $\mathbf{r}(\boldsymbol{G})$ is defined as the minimum number of pebbles needed to place a pebble on every vertex of the graph using a sequence of pebbling moves, regardless of the initial configuration. A set S of vertices in a graph G is said to be an independent set (or an internally stable set) if no two vertices in the set S are adjacent. An independent set S is maximum if G has no independent set \mathbf{S}^{\prime} with $\boldsymbol{S}^{\prime}|>|\boldsymbol{S}|$.

We have introduced the concept maximum independent set cover pebbling number in [5]. The maximum independent set cover pebbling number, $\boldsymbol{p}(\boldsymbol{G})$, of a graph \boldsymbol{G}, to be the minimum number of pebbles that are placed on $\boldsymbol{F (G)}$ such that after a sequence of pebbling moves, the set of vertices with pebbles forms a maximum independent set S of G, regardless of their initial configuration. In this paper, we determine the maximum independent set cover pebbling number $\boldsymbol{\rho}(\boldsymbol{G})$ for a binary tree.

Notation 1.1: $\boldsymbol{f}(\boldsymbol{a})$ denotes the number of pebbles placed at the vertex \boldsymbol{a}. Also $\boldsymbol{f}(\boldsymbol{G})$ denotes the number of pebbles on the graph \boldsymbol{G}.

2. Maximum independent set cover pebbling number of a binary tree

Definition 2.1. [3] A complete binary tree, denoted by B_{n}, is a tree of height n, with 2^{i} vertices at distance i from the root. Each vertex of B_{n} has two "children", except for
the set of 2^{n} vertices that are distance n away from the root, none of which have children. The root will be denoted by R_{n}.

Obviously $\boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{\mu}}\right)=\mathbf{1}$, and $\boldsymbol{\rho}\left(\boldsymbol{B}_{\mathbf{1}}\right)=\mathbf{6}$ since $\boldsymbol{\rho}(\boldsymbol{P})=6[6]$.
Theorem 2.2. For the binary tree $B_{2}, \boldsymbol{\rho}\left(\boldsymbol{B}_{\mathbf{z}}\right)=\mathbf{4 1}$.
Proof: Clearly B_{2} contains two B_{1} 's as subtrees which are adjacent to the vertex R_{2}, where R_{2} is the root vertex of B_{2}. Let B^{\prime} be the right subtree with the vertices R^{\prime}, a_{1}, a_{2} and $B^{\prime \prime}$ be the left subtree with the vertices $R^{\prime \prime}, b_{1}, b_{2}$ of the binary tree B_{2} (as given in Figure 1). Put forty pebbles on the vertex a_{2}. Then we cannot cover the maximum independent set of B_{2}. Thus $\boldsymbol{\rho}\left(\boldsymbol{B}_{\mathbf{z}}\right) \geq \mathbf{4 1}$.

Figure 1. The Binary tree B_{2}
Now consider the distribution of forty one pebbles on the vertices of B_{2}. According to the distributions, we find the following three cases:

Case 1: Let $f\left(B^{\prime}\right) \geq 6$ and $f\left(B^{\prime \prime}\right) \geq 6$.
If $f\left(R_{2}\right) \geq 1$, then clearly we can cover the maximum independent set of B_{2}. So assume that $f\left(R_{2}\right)=0$. Without loss of generality, let $f\left(B^{\prime}\right) \geq 21$. So either the path $a_{1} R^{\prime}$ or the path $a_{2} R^{\prime}$ contains eleven pebbles or more, say $a_{1} R^{\prime}$. We can move a pebble to R_{2} using at most four pebbles from $a_{1} R^{\prime}$. Then $f\left(B^{\prime}\right) \geq 6$ and hence we are done, since $\rho\left(B_{1}\right)=6$.

Case 2: Let $\mathrm{f}\left(\mathrm{B}^{\prime}\right) \leq 5$ and $\mathrm{f}\left(\mathrm{B}^{\prime \prime}\right) \leq 5$.
This implies that $f\left(R_{2}\right) \geq 31$. We move six pebbles each to the vertices R^{\prime} and $R^{\prime \prime}$. Then $f\left(R_{2}\right) \geq 7$ and hence we are done.

Case 3: Let $\mathrm{f}\left(\mathrm{B}^{\prime}\right) \geq 6$ and $\mathrm{f}\left(\mathrm{B}^{\prime \prime}\right) \leq 5$.
Clearly we are done if $f\left(\mathrm{~B}^{\prime \prime}\right)+\mathrm{f}\left(\mathrm{R}_{2}\right) \geq 9$, since $<\left\{\mathrm{V}\left(\mathrm{B}^{\prime \prime}\right) \boldsymbol{U}\left\{\mathrm{R}_{2}\right\}\right\}>\cong \mathrm{K}_{1,3}$ and $\boldsymbol{\rho}\left(\mathrm{K}_{1,3}\right)$ $=9$ [5]. So assume that $f\left(B^{\prime \prime}\right)+f\left(R_{2}\right) \leq 8$. This implies that $f\left(B^{\prime}\right) \geq 33$ pebbles. If the vertices a_{1}, a_{2}, and R^{\prime} contain 5 pebbles then we can move a pebble to the vertex R_{2} at a cost of four (at most) pebbles. Since we have at least 27 extra pebbles on B^{\prime}, either the path $a_{1} R^{\prime}$ (or) $a_{2} R^{\prime}$ receives at least four pebbles or both a_{1} and a_{2} receive two or more pebbles. If $f\left(B^{\prime \prime}\right) \geq 1$ or $f\left(R_{2}\right) \geq 2$ then we are done. So assume that $f\left(B^{\prime \prime}\right)=0$ and $f\left(R_{2}\right) \leq 1$. Thus B^{\prime} contains forty pebbles. Now we can send eight pebbles to R_{2} at a cost of thirty two (at most) pebbles from the vertices of B^{\prime}. We cover the maximum independent set of $B^{\prime \prime}$ using the eight pebbles at R_{2}. If $f\left(R_{2}\right)=1$ then clearly we are done. Otherwise $f\left(B^{\prime}\right) \geq 9$ and we are done since $<\left\{V\left(B^{\prime \prime}\right) \boldsymbol{U}\left\{R_{2}\right\}\right\}>\cong K_{1,3}$ and $\boldsymbol{\rho}\left(\mathrm{K}_{1,3}\right)=9$.

Therefore, $p\left(\boldsymbol{B}_{\mathbf{z}}\right) \leq 41$.
Theorem 2.3. For the binary tree $\mathrm{B}_{3}, \boldsymbol{p}\left(\boldsymbol{B}_{\boldsymbol{\eta}}\right)=\mathbf{3 1 3}$.
Proof: Let B^{\prime} be the right subtree of height two with the root vertex R^{\prime} and $\mathrm{B}^{\prime \prime}$ be the left subtree of height two with the root vertex $R^{\prime \prime}$ of the binary tree B_{3}. Consider the distribution of 312 pebbles on the vertex $\boldsymbol{v} \in \mathbf{F}\left(\mathrm{B}^{\prime}\right)$ where degree(v)=1. Then we cannot cover the maximum independent set of B_{3}. Thus $\boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{\eta}}\right) \geq 313$.

Now consider the distribution of 313 pebbles on the vertices of B_{3}. According to the configurations, we find the following three cases:

Case 1: Let $f\left(B^{\prime}\right) \geq 41$ and $f\left(B^{\prime \prime}\right) \geq 41$.
Clearly we are done if $f\left(R_{3}\right)=0,2$, or $f\left(R_{3}\right) \geq 4$. So, assume that $f\left(R_{3}\right)=1$ or 3 . Without loss of generality, let $f\left(B^{\prime}\right) \geq 155$. We have to move a pebble to R_{3}, to cover the maximum independent set of B_{3}. Anyone of the 4-paths leading from the root R_{3}
of B_{3} to the bottom row of B^{\prime} contains at least eight pebbles. So we can move a pebble to R_{3} using at most eight pebbles. Now we move $\frac{\boldsymbol{f}^{\left(\boldsymbol{R}_{\mathbf{7}}\right)+\mathbf{1}}}{\mathbf{2}}$ pebbles to R^{\prime} from R_{3}. Then $f\left(B^{\prime}\right) \geq 41$ and $f\left(B^{\prime \prime}\right) \geq 41$ and hence we are done, since $B^{\prime} \cong B_{2}$ and $B^{\prime \prime} \cong B_{2}$.

Case 2: Let $\mathrm{f}\left(\mathrm{B}^{\prime}\right) \leq 40$ and $\mathrm{f}\left(\mathrm{B}^{\prime \prime}\right) \leq 40$.
This implies that, $f\left(R_{3}\right) \geq 233$. Using 164 of these pebbles from R_{3}, we can move 41 pebbles each to the root R^{\prime} of B^{\prime} and $R^{\prime \prime}$ of $B^{\prime \prime}$. Then the remaining number of pebbles in R_{3} is at least five. If the remaining pebbles in R_{3} are even then we move $\frac{f\left(\boldsymbol{R}_{\mathbf{2}}\right)}{\mathbf{2}}$ pebbles to R^{\prime}. Otherwise, we do the following pebbling moves to obtain even number of pebbles in R_{3}. We move two pebbles from R_{3} to R^{\prime} and then move one pebble from R^{\prime} to R_{3}. Thus the remaining number of pebbles in R_{3} is even then we move $\frac{f\left(R_{2}\right)-3}{2}$

Case 3: Let $\mathrm{f}\left(\mathrm{B}^{\prime}\right) \geq 41$ and $\mathrm{f}\left(\mathrm{B}^{\prime \prime}\right) \leq 40$.
Clearly the remaining 232 pebbles are somewhere in the graph $B^{\prime} \mathbf{U}\left\{R_{3}\right\}$ to cover the maximum independent set of $B^{\prime \prime}$. If $f\left(R_{3}\right) \geq 34$ then we can move seventeen pebbles to the root $R^{\prime \prime}$ of $B^{\prime \prime}$ and hence we are done. So assume that $f\left(R_{3}\right) \leq 33$. This implies that $f\left(\mathrm{~B}^{\prime \prime}\right)+\mathrm{f}\left(\mathrm{R}_{3}\right) \leq 73$. Thus $\mathrm{f}\left(\mathrm{B}^{\prime}\right) \geq 240$. Note that, if B^{\prime} contains 13 pebbles then we can move a pebble to the root R_{3} of B_{3} at a cost of at most eight pebbles from B^{\prime}. Also note that we should not decrease the least possibility of the total pebbles in B'. Thus we can send twenty four pebbles to the root R_{3}. Clearly we are done if $f\left(R_{3}\right) \geq 10$ or $f\left(B^{\prime \prime}\right) \geq 6$. So assume that $f\left(R_{3}\right) \leq 9$ and $f\left(B^{\prime \prime}\right) \leq 5$. This implies that $f\left(B^{\prime}\right) \geq 299$. So we can move 32 pebbles to the root R_{3} of B_{3}. Clearly we are done if $f\left(R_{3}\right) \geq 2$ or $f\left(B^{\prime \prime}\right) \geq$ 1. Otherwise, $f\left(B^{\prime}\right) \geq 312$. So we can move 33 pebbles to R_{3}. If $f\left(R_{3}\right)=1$ then clearly we are done. Otherwise we can move exactly thirty four pebbles to R_{3} while retaining forty one pebbles on B^{\prime}. Thus we are done.

Therefore, $\boldsymbol{\rho}\left(\boldsymbol{B}_{\mathbf{7}}\right) \leq \mathbf{3 1 3}$.
Theorem 2.4. For the binary tree $B_{4}, \rho\left(B_{4}\right)=2505$.

Proof: Let B^{\prime} be the right subtree of height three with the root vertex R^{\prime} and $B^{\prime \prime}$ be the left subtree of height three with the root vertex $R^{\prime \prime}$ of the binary tree B_{4}. Let $\boldsymbol{v} \in \boldsymbol{F}\left(B^{\prime}\right)$ such that degree $(v)=1$ and v is the rightmost vertex of B^{\prime}.

Consider the distribution of 2504 pebbles on the vertex v. Then we cannot cover the maximum independent set of B_{4}. Thus $\boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{\mu}}\right) \geq 2505$

Now consider the distribution of 2505 pebbles on the vertices of B_{4}. According to the distributions, we find the following three cases:

Case 1: Let $f\left(B^{\prime}\right) \geq 313$ and $f\left(B^{\prime \prime}\right) \geq 313$.
If $f\left(R_{4}\right) \geq 1$ then we can cover the maximum independent set of B_{4}, since $B^{\prime} \cong B_{3}$ and $B^{\prime \prime} \cong B_{3}$. So assume that $f\left(R_{4}\right)=0$. Without loss of generality, let $f\left(B^{\prime}\right) \geq 1253$. So any one of the 8-paths leading from the root R_{4} of B_{4} to the bottom row of B^{\prime} contains thirty two pebbles or more. So we can move a pebble to R_{4} using at most thirty two pebbles from B^{\prime}. Then $f\left(B^{\prime}\right) \geq 313$ and $f\left(B^{\prime \prime}\right) \geq 313$ and hence we are done.

Case 2: Let $\mathrm{f}\left(\mathrm{B}^{\prime}\right) \leq 312$ and $\mathrm{f}\left(\mathrm{B}^{\prime \prime}\right) \leq 312$.
This implies that $f\left(R_{4}\right) \geq 1881$. Using 1252 of these pebbles from the vertex R_{4}, we can move 313 pebbles each to the root R^{\prime} of B^{\prime} and $R^{\prime \prime}$ of $B^{\prime \prime}$. Then $f\left(R_{4}\right) \geq 629$ and hence we are done.

Case 3: Let $f\left(\mathrm{~B}^{\prime}\right) \geq 313$ and $\mathrm{f}\left(\mathrm{B}^{\prime \prime}\right) \leq 312$.
Clearly the remaining 1880 pebbles are somewhere in the graph $B^{\prime} \mathbf{U}\left\{R_{4}\right\}$ to cover the maximum independent set of $\mathrm{B}^{\prime \prime}$. If $\mathrm{f}\left(\mathrm{R}_{4}\right) \geq 137$ then clearly we are done. So assume that $\mathrm{f}\left(\mathrm{B}^{\prime \prime}\right)+\mathrm{f}\left(\mathrm{R}_{4}\right) \leq 447$. Thus $\mathrm{f}\left(\mathrm{B}^{\prime}\right) \geq 2058$. So we can move a pebble to the root R_{4} of B_{4} at a cost of at most sixteen pebbles whenever 33 pebbles are in B^{\prime}. Also note that we should not decrease the least possibility of the total pebbles in B^{\prime}. Thus we can send 109 pebbles to the root R_{4}. Clearly we are done if $f\left(R_{4}\right) \geq 28$ or $f\left(B^{\prime \prime}\right) \geq$ 14. So assume that $f\left(R_{4}\right)+f\left(B^{\prime \prime}\right) \leq 40$. Thus $f\left(B^{\prime}\right) \geq 2465$. So we can move 134 pebbles to the root R_{4}. If $f\left(R_{4}\right) \geq 3$ or $f\left(B^{\prime \prime}\right) \geq 1$ then clearly we are done. Otherwise, we can send exactly 137 pebbles to R_{4} while retaining 313 pebbles on B^{\prime} and hence we are done.

Thus $p\left(B_{4}\right) \leq 2505$.
Theorem 2.5. For the binary tree $B_{n}(n \geq 3)$, the maximum independent set cover pebbling number is given by,

$$
\begin{gathered}
\rho\left(B_{n}\right)=\sum_{k=0}^{\left[\frac{\pi-1}{2}\right]} z^{\pi-2 k-1} 2^{2 \pi-2 k}+\sum_{i=1}^{\left[\frac{\pi-1}{2}\right]}\left(z^{2 \pi}+\sum_{j=1}^{n-2 i-1} z^{j-1} z^{2 i+2 j}\right)+\gamma_{\pi} \\
=S_{1, \pi}+S_{z \pi}+S_{3 \pi}, \text { (say), }
\end{gathered}
$$

where $\mathrm{S}_{\mathrm{i}, \mathrm{n}}$ denotes the $\mathrm{i}^{\text {th }}$ term of the above sum and $\mathbf{Y}_{\boldsymbol{\pi}}=2^{\mathrm{n}}$ if n is even and $\mathbf{Y}_{\boldsymbol{m}}=$ otherwise.

Proof: Let B' be the right subtree of height $n-1$ with the root vertex R^{\prime} and $B^{\prime \prime}$ be the left subtree of height n - 1 with the root vertex $\mathrm{R}^{\prime \prime}$ of the binary tree B_{4}. Let $\boldsymbol{v} \in \boldsymbol{V}\left(\mathrm{B}^{\prime}\right)$ such that degree $(v)=1$ and v is the rightmost vertex of B^{\prime}.

Note that the maximum independent set of B_{n} is the maximum independent set of B^{\prime} plus the maximum independent set of $B^{\prime \prime}$, if n is odd. The vertex R_{n} is also included if n is even. The maximum independent set of a subtree contains the vertices starting from the bottom row vertices and then every vertex of every second row. If n is odd then this process ends at the root of the subtree. If n is even then this process ends at the below row of the root vertex of that subtree.

First consider the left subtree $\mathrm{B}^{\prime \prime}$. To cover the vertices of the bottom row of $\mathrm{B}^{\prime \prime}$, we need $2^{n-1} 2^{2 n}$ pebbles from v, since bottom row of $B^{\prime \prime}$ contains 2^{n-1} vertices and that are all at 2 n distance from v . Similarly, we need $2^{\mathrm{n}-3} 2^{2 \mathrm{n}-2}$ pebbles to cover the vertices of second row from the bottom row. Thus we need $\sum_{k=a}^{\left[\frac{\mathbb{1}-\mathbf{1}}{\mathbf{z}}\right]} \mathbf{2}^{\boldsymbol{\pi}-\mathbf{2 k - 1}} \mathbf{z}^{\mathbf{2 n}-\mathbf{2}} \quad$ pebbles to cover the maximum independent set of $B^{\prime \prime}$ from the vertex v.

A similar work can be done to cover the maximum independent set of B^{\prime} from v ,
 pebbles. So we cover the maximum independent set of B_{n} if n is odd. Suppose n is even then we have to cover the R_{n} also. Since $d(v$, $\left.R_{n}\right)=n$, we need 2^{n} pebbles from v to cover the vertex R_{n}. Thus,

where $\mathbf{Y}_{\boldsymbol{m}}=$ if n is odd and $\mathbf{Y}_{\boldsymbol{\pi}}=2^{\mathrm{n}}$ if n is even.
Now consider the distribution of $\boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{n}}\right)$ pebbles on the vertices of B_{n}, where $\mathrm{n} \geq 3$. We prove the upper bound by induction on n. By Theorem 2.3 and Theorem 2.4, the result is true for $\mathrm{n}=3$ and $\mathrm{n}=4$ respectively. Assume that the result is true for $\mathrm{B}_{\mathrm{n}-1}$. According to the distributions, we find the following cases:

Case 1: Let $\mathrm{f}\left(\mathrm{B}^{\prime}\right)<\boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{\pi}-\mathbf{1}}\right)$ and $\mathrm{f}\left(\mathrm{B}^{\prime \prime}\right)<\boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{r}-\mathbf{1}}\right)$.
If we prove that $f\left(R_{n}\right) \geq 4 \boldsymbol{p}\left(\boldsymbol{B}_{\boldsymbol{m}-\mathbf{1}}\right)^{\prime}+5$ then we are done. Since $f\left(B^{\prime}\right)+f\left(B^{\prime \prime}\right) \leq$ $2 \boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{r}-\mathbf{1}}\right)$-2, we get $\mathrm{f}\left(\mathrm{R}_{\mathrm{n}}\right) \geq \boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{\pi}}\right)-2 \boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{r}-\mathbf{1}}\right)+2$. So it is enough to prove that

$$
\begin{equation*}
\rho\left(\boldsymbol{B}_{\pi}\right) \geq 6 \rho\left(\boldsymbol{B}_{\boldsymbol{\pi}-\mathbf{1}}\right)+3 \tag{1}
\end{equation*}
$$

First note that, $\boldsymbol{\rho}\left(\boldsymbol{B}_{\pi}\right) \geq 2^{3 \mathrm{n}-1},---(2)$ by considering only the $\mathrm{k}=0$ term of $\mathrm{S}_{1, \mathrm{n}}$.

$S_{1, \pi-1} \leq \frac{2^{2 \pi}}{15} \Rightarrow 6\left(S_{1, \pi-1}\right) \leq \frac{6\left(2^{2 \pi}\right)}{15}-\cdots(3)$
and $S_{2, n-1}=\sum_{i=1}^{\left.\sum_{2}^{-x}\right]}\left(2^{2 i}+\sum_{j=1}^{\pi-2 i-2} 2^{j-1} 2^{2 i+2 j}\right)$
$=\sum_{i=1}^{\left[\frac{[-2}{z}\right]} z^{\bar{i} i}+\sum_{i=1}^{\left[\frac{[-2}{z}\right]} z^{2 i-1} \sum_{j=1}^{n-z_{i}-2} z^{3 j}$
$\leq \frac{2^{n+1}}{3}+\frac{1}{2} \sum_{i=1}^{[x-2]} 2^{2 i n} \frac{3\left(3^{n-2 i-2}\right)}{7}$
$\leq \frac{2^{n+1}}{3}+\frac{2^{3 n}}{112} \sum_{i=0}^{\left[\frac{[2]}{2}\right]} 2^{-4 i}$
$S_{2 \pi-1} \leq \frac{2^{\pi+1}}{3}+\frac{2\left(2^{\pi \pi}\right)}{221}$

$$
\begin{equation*}
6\left(S_{2 \pi-1}\right) \leq 4\left(2^{\pi}\right)+\frac{12\left(2^{m}\right)}{221} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
6\left(S_{3, n-1}\right) \leq 6\left(2^{\pi-1}\right)=3\left(2^{\pi}\right) \tag{5}
\end{equation*}
$$

Equations (2) through (5) show that (1) holds if,
$2^{3 n-1} \geq \frac{6\left(2^{3 n}\right)}{15}+4\left(2^{\pi}\right)+\frac{12\left(2^{3 n}\right)}{221}+3\left(2^{\pi}\right)+3$
Or if,
$\frac{1}{2}-\frac{6}{15}-\frac{12}{221} \geq \frac{7}{2^{2 \pi}}+\frac{3}{2^{2 \pi}}$
which holds for $\boldsymbol{n} \geq \mathbf{5}$. Of course the fact that $\boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{\pi}}\right) \geq 6 \boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{\pi}-\mathbf{1}}\right)+3$ holds for $\mathbf{n}=\mathbf{3 , 4}$ as well.

Case 2: Let $\mathrm{f}\left(\mathrm{B}^{\prime}\right) \geq \boldsymbol{\rho}\left(\boldsymbol{B}_{\mathbf{r - 1}}\right)^{3}$ and $\mathrm{f}\left(\mathrm{B}^{\prime \prime}\right) \geq \boldsymbol{\rho}\left(\boldsymbol{B}_{\mathbf{r - 1}}\right)$.
Let n is odd.
If $f\left(R_{n}\right)=0,2$ or $f\left(R_{n}\right) \geq 4$ then clearly we are done. So assume that $f\left(R_{n}\right)=1$ or 3 .
Without loss of generality, let $f\left(B^{\prime}\right) \geq\left\lceil\frac{\rho\left(B_{\pi}\right)-\mathbf{3}}{\mathbf{2}}\right\rceil$. Anyone of the $2^{\mathrm{n}-1}$-path leading from the root R_{n} to the bottom vertices of B^{\prime} contains at least 2^{n} pebbles and hence we can move a pebble to R_{n} using (at most) 2^{n} pebbles. This is always possible since, $\frac{\rho\left(B_{n}\right)-3}{\mathbf{2}\left(\mathbf{2}^{\pi-1}\right)} \geq \frac{\mathbf{2}^{\mathbf{2 n}-1}-\mathbf{3}}{\mathbf{2}^{\pi}} \geq \frac{\mathbf{2}^{2 \pi}}{\mathbf{2}}-\frac{\mathbf{3}}{\mathbf{2}^{\pi}} \geq \mathbf{2}^{\pi}$. Now we move $\frac{\boldsymbol{f (\boldsymbol { R } _ { \boldsymbol { n } }) + 1}}{\mathbf{2}}$ pebbles to R^{\prime} from R_{n}. Then $f\left(B^{\prime}\right) \geq \boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{m}-\mathbf{1}}\right)$ and $f\left(B^{\prime \prime}\right) \geq \boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{n - 1}}\right)$ and hence we are done, since $B^{\prime} \cong B_{n-1}$ and $B^{\prime \prime} \cong B_{n-1}$.

Let n is even.
If $f\left(R_{n}\right) \geq 1$ then clearly we are done. So assume that $f\left(R_{n}\right)=0$. Without loss of generality, let $f\left(B^{\prime}\right) \geq\left\lceil\frac{\rho\left(B_{\pi}\right)}{\mathbf{2}}\right\rceil$. Anyone of the 2^{n-1}-paths leading from the root R_{n} to the bottom vertices of B^{\prime} contains at least 2^{n} pebbles (since, $\frac{\boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{n}}\right)}{\mathbf{2}\left(\mathbf{2}^{\boldsymbol{\pi}-\mathbf{1}}\right)} \geq \frac{\mathbf{2}^{\mathbf{3 n}-\mathbf{1}}}{\mathbf{2}^{\boldsymbol{n}}} \geq \mathbf{2}^{\boldsymbol{n}}$) and hence we can move a pebble to R_{n} using (at most) 2^{n} pebbles. Then $f\left(B^{\prime}\right) \geq \boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{\pi}-\mathbf{1}}\right)$ and $f\left(B^{\prime \prime}\right) \geq \boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{\pi}-\mathbf{1}}\right)$ and hence we are done, since $\mathrm{B}^{\prime} \cong \mathrm{B}_{\mathrm{n}-1}$ and $\mathrm{B}^{\prime \prime} \cong \mathrm{B}_{\mathrm{n}-1}$.

Case 3: Let $\mathrm{f}\left(\mathrm{B}^{\prime}\right) \geq \boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{\pi}-\mathbf{1}}\right)$ and $\mathrm{f}\left(\mathrm{B}^{\prime \prime}\right)<\boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{\pi}-\mathbf{1}}\right)$.
The remaining $\boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{n}}\right)-\mathbf{2 p}\left(\boldsymbol{B}_{\boldsymbol{n - 1}}\right)+\mathbf{1}$ pebbles are in somewhere of the graph B_{n} to cover the maximum independent set of B_{n}. Our strategy is to move all extraneous pebbles to the root R_{n} of B_{n} from the vertices of B^{\prime} so that we can cover the maximum independent set of $\mathrm{B}^{\prime \prime}$ and also the vertex R_{n} if needed. Note that any pebbles in $\mathrm{B}^{\prime \prime}$ can substitute for at least one pebble on the root. Clearly, placing all the $\boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{r}}\right)$ pebbles on B^{\prime} is the worst case configuration. Indeed, if pebbles are placed on the other vertices of B_{n}, then moving all those pebbles which are not in B^{\prime}, to the rightmost vertex of B^{\prime} would require more pebbles to cover the maximum independent set of B_{n}. Also, note that, we can send at least one pebble to the root R_{n} of B_{n} if $f\left(B_{n-1}\right) \geq \boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{n}-\mathbf{1}}\right)+\mathbf{2}^{\boldsymbol{\pi}}$. This is always possible, since $\boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{\pi}-\mathbf{1}}\right) \geq 2^{3 \mathrm{n}-4}$. We have $\boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{\pi}}\right)-\boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{\pi}-\mathbf{1}} \mathbf{)}\right.$ pebbles in B^{\prime} to cover the maximum independent set of $\mathrm{B}^{\prime \prime}$ and also R_{n} if needed.

Let compute $\boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{n}}\right)-\boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{m}-\mathbf{1}}\right)$

 from B'.

Subcase (a): n is odd.

pebbles from R_{n}, we can cover the maximum independent set of $B^{\prime \prime}$, except the root $R^{\prime \prime}$ of $B^{\prime \prime}$. But $R^{\prime \prime}$ is also covered by using the remaining two pebbles from R_{n}. Hence we are done.

Subcase (b): n is even.
Using the $\sum_{k=1}^{\left[\frac{\pi}{2}\right]} 2^{\boldsymbol{z} \boldsymbol{z}-\boldsymbol{k}-\mathbf{1}}$ pebbles from R_{n} of B_{n}, we can cover the maximum independent set of $B^{\prime \prime}$. But R_{n} is also covered since $f\left(R_{n}\right) \geq 1$. Hence we are done.

Thus the upper bound follows.
Therefore $\boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{n}}\right)$ is as desired.
Note 2.6: we can reformulate the maximum independent set cover pebbling number of B_{n}, if we know the value of $\boldsymbol{\rho}\left(\boldsymbol{B}_{\boldsymbol{r}-\mathbf{1}}\right)$ where $\mathrm{n} \geq 3$. That is,

$$
\rho\left(B_{n}\right)=\rho\left(B_{n-1}\right)+\left\{\begin{array}{ll}
2^{\pi+1}\left(\frac{2^{2 \pi+2}-1}{15}\right), & \text { if } n \text { is odd } \\
2^{n}\left(\frac{2^{2 n+2}+7}{15}\right), & \text { if } n \text { is even }
\end{array}\right. \text { - }
$$

References

[1] F.R.K. Chung, Pebbling in hypercubes, SIAM J. Disc. Math 2(1989), 467-472.
[2] B.Crull, T.Cundiff, P.Feltman, G.H. Hurlbert, L.Pudwell, Z.Szaniszlo, Z.Tuza, The cover pebbling number of Graphs, Discrete Math 296(2005),15-23.
[3] J.Gardner, A.Teguia, A.Vuong, N.Watson, C.Yerger, Domination cover pebbling: graph families, JCMCC 64 (2008), 255-271.
[4] G.Hurlbert, A survey of Graph Pebbling, Congressus Numerantium 139 (1999), 41-64.
[5] A. Lourdusamy, C. Muthulakshmi @ Sasikala, Maximum independent set cover pebbling number of a Star, International Journal of Mathematical Archive- 3(2), 2012, 616-618.
[6] A. Lourdusamy, C. Muthulakshmi @ Sasikala, Maximum independent set cover pebbling number of complete graphs and paths, submitted for publication.

