Volume 3
No. 1
pp. 106-114
Apr 2012

Generalized Pebbling Numbers of Some Graphs

A. Lourdusamy ${ }^{1}$ C. Muthulakshmi@Sasikala²
${ }^{1}$ Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai 627 002, India lourdugnanam@hotmail.com
${ }^{2}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurichi - 627 412, India

Abstract

The generalized pebbling number of a graph $\mathrm{G}, \mathrm{f}_{\mathrm{gl}}(\mathrm{G})$, is the least positive integer n such that however n pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of moves, each move taking p pebbles off one vertex and placing one on an adjacent vertex. In this paper, we determine the generalized pebbling number of wheel W_{n}, fan F_{n} and complete r-partite graph.

Key words: Graph, wheel, fan, complete r-partite graph.

1 Introduction

Let G be a simple connected graph. The pebbling number of G is the smallest number $\mathrm{f}(\mathrm{G})$ such that however these $f(G)$ pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex [2]. Suppose n pebbles are distributed on to the vertices of a graph G, a generalized p pebbling step $[u, v]$ consists of removing p pebbles from a vertex u,
and then placing one pebble on an adjacent vertex v , for any $\mathrm{p}=2$. Is it possible to move a pebble to a root vertex r, if we can repeatedly apply generalized p pebbling steps? It is answered in the affirmative by Chung in [1]. The generalized pebbling number of a vertex v in a graph G is the smallest number $\mathrm{f}_{\mathrm{gl}}(\mathrm{v}, \mathrm{G})$ with the property that from every placement of $\mathrm{f}_{\mathrm{gl}}(\mathrm{v}, \mathrm{G})$ pebbles on G, it is possible to move a pebble to v by a sequence of pebbling moves where a pebbling move consists of removing p pebbles from a vertex and placing one pebble on an adjacent vertex. The generalized pebbling number of the graph G, denoted by $f_{g 1}(G)$, is the maximum $f_{g 1}(G)$ over all vertices v in G.

Again the generalized t-pebbling number of a vertex v in a graph G is the smallest number $\mathrm{f}_{\mathrm{glt}}(\mathrm{v}, \mathrm{G})$ with the property that from every placement of $\mathrm{f}_{\mathrm{glt}}(\mathrm{v}, \mathrm{G}\}$ pebbles on G , it is possible to move t pebbles to v by a sequence of pebbling moves where a pebbling move consists of the removal of p pebbles from a vertex and the placement of one of these pebbles on an adjacent vertex. The generalized t-pebbling number of the graph G, denoted by $\mathrm{f}_{\mathrm{gtt}}(\mathrm{G})$ is the maximum $\mathrm{f}_{\mathrm{glt}}(\mathrm{v}, \mathrm{G})$ over all vertices v of G . Throughout this paper G denotes a simple connected graph with vertex set $V(G)$ and edge set $E(G)$.
$\lfloor x\rfloor$ denote the largest integer less than or equal to x and $\lceil x\rceil$ denote the smallest integer greater than or equal to x .

2 Known Results

We find the following results with regard to the generalized pebbling numbers of graph in [2] and their generalized t-pebbling numbers in [3].

Theorem 2.1. For a complete graph $\mathrm{K}_{\mathrm{n}}, \mathrm{f}_{\mathrm{gl}}\left(\mathrm{K}_{\mathrm{n}}\right)=(\mathrm{p}-1) \mathrm{n}-(\mathrm{p}-2)$ where $\mathrm{p} \geq 2$.
Theorem 2.2. For a path of length $n, f_{g l}\left(P_{n}\right)=p^{n}$ where $p \geq 2$.
Theorem 2.3. For a star $\mathrm{K}_{1, \mathrm{n}}, \mathrm{f}_{\mathrm{gl}}\left(\mathrm{K}_{1, \mathrm{n}}\right)=(\mathrm{p}-1) \mathrm{n}+\left(\mathrm{p}^{2}-2 \mathrm{p}+2\right)$ if $\mathrm{n}>1$ and $\mathrm{p} \geq 2$.
Theorem 2.4. The generalized t-pebbling number for a path of length n is $f_{g l t}\left(P_{n}\right)=t p^{n}$.
Theorem 2.5. The generalized t-pebbling number of a complete graph on n vertices where $\mathrm{n} \geq 3, \mathrm{p} \geq 2$ is $\mathrm{f}_{\mathrm{glt}}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{pt}+(\mathrm{p}-1)(\mathrm{n}-2)$.

Theorem 2.6. The generalized t-pebbling number for a star $K_{1, n}$ where $n>1$ is $\mathrm{f}_{\mathrm{glt}}\left(\mathrm{K}_{1, \mathrm{n}}\right)=\mathrm{p}^{2} \mathrm{t}+(\mathrm{p}-1)(\mathrm{n}-2)$ where $\mathrm{p} \geq 2$.

We will now proceed to compute the genearlized pebbling numbers of wheel graph W_{n}, Fan graph F_{n} and complete r-partite graph.

3. Computation of genearlized pebbling number

Definition 3.1. We define the wheel graph denoted by W_{n} to be the graph with $\mathrm{V}\left(\mathrm{W}_{\mathrm{n}}\right)=\left\{\mathrm{h}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ where h is called the hub of W_{n} and $\mathrm{E}\left(\mathrm{W}_{\mathrm{n}}\right)=\mathrm{E}\left(\mathrm{C}_{\mathrm{n}}\right) \cup\left\{\mathrm{hv}_{1}\right.$, $\left.h v_{2}, \ldots, h v_{n}\right\}$ where C_{n} denotes the cycle graph on n vertices.

Theorem 3.2. For $n \geq 4$, the generalized pebbling number of the wheel graph W_{n} is $\mathrm{f}_{\mathrm{gl}}\left(\mathrm{W}_{\mathrm{n}}\right)=(\mathrm{p}-1)+\left(\mathrm{p}^{2}-2 \mathrm{p}+1\right)$ where $\mathrm{p} \geq 2$.

Proof: By Theorem 2.1, $\mathrm{f}_{\mathrm{gl}}\left(\mathrm{h}, \mathrm{W}_{\mathrm{n}}\right)=\mathrm{p}+(\mathrm{p}-1)(\mathrm{n}-1)$. Let us now find the generalized pebbling number of v_{1}. If we place $\mathrm{p}-2$ pebbles at $\mathrm{v}_{\mathrm{n}},\left(\mathrm{p}^{2}-1\right)$ pebbles at $v_{\left\lceil\frac{n}{2}\right\rceil}$ and $\mathrm{p}-1$ pebbles at $\mathrm{W}_{\mathrm{n}}-\left\{\mathrm{v}_{1}, \mathrm{~V}_{\mathrm{n}}, v_{\left[\frac{n}{2}\right\}}\right\}$ then we cannot move a pebble to v_{1}.

So $\mathrm{f}_{\mathrm{gl}}\left(\mathrm{v}_{1}, \mathrm{~W}_{\mathrm{n}}\right)>\left(\mathrm{p}^{2}-1\right)+(\mathrm{p}-1)(\mathrm{n}-3)+(\mathrm{p}-2)$

$$
>(\mathrm{p}-1) \mathrm{n}+\left(\mathrm{p}^{2}-2 \mathrm{p}+1\right) .
$$

Let us now prove that $(p-1) n+\left(p^{2}-2 p+1\right)$ pebbles are sufficient to put a pebble on v_{1}. Assume that v_{1} has zero pebbles. Now v_{1} is adjacent with h, v_{2}, v_{n}. Hence in the given distribution, any one of $h, v_{2}, \mathrm{v}_{\mathrm{n}}$, receives p pebbles, then a pebble can be moved to v_{1}. Also any one of the vertices $\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \ldots, \mathrm{v}_{\mathrm{n}-1}\right\}$ receives at least p^{2} pebbles then a pebble can be moved to v_{1} through h. Let $\mathrm{q}_{\mathrm{i}}=\mathrm{pm}_{\mathrm{i}}+\mathrm{r}_{\mathrm{i}}$ where $0 \leq \mathrm{r}_{-} \mathrm{i} \leq \mathrm{p}-1$ be the number of pebbles on v_{i} for $\mathrm{i}=2$ to n . Let a be the number of pebbles on h. Suppose $a \geq p$, then from h, we can move a pebble to v_{1}. Suppose $\mathrm{a}<\mathrm{p}$, then let $\mathrm{b}=\mathrm{p}-\mathrm{a}>0$. Let us transfer the pebbles from $v_{i}(i=2$ to $n)$ to h.

Let $\mathrm{m}=\sum_{i=2}^{n} m_{i}$. After this transfer, the number of pebbles on h is $\mathrm{b}+\mathrm{m}$. If $\mathrm{b}+\mathrm{m} \geq \mathrm{p}$, then we can put a pebble on v_{1}. So we assume that $\mathrm{b}+\mathrm{m}<\mathrm{p}$. Therefore $\mathrm{p}-\mathrm{b}-\mathrm{m}>0$.

Let $\mathrm{s}=\mathrm{p}-\mathrm{b}-\mathrm{m}$. In order to place $\mathrm{p}-\mathrm{b}-\mathrm{m}$ pebbles on h we are in need of $\mathrm{p}(\mathrm{p}-\mathrm{b}-\mathrm{m})$ pebbles on C_{n}.

Consider $(p-1) n+\left(p^{2}-2 p+1\right)-b-p m-p^{2}+p b+p m=(p-1) n+b(p-1)+(1-2 p)$.
Since $p \geq 2, n \geq 4, b>0$ we get $(p-1) n+b(p-1)+(1-2 p) \geq 2$.

From h, a pebble can be moved to v_{1}. If h has zero pebbles, v_{2} and v_{n} have at most (p 2) pebbles each and no vertex of $\left\{v_{3}, v_{4}, \ldots, v_{n-1}\right\}$ has p^{2} pebbles and assume $n-3 \geq p$, then there will be at least p pebbles each, then we can move p pebbles to h and so we are done.

Let us assume $\mathrm{n}-3<\mathrm{p}$.
Consider $(p-1) n+\left(p^{2}-2 p+2\right)-2(p-2)=(p-1) n+\left(p^{2}-4 p+6\right)$.
Now, $p^{2}+(n-4) p-(n-6)$ pebbles are distributed on to C_{n}. Using p^{2} pebbles we can move a pebble to v_{1}.

Definition 3.3. A fan graph denoted by F_{n} is a path P_{n} plus an extra vertex connected to all vertices of the path P_{n}. A fan graph with vertices $v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}$ in order means the fan graph F_{n} whose vertices of the path P_{n} are $v_{1}, v_{2}, \ldots, v_{n}$ in order and whose extra vertex is $\mathrm{v}_{\mathrm{n}+1}$.

Theorem 3.4. The generalized pebbling number of the fan graph F_{n} is $f_{g l}\left(F_{n}\right)=(p-$ 1) $n+\left(p^{2}-2 p+1\right)$.

Proof: Fan graph F_{n} is the spanning subgraph of W_{n} so $f_{g 1}\left(F_{n}\right) \leq f_{g l}\left(W_{n}\right)$.
Hence $\mathrm{f}_{\mathrm{gl}}\left(\mathrm{F}_{\mathrm{n}}\right)=(\mathrm{p}-1) \mathrm{n}+\left(\mathrm{p}^{2}-2 \mathrm{p}+1\right)$.

Suppose that there are $(p-1) n+\left(p^{2}-2 p+1\right)$ pebbles that are distributed on to the vertices of F_{n} where F_{n} is the fan graph with vertices $v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}$ in order. First let the target vertex be $\mathrm{v}_{\mathrm{n}+1}$. By Theorem $2.1 \mathrm{f}_{\mathrm{g}(}\left(\mathrm{v}_{\mathrm{n}+1}, \mathrm{~F}_{\mathrm{n}}\right)=\mathrm{p}+(\mathrm{p}-1)(\mathrm{n}-1)$. So if $\mathrm{v}_{\mathrm{n}+1}$ has zero pebbles then there exists some v_{i} where $\mathrm{i} \in\{1,2,3, \ldots, \mathrm{n}\}$ with at least p pebbles, so we can move one pebble to v_{n+1} from v_{i}.

Next suppose the target vertex if v_{k} and assume v_{k} has zero pebbles where $\mathrm{k} \in\{1,2,3$, $\ldots, n\}$. Suppose v_{n+1} receives at least p pebbles, then a pebble can be moved to v_{k} or if any one of the vertices of v_{i} where $i \in\{1,2, \ldots, n\}$ and $i \neq k$ receives p^{2} pebbles then from v_{i} a pebble can be moved to v_{k} through v_{n+1}. Suppose v_{n+1} receives m where $1 \leq m \leq p-1$ pebbles and the vertices of $P_{n}-\left\{\mathrm{v}_{\mathrm{k}}\right\}$ receive at the most $\mathrm{p}^{2}-1$ pebbles, using $\mathrm{p}(\mathrm{p}-2)$ pebbles, we can move ($\mathrm{p}-2$) pebbles to $\mathrm{v}_{\mathrm{n}+1}$, and the remaining $(\mathrm{p}-1) \mathrm{n}$ pebbles are also distributed on to the vertices of P_{n}. Hence there exists a vertex w with at least p pebbles. So a pebble can be moved to v_{n+1} from w. Now v_{n+1} receives at least p pebbles,and so a pebble can be moved to v_{k} from v_{n+1}. Suppose v_{n+1} has zero pebbles and all the vertices of P_{n} except v_{k} receive at the most $p^{2}-1$ pebbles. Then there must be at least one vertex v_{j} with at least p pebbles. If in addition, there are at least two vertice v_{j} and v_{1} with m pebbles in which $p \leq m \leq p^{2}-1$, then we can move at least $\left\lfloor\frac{p}{2}\right\rfloor$ pebbles from v_{1} to $\mathrm{v}_{\mathrm{n}+1}$. So, p pebbles can me moved to $\mathrm{v}_{\mathrm{n}+1}$. Hence a pebble can be moved to v_{k}. Otherwise, there is only one vertex v_{j} with at least p pebbles. Therefore all v_{i} in which $1 \leq i \leq n$ and $i \neq j$, k have $p-1$ pebbles. Suppose $j<$ k , then using the sequence of pebbling moves $\mathrm{v}_{\mathrm{j}}-\mathrm{v}_{\mathrm{j}+1}-\mathrm{v}_{\mathrm{j}+2^{-}} \ldots-\mathrm{v}_{\mathrm{k}}$ we can move a pebble to v_{k}. Otherwise using the sequence of moves $\mathrm{v}_{\mathrm{j}}-\mathrm{v}_{\mathrm{j}-1}-\ldots-\mathrm{v}_{\mathrm{k}}$, a pebble can be moved to v_{k}. Hence in all the cases $\mathrm{f}_{\mathrm{gl}}\left(\mathrm{v}_{\mathrm{k}}, \mathrm{F}_{\mathrm{n}}\right) \leq(\mathrm{p}-1) \mathrm{n}+\left(\mathrm{p}^{2}-2 \mathrm{p}+1\right)$.

Definition 3.5. A graph $G=(V, E)$ is called an r-partite graph if V can be partitioned into r non-empty subsets $V_{1}, V_{2}, \ldots, V_{r}$ such that no edge of G joins vertices in the

$$
\mathrm{K}_{\mathrm{s}_{1}, s_{2}, \ldots, \mathrm{~s}_{\mathrm{r}}} .
$$

same set. The sets $V_{1}, V_{2}, \ldots, V_{r}$ are called partite sets or vertex classes of G. If G is an r-partite graph having partite sets $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{r}}$ such that every vertex of V_{i} is joined to every vertex of V_{j} where $1 \leq i, j \leq r$ and $i \neq j$, then G is called a complete r partite graph. If $\left|V_{i}\right|=s_{i}$ for $i=1,2, \ldots, r$ then we denote G by $K_{s_{1}, s_{2}, \ldots, s_{r}}$.

Notation 3.6. For $s_{1} \geq s_{2} \geq \ldots \geq s_{r}, s_{1}>1$ and if $r=2, s_{2}>1$, let $K_{s_{1}, s_{2}, \ldots, s_{r}}$ be the complete r-partite graph with $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{r}}$ vertices in vertex classes $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{r}}$ respectively. Let $\mathrm{n}=\sum_{i=1}^{r} s_{i}$.

Theorem 3.7. For $G=K_{s_{1}, s_{2}, \ldots, s_{\mathrm{r}}}$ the generalized pebbling number is given by $\mathrm{f}_{\mathrm{gl}}(\mathrm{G})=\left\{\begin{array}{l}\mathrm{p}^{2}+(p-1)\left(s_{1}-2\right) \quad \text { if } p \geq n-s_{1} \\ p+(p-1)(n-2) \quad \text { if } p<n-s_{1}\end{array}\right.$.

Proof :

Case i: Assume $\mathrm{s}_{1}<\mathrm{n}-\mathrm{p}$.
Let the target vertex of v of C_{i} for some $\mathrm{i}=1,2, \ldots, r$. Without loss of generality, we assume that v has zero pebbles on it. If we place ($p-1$) pebbles each on ($n-1$) vertices of G other than v, a pebble cannot be moved to v. $\operatorname{So~}_{\mathrm{gl}}(\mathrm{v}, \mathrm{G}) \geq \mathrm{p}+(\mathrm{p}-1)(\mathrm{n}-2)$.

Let us place $\mathrm{p}+(\mathrm{p}-1)(\mathrm{n}-2)$ pebbles on the vertices of G. If there is a vertex w of $\mathrm{c}_{\mathrm{j}}(\mathrm{j}$ $\neq \mathrm{i})$ with at least p pebbles then a pebble can be moved to v . Otherwise, there is a vertex w_{1} of $\mathrm{C}_{\mathrm{k}}(\mathrm{k} \neq \mathrm{i})$ with at most $(\mathrm{p}-1)$ pebbles. Then at least $\mathrm{p}+(\mathrm{p}-1)(\mathrm{n}-3)$ pebbles are distributed on to each of $n-p-1$ vertices of C_{i}. Since $s_{i} \leq s_{1}<n-p$, using ($p-1$)p pebbles we can move at most $(p-1)$ pebbles to w_{1}. So w_{1} has at least p pebbles. Then from W_{1} a pebble can be moved to v. Otherwise every vertex of $G-C_{i}$ contains zero pebbles on $i t$. Then either there exists a vertex w_{2} of C_{i} with at least p^{2} pebbles or all the vertices of $\mathrm{C}_{\mathrm{i}}-\{\mathrm{v}\}$ contains at most $\mathrm{p}^{2}-1$ pebbles. So p pebbles can be moved to a vertex w_{3} of $C_{j}(j \neq i)$. From w_{3} a pebble can be moved to the vertex v of C_{i}.

Hence in all cases $\mathrm{f}_{\mathrm{g} 1}(\mathrm{v}, \mathrm{G}) \leq \mathrm{p}+(\mathrm{p}-1)(\mathrm{n}-2)$.
Since v is arbitrary, $\mathrm{f}_{\mathrm{gl}}(\mathrm{G}) \leq \mathrm{p}+(\mathrm{p}-1)(\mathrm{n}-2)$.
Case ii: Assume $n-\mathrm{s}_{1} \leq \mathrm{p}$.
Let us choose the vertex class C_{1}. Let $\mathrm{v} \in \mathrm{C}_{1}$ be our target vertex. Without loss of generality assume that vertex v has zero pebbles on it. Let us place $\mathrm{p}^{2}-1$ pebbles on one of the s_{1} vertices of C_{1}, and place ($\mathrm{p}-1$) pebbles on each of the remaining $\mathrm{s}_{1}-2$ vertices of C_{1}. Then ($\mathrm{p}-1$) pebbles can be moved to the vertex w of C_{k} where $\mathrm{k} \neq 1$. Now all the pebbled vertices in G receive ($\mathrm{p}-1$) pebbles. Hence pebbling move is impossible. So $\mathrm{f}_{\mathrm{gl}}>\left(\mathrm{p}^{2}-1\right)+(\mathrm{p}-1)\left(\mathrm{s}_{1}-2\right) \geq \mathrm{p}^{2}+(\mathrm{p}-1)\left(\mathrm{s}_{1}-2\right)$.

Suppose $p^{2}+(p-1)\left(s_{1}-2\right)$ pebbles are placed on the vertices of G. Let the target vertex be v of C_{k}.

If there is a vertex in some $\mathrm{C}_{\mathrm{j}}(\mathrm{j} \neq \mathrm{k})$ with at least p pebbles then a pebble can be placed on v using p pebbles.

If not, then every vertex of $\mathrm{G}-\mathrm{C}_{\mathrm{k}}$ will contain either zero or at most $(\mathrm{p}-1)$ pebbles on it. If there is a vertex say w in some $C_{j}(j \neq k)$ with a pebble on it we use p pebbles from a vertex of C_{k} to put a pebble on w . Then from the remaining $\mathrm{p}(\mathrm{p}-1)+(\mathrm{p}-1)\left(\mathrm{s}_{1}-2\right)-$ 1 vertices we can put ($\mathrm{p}-1$) pebbles on w and from w a pebble can be moved to v .

Otherwise every vertex of $G-C_{k}$ will have zero pebbles on it. Then all the $\mathrm{p}^{2}+(\mathrm{p}-1)\left(\mathrm{s}_{1}-\right.$ 2) pebbles are distributed on the vertices of C_{k}. Then using p^{2} pebbles a pebble can be moved to the vertex v of C_{k}.

Hence $\mathrm{f}_{\mathrm{gl}}(\mathrm{v}, \mathrm{G}) \leq(\mathrm{p}-1)\left(\mathrm{s}_{1}-2\right)+\mathrm{p}^{2}$.
Therefore $\mathrm{f}_{\mathrm{gl}}(\mathrm{G}) \leq \mathrm{p}^{2}+(\mathrm{p}-1)\left(\mathrm{s}_{1}-2\right)$.

Conclusion

We have determined the generalized pebbling numbers of wheel graph, fan graph and complete r-partite graph. We leave it to the reader the computation of the generalized t-pebbling numbers of wheel graph, fan graph and complete r-partite graph.

References

[1] F.R.K.Chung, Pebbling in Hypercubes, SIAM J. Discrete Maths., Vol 2(4) (1989), pp 467-472.
[2] G. Hurlbert, Recent Progress in graph pebbling, Graph Theory notes of New York XLIX (2005), 25-34.
[3] A. Lourdusamy and C. Muthulakshmi@ Sasikala, Generalized Pebbling Number, International Mathematical Forum, 5, 2010, No.27, pp.1331-1337.
[4] A. Lourdusamy and C. Muthulakshmi@ Sasikala, Generalized t-pebbling Number of a Graph, Journal of Discrete Mathematical Sciences \& Cryptography, Vol. 12 (2009), No. 1, pp. 109-120.
[5] A. Lourdusamy and A. Punitha Tharani, On t-pebbling graphs, Utilitas Mathematica (To appear in Vol. 87, March 2012).

