Volume 3
No. 1
pp. 87-106
Apr 2012

Pebbling Number for Jahangir Graph $\mathrm{J}_{2, \mathrm{~m}}(3 \leq \mathrm{m} \leq 7)$

A.Lourdusamy ${ }^{1}$, S. Samuel Jeyaseelan ${ }^{2}$ and T.Mathivanan ${ }^{3}$

${ }^{1}$ Department of Mathematics, St. Xavier 's College (Autonomous), Palayamkottai 627 002, India.E-mail: lourdugnanam@hotmail.com
${ }^{2}$ Department of Mathematics, Loyola College (Autonomous), Chennai - 600 002, India. E-mail: samjeya@yahoo.com
${ }^{3}$ Research scholar, Department of Mathematics, St. Xavier 's College (Autonomous), Palayamkottai-627002, India. E-mail: tahit_van_man@yahoo.com

Abstract

Given a configuration of pebbles on the vertices of a connected graph G, a pebbling move (or pebbling step) is defined as the removal of two pebbles off a vertex and placing one pebble on an adjacent vertex. The pebbling number, $f(G)$, of a graph G is the least number m such that, however m pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of pebbling moves. In this paper, we determine $f(G)$ for Jahangir graph $\mathrm{J}_{2, \mathrm{~m}}(3 \leq \mathrm{m} \leq 7)$.

Key words : pebbling, Jahangir graph.
2009 Mathematics Subject Classification: 05C99.

1 Introduction

One recent development in graph theory, suggested by Lagarias and Saks, called pebbling, has been the subject of much research. It was first introduced into the literature by Chung [1], and has been developed by many others including Hulbert, who published a survey of pebbling results in [3]. There have been many developments since Hulbert's survey appeared.

Given a graph G, distribute k pebbles (indistinguishable markers) on its vertices in some configuration C. Specifically, a configuration on a graph G is a function from $\mathrm{V}(\mathrm{G})$ to $\mathrm{N} \cup\{0\}$ representing an arrangement of pebbles on G. For our purposes, we will always assume that G is connected.

A pebbling move (or pebbling step) is defined as the removal of two pebbles from some vertex and the placement of one of these pebbles on an adjacent vertex. Define the pebbling number, $f(G)$, to be the minimum number of pebbles such that regardless of their initial configuration, it is possible to move to any root vertex v , a pebble by a sequence of pebbling moves. Implicit in this definition is the fact that if after moving to vertex v one desires to move to another root vertex, the pebbles reset to their original configuration.

Fact 1.1 $[5,6]$. For any vertex v of a graph $G, f(v, G) \geq n$ where $n=|V(G)|$.

Proof. Consider the configuration $\mathrm{C}: \mathrm{V}-\{\mathrm{v}\} \rightarrow \mathrm{N}$ defined by $\mathrm{C}(\mathrm{w})=1$ for all $\mathrm{w} \in \mathrm{V}-\{\mathrm{v}\}$. Then the size $|\mathrm{C}|$ of the configuration is $\mathrm{n}-1$. In this configuration we cannot move a pebble to v. Hence $f(v, G) \geq|V(G)|$.

Fact 1.2 [5]. The pebbling number of a graph G satisfies $f(G) \geq \max \left\{2^{\operatorname{diam}(G)},|V(G)|\right\}$.

Proof. Let $w \in V(G)$ be a vertex at a distance diam(G) from the target vertex v. Place $2^{\text {diam(G) }}-1$ pebbles at w. clearly we cannot move any pebble to v. Thus $f(G) \geq \max$ $\left\{2^{\operatorname{diam}(\mathrm{G})},|\mathrm{V}(\mathrm{G})|\right\}$.

There are few other interesting results in the pebbling number of graphs. Hulbert [3] has written an excellent survey article on pebbling. We earnestly request the interested readers to refer to it for further study.

We also request the readers to read [2] in which Moews has studied the pebbling number of product of trees.

We now proceed to determine the pebbling number for $\mathrm{J}_{2, \mathrm{~m}}(3 \leq \mathrm{m} \leq 7)$.

2 Pebbling Number of Jahangir Graph $\mathbf{J}_{2, \mathrm{~m}}(\mathbf{3} \leq \mathrm{m} \leq 7)$
Definition 2.1 [4] Jahangir graph $\mathrm{J}_{\mathrm{n}, \mathrm{m}}$ for $\mathrm{m} \geq 3$ is a graph on $\mathrm{nm}+1$ vertices, that is, a graph consisting of a cycle C_{nm} with one additional vertex which is adjacent to m vertices of $C_{n m}$ at distance n to each other on $C_{n m}$.

Example: Figure1 shows Jahangir graph $\mathrm{J}_{2,8}$. The figure $\mathrm{J}_{2,8}$, appears on Jahangir's tomb in his mausoleum. It lies in 5 kilometer north- west of Lahore, Pakistan, across the River Ravi.

Figure $1: J_{2,8}$

Remark 2.2 Let $v_{2 m+1}$ be the label of the center vertex and $v_{1}, v_{2}, \ldots, v_{2 m}$ be the label of the vertices that are incident clockwise on cycle $C_{2 m}$ so that $\operatorname{deg}\left(v_{1}\right)=3$.

Theorem 2.3 For the Jahangir graph $\mathrm{J}_{2,3}, \mathrm{f}\left(\mathrm{J}_{2,3}\right)=8$.

Proof Put seven pebbles at v_{4}. Clearly we cannot move a pebble to v_{1}, since $\mathrm{d}\left(\mathrm{v}_{4}, \mathrm{v}_{1}\right)=$ 3. Thus $\mathrm{f}\left(\mathrm{J}_{2,3}\right) \geq 8$.

Now, consider a distribution of eight pebbles on the vertices of $\mathrm{J}_{2,3}$. Consider the sets $\mathrm{S}_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}\right\}$ and $\mathrm{S}_{2}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{6}\right\}$.

Case (i) Suppose we cannot move a pebble to the vertex v_{7}.
The vertices of S_{1} must contain at most one pebble each. The vertices of S_{2} contain at most three pebbles each. If any vertex of S_{1} contains a pebble, then the neighbors of that vertex contain at most one pebble each. Otherwise, a pebble can be moved to v_{7}. Also, note that, if a vertex of S_{2} contains two or three pebbles then the neighbors of that vertex contain zero pebbles and also no other vertex of S_{2} contain two or three pebbles. Otherwise, we can move a pebble to v_{7}. So, in any such distributions, the vertices of $\mathrm{J}_{2,3}$ contain at most six pebbles so that a pebble could not be moved to $\mathrm{v}_{7}-$ a contradiction to the total number of pebbles placed over the vertices of $\mathrm{J}_{2,3}$. Thus, we can always move a pebble to v_{7}. So, our assumption (Case(i)) is wrong.

Case (ii) Suppose we cannot move a pebble to a vertex of S_{1}. Without loss of generality, let v_{1} be the target vertex.

Clearly, the neighbors $\mathrm{v}_{2}, \mathrm{v}_{6}, \mathrm{v}_{7}$ of v_{1} contain at most one pebble each. The vertices $\mathrm{v}_{3}, \mathrm{v}_{5}$ contain at most three pebbles each and the vertex v_{4} contains at most seven pebbles. Also, note that, both v_{3} and v_{5} cannot contain two or three pebbles each
(otherwise, a pebble can be moved to v_{1} through v_{7}) and if either v_{3} or v_{5} contains two or three pebbles then v_{4} contains at most three pebbles.

Suppose v_{7} has a pebble on it, then the vertices v_{3} and v_{5} contain at most one pebble each. This implies that, the vertex v_{4} contains at least three pebbles on it. If any one of the vertex v_{3} or v_{5} has a pebble on i, then we can easily move a pebble to v_{1}. Otherwise, v_{4} contains at least four pebbles on it and so we can move a pebble to v_{1} through v_{7}. So, assume that v_{7} has zero pebbles on it.

Suppose v_{2} has a pebble on it. Then, the path $\mathrm{v}_{4} \mathrm{v}_{5}$ contains at least five pebbles. Clearly, we can move a pebble to v_{1}. So, assume that v_{2} has zero pebbles on it. In a similar way, we may assume that, v_{6} has zero pebbles on it.

Suppose v_{3} has two or three pebbles on it. Then, v_{4} contains at least four pebbles on it and so we can move a pebble to v_{1} easily. So, assume v_{3} contains at most one pebble on it. In a similar way, we may assume that, v_{5} has at most one pebble on it. Then, v_{4} contains at least six pebbles on it. If any one of the vertices v_{3} or v_{5} contains a pebble then we can move a pebble to v_{1}. Otherwise, v_{4} contains eight pebbles on it and hence we can move a pebble to v_{1}. Thus, we can always move a pebble to v_{1}. So, our assumption (Case(ii)) is wrong.

Case (iii) Suppose we cannot move a pebble to a vertex of S_{2}. Without loss of generality, let v_{2} be the target vertex.

The neighbors v_{1}, and v_{3} of v_{2} contain at most one pebble each. The vertices v_{4}, v_{6}, and v_{7} contain at most three pebbles each and the vertex v_{5} contains at most seven pebbles. Suppose v_{3} has a pebble on it. Then the path $\mathrm{V}_{5} \mathrm{~V}_{6}$ contains at least four pebbles. If either v_{4} or v_{7} contains a pebble on i, clearly we can move a pebble to v_{2}. Otherwise, the path $\mathrm{v}_{5} \mathrm{v}_{6}$ contains at least five pebbles and so we can move a pebble to v_{2} easily. So, assume that v_{3} has zero pebbles on it. In a similar way, we may assume that, v_{1} has zero pebbles on it.

Suppose v_{7} has two or three pebbles on it. Then, clearly we can move a pebble to v_{2}, since v_{5} contains at least four pebbles on it. So, assume that v_{7} has at most one pebble on it. Suppose v_{4} contains two or three pebbles on it. Then, the path $\mathrm{v}_{5} \mathrm{v}_{6}$ contains at least four pebbles and so we are done if v_{7} contains a pebble. Otherwise, the path $\mathrm{v}_{5} \mathrm{v}_{6}$ contains at least five pebbles. Then, a pebble can easily be moved to v_{2}. So, assume that, v_{4} contains at most one pebble. In a similar way, we may assume that, v_{6} has at most one pebble on it . Then, v_{5} contains at least five pebbles. If v_{7} contains one pebble on it, then we are done if either v_{4} or v_{6} has one pebble on it. Otherwise, it is easy to move a pebble to v_{2}. So, assume that v_{7} has zero pebbles on it. Then, v_{5} contains at least six pebbles. In this case also it is easy to move a pebble to v_{2}. Thus, we can always move a pebble to v_{2}. So, our assumption (Case(iii)) is wrong. Thus, $\mathrm{f}\left(\mathrm{J}_{2,3}\right) \leq 8$.
Therefore, $\mathrm{f}\left(\mathrm{J}_{2,3}\right)=8$.

Theorem 2.4 For the Jahangir graph $\mathrm{J}_{2,4}, \mathrm{f}\left(\mathrm{J}_{2,4}\right)=16$.

$\mathrm{J}_{2,4}$

Proof Put fifteen pebbles at v_{8} then we cannot move a pebble to v_{4}, since $\mathrm{d}\left(\mathrm{v}_{4}, \mathrm{v}_{8}\right)=4$. Thus $\mathrm{f}\left(\mathrm{J}_{2,4}\right) \geq 16$.

Now, consider a distribution of sixteen pebbles on the vertices of $\mathrm{J}_{2,4}$. Consider the sets $\mathrm{S}_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{7}\right\}$ and $\mathrm{S}_{2}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{8}\right\}$.

Case (i) Suppose we cannot move a pebble to the vertex vg.
Clearly, the vertices of S_{1} contain at most one pebble each and the vertices of S_{2} contain at most three pebbles each. If any vertex of S_{1} contains a pebble, then the neighbors of that vertex contain at most one pebble each. Otherwise, a pebble can be moved to v 9 . Also, note that, if a vertex of S_{2} contains two or three pebbles then the neighbors of that vertex contain zero pebbles and also the proceeding and succeeding vertex of that vertex in S_{2} contain at most one pebble each. Otherwise, we can move a pebble to v_{9}. So, in any such distribution, the vertices of $\mathrm{J}_{2,4}$ contain at most eight pebbles so that a pebble could not be moved to V_{9}-a contradiction to the total number of pebbles placed over the vertices of $\mathrm{J}_{2,4}$. Thus, we can always move a pebble to v_{9}. So, our assumption (case(i)) is wrong.

Case (ii) Suppose we cannot move a pebble to a vertex of S_{1}. Without loss of generality, let v_{1} be the target vertex.

Clearly, the neighbors $\mathrm{v}_{2}, \mathrm{v}_{8}$, and v_{9} of v_{1} contain at most one pebble each. The vertices of $S_{1}-\left\{\mathrm{v}_{1}\right\}$ contain at most three pebbles and the vertices of $\mathrm{S}_{2}-\left\{\mathrm{v}_{2}, \mathrm{v}_{8}\right\}$ contain at most seven pebbles. Also, note that, no two vertices of $\mathrm{S}_{1}-\left\{\mathrm{v}_{1}\right\}$ contain two or three pebbles each and if a vertex of $\mathrm{S}_{1}-\left\{\mathrm{v}_{1}\right\}$ contain two or three pebbles then the neighbor of that vertex contain at most three pebbles. Also, both v_{4} and v_{6} cannot contain four or more (at most seven) pebbles each and if either v_{4} or v_{6} contains four or more pebbles then the neighbors of that vertex contain at most one pebble.

Suppose v_{9} has a pebble on it. Clearly, the neighbors v_{3}, v_{5}, and v_{7} of v_{9} contain at most one pebble each. So the remaining ten pebbles are at v_{4} and v_{6}. Thus either v_{4} or v_{6} receives at least five pebbles. This implies that, we can move a pebble to v_{1} through v_{9}-a contradiction to case(ii). So assume that v_{9} has zero pebbles on it.

Suppose v_{2} has a pebble on it. Clearly, the neighbor v_{3} of v_{2} contains at most one pebble. If v_{3} contains a pebble, then the vertex v_{4} contains at most one pebble. Otherwise, v_{4} contains at most three pebbles. So the path $\mathrm{V}_{4} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{8} \mathrm{~V}_{7}$ contains at most seven pebbles. Now, the path $\mathrm{v}_{5} \mathrm{v}_{6}$ contain at least nine pebbles. Clearly, v_{6} contains at least six pebbles. If either v_{5} or v_{7} or v_{8} contains one pebble then we can move a pebble to v_{1}. Otherwise, the vertex v_{6} contains at least eight pebbles and so we get a contradiction to case(ii). So assume v_{2} has zero pebbles on it. In a similar way, we may assume that v_{8} has zero pebbles on it.

Suppose v_{5} has two or three pebbles on it. Then the path $\mathrm{V}_{4} \mathrm{~V}_{5} \mathrm{~V}_{6}$ contains at most six pebbles, otherwise we get a contradiction to case (ii). Thus either v_{3} or v_{7} contains at least five pebbles-a contradiction to case(ii). Thus, assume that v_{5} has at most one pebble. The vertices v_{3} and v_{7} totally contain at most four pebbles. This implies that, the path $\mathrm{v}_{4} \mathrm{v}_{5} \mathrm{v}_{6}$ contains at least twelve pebbles. Clearly we can move a pebble to $\mathrm{v}_{1}-\mathrm{a}$ contradiction to case(ii). Thus, assume that v_{5} has zero pebbles on it. So, either the path $\mathrm{v}_{3} \mathrm{v}_{4}$ or $\mathrm{v}_{6} \mathrm{v}_{7}$ contains at least eight pebbles. Clearly, we can move a pebble to $\mathrm{v}_{1}-\mathrm{a}$ contradiction to case(ii). Thus, we can always move a pebble to v 9 . So, our assumption (Case(ii)) is wrong.

Case (iii) Suppose we cannot move a pebble to a vertex of S_{2}. Without loss of generality, let v_{2} be the target vertex.

As we discussed in case (i) and case (ii), we can give a simple argument which will conclude that our assumption (case(iii)) is wrong.

Thus, $\mathrm{f}\left(\mathrm{J}_{2,4}\right) \leq 16$.
Therefore, $\mathrm{f}\left(\mathrm{J}_{2,4}\right)=16$.

Theorem 2.5 For the Jahangir graph $\mathrm{J}_{2,5}, \mathrm{f}\left(\mathrm{J}_{2,5}\right)=18$.
Proof Put fifteen pebbles at v_{6} and one pebble each at v_{8} and v_{10}, and then we cannot move a pebble to v_{2}. Thus $f\left(\mathrm{~J}_{2,5}\right) \geq 18$.
Now, consider a distribution of eighteen pebbles on the vertices of $\mathrm{J}_{2,5}$. Consider the sets $\mathrm{S}_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{9}\right\}$ and $\mathrm{S}_{2}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}\right\}$.

Case (i) Suppose we cannot move a pebble to the vertex v_{11}.
The vertices of S_{1} contain at most one pebble each and the vertices of S_{2} contain at most three pebbles each. Also, note that, no two consecutive vertices of S_{2} contain two or three pebbles each and if a vertex of S_{2} contains two or three pebbles then the neighbors of that vertex contain zero pebbles. Also, if a vertex of S_{1} contains one pebble then the neighbors of that vertex contain at most one pebble each. Thus, in any distribution, $\mathrm{J}_{2,5}$ contains at most ten pebbles so that a pebble could not be moved to v_{11}-a contradiction to the total number of pebbles placed over the vertices of $\mathrm{J}_{2,5}$. So, our assumption is wrong.

Case (ii) Suppose we cannot move a pebble to a vertex of S_{1}. Without loss of generality, let v_{1} be the target vertex.

Clearly, the neighbors $\mathrm{v}_{2}, \mathrm{v}_{10}$, and v_{11} of v_{1} contain at most one pebble each. The vertices of $S_{1}-\left\{\mathrm{v}_{1}\right\}$ contain at most three pebbles each and the vertices of $\mathrm{S}_{2}-\left\{\mathrm{v}_{2}, \mathrm{v}\right.$ $10\}$ contain at most seven pebbles each. Also, note that, no two vertices of $\mathrm{S}_{1}-\left\{\mathrm{v}_{1}\right\}$ contain two or three pebbles each and if a vertex of $\mathrm{S}_{1}-\left\{\mathrm{v}_{1}\right\}$ contains two or three pebbles then the neighbors of that vertex contain at most three pebbles each. Also, no two vertices of $S_{2}-\left\{\mathrm{v}_{2}, \mathrm{v}_{10}\right\}$ contain four or more pebbles each and if a vertex of $\mathrm{S}_{2^{-}}$
$\left\{\mathrm{v}_{2}, \mathrm{v}_{10}\right\}$ contains four or more pebbles then the neighbors of that vertex contain at most one pebble each. Suppose v_{11} contains one pebble on it. Clearly the vertices of $\mathrm{S}_{1}-\left\{\mathrm{v}_{1}\right\}$ contain at most one pebble each. This implies that, the paths $\mathrm{V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{5}$ and $\mathrm{v}_{7} \mathrm{~V}_{8} \mathrm{v}_{9}$ contain at most three pebbles each. Thus, the vertex v_{6} contains at least nine pebbles and so we can move a pebble to v_{1} easily-a contradiction to case(ii). So assume that v_{11} has zero pebbles on it.

Suppose v_{2} has one pebble on it. The vertex v_{3} contains at most one pebble and the vertex v_{4} contains at most three pebbles. If the vertex v_{5} contains two or three pebbles then either v_{6} or v_{8} contains at least four pebbles. So we get a contradiction to case(ii). Thus, assume that v_{5} contains at most one pebble. In a similar way, we may assume that both v_{7} and v_{9} contain at most one pebble each. Thus, the vertices v_{6} and v_{8} contain at least ten pebbles totally. So, in any distribution of these ten pebbles on v_{6} and v_{8}, we can always move a pebble to v_{1} through v_{7} and v_{11}. So assume that v_{2} has zero pebbles on it. In a similar way, we may assume that v_{10} has zero pebbles on it.

Suppose v_{3} has two or three pebbles on it. Then clearly the total number of pebbles on the vertices v_{6} and v_{8} is at least nine. Thus, we can move a pebble to v_{1} through v_{7} and v_{11}. So, assume that v_{3} contains at most one pebble. In a similar way, we may assume that v_{9} contains at most one pebble. Suppose v_{5} contains two or three pebbles on it then the vertices v_{6} and v_{8} totally contain at least nine pebbles, so we can move a pebble to v_{1} through $\mathrm{v}_{11}-\mathrm{a}$ contradiction to case(ii). So assume that v_{5} contains at most one pebble. In a similar way, we may assume that v_{7} contains at most one pebble. Now, any one of the vertices of $S_{2}-\left\{\mathrm{v}_{2}, \mathrm{v}_{10}\right\}$ contains at least four pebbles, say v_{6}. If both neighbors of that vertex v_{6} contain one pebble each then we can move a pebble to v_{1} or if v_{4} contains two or three pebbles and if a neighbor of v_{4} contains one pebble then also we can move a pebble to v_{1}. Otherwise, v_{6} contains more than eight pebbles-a contradiction to case(ii). Thus, in any distribution of eighteen pebbles on the vertices of $\mathrm{J}_{2,5}$, we can always move a pebble to v_{1}. So, our assumption (case(ii)) is wrong.

Case (iii) Suppose we cannot move a pebble to a vertex of S_{2}. Without loss of generality, let v_{2} be the target vertex.

Clearly, the neighbors v_{1}, and v_{3} of v_{2} contain at most one pebble each and the vertices $\mathrm{v}_{4}, \mathrm{v}_{10}$, and v_{11} contain at most three pebbles each. The vertices of $\mathrm{S}_{1}-\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\}$ contain at most seven pebbles each and the vertices of $\mathrm{S}_{2}-\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{10}\right\}$ contain at most fifteen pebbles each. Also, note that, no two vertices of $S_{1}-\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\}$ contain four or more pebbles each and if a vertex of $S_{1}-\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\}$ contains four or more pebbles then the neighbors of that vertex contain at most three pebbles each. Also, no two vertices of $\mathrm{S}_{2}-\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{10}\right\}$ contain eight or more pebbles each and if a vertex of $\mathrm{S}_{2}-$ $\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{10}\right\}$ contains eight or more pebbles then the neighbors of that vertex contain at most three pebbles each.

Suppose v_{3} has one pebble on it. Clearly, both v_{4} and v_{11} contain at most one pebble each. If v_{11} has one pebble on it then the vertices of $\mathrm{S}_{1}-\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\}$ contain at most one pebble each. This implies that, any one of the vertices $\mathrm{v}_{6}, \mathrm{v}_{8}$ or v_{11} contains at least four pebbles. Thus we can move a pebble to v_{2}. So, assume that v_{11} has zero pebbles on it. Then either one of the vertices of $S_{2}-\left\{\mathrm{v}_{2}, \mathrm{v}_{4}\right\}$ receives at least four pebbles and a vertex of $S_{1}-\left\{v_{1}, v_{3}\right\}$ receives at least two pebbles or any two vertices of $S_{2}-\left\{v_{2}\right.$, $\left.\mathrm{v}_{4}\right\}$ receive at least four pebbles each. So, we can always move a pebble to v_{2}-a contradiction to case(iii). So, assume that v_{3} has zero pebbles on it. In a similar way, we may assume that v_{1} has zero pebbles on it.

Suppose v_{11} has two or three pebbles on $i t$. Then both v_{4} and v_{10} contain at most one pebble each. This implies that, the total number of pebbles on the vertices v_{6} and v_{8} is at least nine. So, we can move a pebble to v_{2}-a contradiction to case(iii). Thus, assume v_{11} has at most one pebble.

Suppose v_{4} contains two or three pebbles on it. Then one of the vertices of $\left\{\mathrm{v}_{6}, \mathrm{v}_{8}\right\}$ contains at least four pebbles and if a vertex of $S_{1}-\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\}$ contains two or three pebbles then we can move a pebble to v_{2}. Otherwise, the total number of pebbles on the vertices v_{6} and v_{8} is at least eleven -a contradiction to case(iii). So, assume v_{4} contains at most one pebble. In a similar way, we may assume that v_{10} contains at most one pebble.

Suppose v_{7} has four or more pebbles (at most seven pebbles) on it. Clearly, the total number of pebbles on the vertices $\mathrm{v}_{5}, \mathrm{v}_{7}$, and v_{9} contain at most nine. Thus, one of the vertices of $\left\{\mathrm{v}_{6}, \mathrm{v}_{8}\right\}$ contains at least four pebbles. If one of the vertices of $\left\{\mathrm{v}_{5}, \mathrm{v}_{9}\right\}$ contains two or three pebbles then we can move a pebble to v_{2} easily. So, assume both v_{5} and v_{9} contain at most one pebble each. If v_{11} contains a pebble and if v_{7} contains at least six pebbles then we can move a pebble to v_{2}. So assume that v_{7} contains at most five pebbles. In this case also, we can move a pebble to v_{2}, since the total number of pebbles on the vertices v_{6} and v_{8} is at least nine. Thus, we assume that v_{7} contains at most three pebbles. In a similar way, we may assume that both v_{5} and v_{9} contain at most three pebbles each.

Suppose all the three vertices $\mathrm{v}_{5}, \mathrm{v}_{7}$, and v_{9} contain two or three pebbles each. Then, the vertices v_{6} and v_{8} totally contain at least six pebbles. So, we can move at least one pebble to v_{11} using the pebbles at v_{6} and v_{8}. So, we can move a pebble to v_{2}. Thus, assume that two of the vertices of $\left\{\mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{9}\right\}$, say v_{5} and v_{9} contain at least two or three pebbles each. Then, the total number of pebbles on the vertices v_{6} and v_{8} is at least eight. If v_{7} contains one pebble then we can move a pebble to v_{2} - a contradiction to case(iii). Now, exactly one vertex from $\left\{\mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{9}\right\}$, say v_{5} contains two or three pebbles. Then the total number of pebbles on the vertices v_{6} and v_{8} is at least ten. If either v_{11} or v_{4} contains a pebble then we can move a pebble to v_{2} easily. So assume both v_{4} and v_{11} contain zero pebbles on it. Then, the total number of pebbles on the
vertices v_{6} and v_{8} is at least twelve. If v_{7} contains one pebble on it then also we can move a pebble to v_{2}. Otherwise, we can move a pebble to v_{2} easily, since the total number of pebbles on the vertices v_{6} and v_{8} is at least thirteen. Thus assume that all the three vertices $\mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{9}$ contain at most one pebble each. Now, the total number of pebbles on the vertices v_{6} and v_{8} is at least twelve. If both v_{7} and v_{11} contain one pebble each then we can move a pebble to v_{2}. So, assume v_{11} has zero pebbles on it.

Suppose all the three vertices $\mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{9}$ contain one pebble each. One of the vertices $\left\{\mathrm{v}_{6}, \mathrm{v}_{8}\right\}$ receives at least six pebbles and hence we can move a pebble to v_{2}. So, we may assume v_{7} has zero pebbles on it. If both v_{4} and v_{10} have one pebble each then we can move a pebble to v_{2}, since the total number of pebbles on the vertices v_{6} and v_{8} is fourteen. For the other distributions, it is easy to see that, a pebble can be moved to v_{2} a contradiction to case(iii). This implies that $\mathrm{f}\left(\mathrm{J}_{2,5}\right) \leq 18$.

Therefore, $\mathrm{f}\left(\mathrm{J}_{2,5}\right)=18$.

Theorem 2.6 For the Jahangir graph $\mathrm{J}_{2,6}, f\left(\mathrm{~J}_{2,6}\right)=21$.

Proof Put fifteen pebbles at v_{6}, three pebbles at v_{10} and one pebble each at v_{8} and v_{12}. Then, we cannot move a pebble v_{2}. Thus, $\mathrm{f}\left(\mathrm{J}_{2,6}\right) \geq 21$.

Now, consider a distribution of twenty one pebbles on the vertices of $\mathrm{J}_{2,6}$. Consider the sets $\mathrm{S}_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{9}, \mathrm{v}_{11}\right\}$ and $\mathrm{S}_{2}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}, \mathrm{v}_{12}\right\}$.

Case (i) Suppose we cannot move a pebble to the vertex v_{13}.

The vertices of S_{1} contain at most one pebble each and the vertices of S_{2} contain at most three pebbles each. Also, note that, no two consecutive vertices of S_{2} contain two or three pebbles each and if a vertex of S_{2} contains two or three pebbles then the neighbors of that vertex contain zero pebbles. Also, if a vertex of S_{1} contains one
pebble then the neighbors of that vertex contain at most one pebble each. Thus, in any distribution, $\mathrm{J}_{2,6}$ contains at most twelve pebbles so that a pebble could not be moved to V_{13}-a contradiction to the total number of pebbles placed over the vertices of $\mathrm{J}_{2,6}$. So, our assumption (case(i)) is wrong.

Case (ii) Suppose we cannot move a pebble to a vertex of S_{1}. Without loss of generality, let v_{1} be the target vertex.

Clearly, the neighbors $\mathrm{v}_{2}, \mathrm{v}_{12}$, and v_{13} of v_{1} contain at most one pebble each. The vertices of $S_{1}-\left\{\mathrm{v}_{1}\right\}$ contain at most three pebbles each and the vertices of $\mathrm{S}_{2}-\left\{\mathrm{v}_{2}, \mathrm{v}\right.$ $12\}$ contain at most seven pebbles each. Also, note that, no two vertices of $\mathrm{S}_{1}-\left\{\mathrm{v}_{1}\right\}$ contain two or three pebbles each and if a vertex of $\mathrm{S}_{1}-\left\{\mathrm{v}_{1}\right\}$ contains two or three pebbles then the neighbors of that vertex contain at most three pebbles each. Also, no two vertices of $S_{2}-\left\{v_{2}, v_{12}\right\}$ contain four or more pebbles each and if a vertex of S_{2} $\left\{\mathrm{v}_{2}, \mathrm{v}_{12}\right\}$ contains four or more pebbles then the neighbors of that vertex contain at most one pebble each.

Suppose v_{13} has a pebble on it. Then clearly the vertices of $\mathrm{S}_{1}-\left\{\mathrm{v}_{1}\right\}$ contain at most one pebble each and the vertices of $\mathrm{S}_{2}-\left\{\mathrm{v}_{2}, \mathrm{v}_{12}\right\}$ contain at most three pebbles each. Thus in any distribution, $\mathrm{J}_{2,6}$ contains at most eleven pebbles so that a pebble could not be moved to $\mathrm{v}_{1}-\mathrm{a}$ contradiction to the total number of pebbles placed over the vertices of $\mathrm{J}_{2,6}$. So, assume that v_{13} has zero pebbles on it.

Suppose v_{2} has a pebble on it. Clearly, the neighbor v_{3} contains at most one pebble and the vertex v_{4} contains at most three pebbles. If v_{5} has two or three pebbles, then the vertices of $\mathrm{S}_{1}-\left\{\mathrm{v}_{1}, \mathrm{v}_{5}\right\}$ contain at most one pebble each. Thus, one of the vertices of $\left\{\mathrm{v}_{8}, \mathrm{v}_{10}\right\}$ contains at least four pebbles and hence, we can move a pebble to v_{1} through v_{13}-a contradiction to case(ii). So, assume that v_{5} has at most one pebble. In a similar way, we may assume that the vertices $\mathrm{v}_{7}, \mathrm{v}_{9}$, and v_{11} contain at most one pebble each. Thus, one of the vertices of $\left\{\mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}\right\}$ contains at least six pebbles, say v_{8}. If one of
the neighbors of v_{8} contains one pebble then we can move a pebble to v_{1} through $\mathrm{v}_{13}-\mathrm{a}$ contradiction to case(ii). Otherwise, v_{8} contains at least eight pebbles. So, we can move a pebble to v_{1}. So, assume that v_{2} has zero pebbles on it. In a similar way, we may assume that the vertex v_{12} has zero pebbles.

Suppose v_{3} has two or three pebbles on it. Clearly, the vertices of $\mathrm{S}_{1}-\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\}$ contain at most one pebble each and the vertices of $\mathrm{S}_{2^{-}}\left\{\mathrm{v}_{2}, \mathrm{v}_{12}\right\}$ contain at most three pebbles each. Also, if a vertex of $S_{2}-\left\{\mathrm{v}_{2}, \mathrm{v}_{12}\right\}$ contains two or three pebbles then the proceeding and succeeding vertices in S_{2} contain at most one pebble. Thus in any distribution, $\mathrm{J}_{2,6}$ contains at most eleven pebbles so that a pebble could not be moved to v_{1}-a contradiction. So, assume v_{3} has at most one pebble. In a similar way, we may assume that, the vertices $\mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{9}$, and v_{11} contain at most one pebble each. Clearly, the total number of pebbles on the vertices $\mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{8}$, and v_{10} is at least sixteen. Thus, two of the vertices of $\left\{\mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}\right\}$ contain four or more pebbles each or one of the vertices $\left\{\mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}\right\}$ receives at least eight pebbles. Thus, we can always move a pebble to $\mathrm{v}_{1}-\mathrm{a}$ contradiction to case(ii). So, our assumption (case(ii)) is wrong.

Case (iii) Suppose we cannot move a pebble to a vertex of S_{2}. Without loss of generality, let v_{2} be the target vertex.

Clearly, the neighbors v_{1}, and v_{3} of v_{2} contain at most one pebble each and the vertices $\mathrm{v}_{4}, \mathrm{v}_{12}$, and v_{13} contain at most three pebbles each. The vertices of $\mathrm{S}_{1}-\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\}$ contain at most seven pebbles each and the vertices of $\mathrm{S}_{2}-\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{12}\right\}$ contain at most fifteen pebbles each. Also, note that, no two vertices of $S_{1}-\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\}$ contain four or more pebbles each and if a vertex of $S_{1}-\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\}$ contains four or more pebbles then the neighbors of that vertex contain at most three pebbles each. Also, no two vertices of $S_{2}-\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{12}\right\}$ contain eight or more pebbles each and if a vertex of $\mathrm{S}_{2}-$ $\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{12}\right\}$ contains eight or more pebbles then the neighbors of that vertex contain at most three pebbles each.

Suppose v_{3} has a pebble on it. Clearly, the vertices v_{4} and v_{13} contain at most one pebble each and at most one of the vertices of $S_{1}-\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\}$ contains two or three pebbles. Thus, the total number of pebbles on the vertices $\mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}$, and v_{12} is at least twelve. So, in any distribution of these twelve pebbles on the vertices $\mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}$, and v_{12}, we must have the following cases: either one of the vertices receives eight or more pebbles or two of the vertices of $\left\{\mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}, \mathrm{v}_{12}\right\}$ receive four or more pebbles each or all the vertices receive two or three pebbles each. So, we can move a pebble to v_{2}. So, assume that v_{3} has zero pebbles on it. In a similar way we may assume that v_{1} has zero pebbles on it.

Suppose v_{13} has two or three pebbles on it. Clearly the vertices of $\mathrm{S}_{1}-\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\}$ contain at most three pebbles each and no two vertices of $\mathrm{S}_{1}-\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\}$ contain two or three pebbles each. Thus, we can move at least two pebbles to v_{13}, since the total number of pebbles on the vertices of $\left\{\mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}, \mathrm{v}_{12}\right\}$ is at least thirteen (note that the vertices v_{4} and v_{12} contain at most one pebble each). So, assume that v_{13} contains at most one pebble.

Suppose v_{4} has two or three pebbles on it. Then, the vertex v_{5} contains at most three pebbles and the vertex V_{13} contains at most one pebble. Thus the total number of pebbles on the vertices of $\left\{\mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}, \mathrm{v}_{12}\right\}$ is twelve. So, we can move a pebble to v_{3} and then move a pebble to v_{2} using the pebbles at v_{4}-a contradiction to case(iii). So, assume that v_{4} has at most one pebble on it. In a similar way, we may assume that v_{12} has at most one pebble.

Suppose v_{7} has four or more pebbles (at most seven pebbles) on it. Then the total number of pebbles on the vertices $\left\{\mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{9}, \mathrm{v}_{11}\right\}$ is at most ten. Thus the total number of pebbles on the vertices of $\left\{\mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}\right\}$ is at least nine. If v_{13} has one pebble on it then we can move a pebble to v_{2} through v_{13} using the pebbles at v_{7}. So, assume that v_{13} has zero pebbles on it. Also, if v_{7} contains six or seven pebbles then we can
move a pebble to v_{2}. So, assume that the vertex v_{7} contains at most five pebbles. Thus the total number of pebbles on the vertices of $\left\{\mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}\right\}$ is at least nine. If one of the vertices of $\left\{\mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}\right\}$ contains two or three pebbles then we can move a pebble to v_{2}. Otherwise, it is easy to see that, we can move a pebble to v_{2}. So, assume v_{7} contains at most three pebbles. In a similar way, we assume that the vertices v_{5}, v_{9}, and v_{11} contain at most three pebbles each.

If the four vertices v_{5}, v_{7}, v_{9} and v_{11} contain two or three pebbles each then clearly we can move a pebble to v_{2}. So, assume that at most three of them contain two or three pebbles each. Suppose the vertices $\mathrm{v}_{5}, \mathrm{v}_{7}$, and v_{9} contain two or three pebbles each then the total number of pebbles on the vertices of $\left\{\mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}\right\}$ is at least nine. Thus we can move a pebble to v_{2} easily. Next assume that any two of the vertices of $\left\{\mathrm{v}_{5}, \mathrm{v}_{7}\right.$, $\left.\mathrm{v}_{9}, \mathrm{v}_{11}\right\}$ contain two or three pebbles each. Then the total number of pebbles on the vertices of $\left\{\mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}\right\}$ is at least ten. If v_{13} contains one pebble then clearly we can move a pebble to v_{2}. Otherwise, we can move a pebble to v_{2} easily according to the distribution of eleven pebbles at $\mathrm{v}_{6}, \mathrm{v}_{8}$, and v_{10}.

Assume one of the vertices from the set $\left\{\mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{9}, \mathrm{v}_{11}\right\}$ contains two or three pebbles on it. Then the total number of pebbles on the vertices of $\left\{\mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}\right\}$ is at least thirteen. So, we can move a pebble to v_{2} if v_{13} contains one pebble on it. If not, then the total number of pebbles on the vertices of $\left\{\mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}\right\}$ is at least fourteen. Thus, one of the vertices of $\left\{\mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}\right\}$ contains at least four pebbles, say v_{8}.

Suppose v_{8} has six or seven pebbles. If one of the neighbors of v_{8} contains one pebble, then we can move a pebble to v_{2}. Otherwise, the total number of pebbles on the vertices of $\left\{\mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}\right\}$ is at least sixteen. So, we can move a pebble to v_{2}. Thus assume v_{8} contains at most five pebbles. Then clearly we can move a pebble to v_{2}, since the total number of pebbles on the vertices of $\left\{\mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}\right\}$ is at least fourteen. So, assume that v_{8} contains at most three pebbles. In a similar way, we may assume
that the vertices v_{6} and v_{10} contain at most three pebbles each. But, we get a contradiction to the total number of pebbles placed on $\mathrm{J}_{2,6}$. So, assume that the vertices $\mathrm{v}_{5}, \mathrm{v}_{7}$, v_{9} and v_{11} contain at most one pebble each. Thus, the total number of pebbles on the vertices of $\left\{\mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}\right\}$ is at least fourteen. A similar argument shows that v_{8} contain at least four pebbles and so we can move a pebble to v_{2}. So, our assumption is wrong.

Thus, $\mathrm{f}\left(\mathrm{J}_{2,6}\right) \leq 21$.
Therefore, $\mathrm{f}\left(\mathrm{J}_{2,6}\right)=21$.

Theorem 2.7 For the Jahangir graph $\mathrm{J}_{2,7}, \mathrm{f}\left(\mathrm{J}_{2,7}\right)=23$.

Proof Put fifteen pebbles at v_{6}, three pebbles at v_{10} and one pebble each at $\mathrm{v}_{8}, \mathrm{v}_{14}, \mathrm{v}_{12}$, and v_{13}. Then, we cannot move a pebble to v_{2}. Thus, $\mathrm{f}\left(\mathrm{J}_{2,7}\right) \geq 23$.

As we argued in previous theorems, we can show that $f\left(\mathrm{~J}_{2,7}\right) \leq 23$.

Hence $f\left(\mathrm{~J}_{2,7}\right)=23$.

Conjeture 2.8 For the Jahangir graph $\mathrm{J}_{2, \mathrm{~m}}(\mathrm{~m} \geq 8), \mathrm{f}\left(\mathrm{J}_{2, \mathrm{~m}}\right)=2 \mathrm{~m}+10$.

Conclusion. In this paper, we have computed the pebbling number for Jahangir graph $\mathrm{J}_{2, \mathrm{~m}}$ where $3 \leq \mathrm{m} \leq 7$. We strongly believe that the pebbling number of the Jahangir graph $\mathrm{J}_{2, \mathrm{~m}}$ where $\mathrm{m}>7$ is $f\left(\mathrm{~J}_{2, \mathrm{~m}}\right)=2 \mathrm{~m}+10$.

References :

[1] F.R.K.Chung, Pebbling in Hypercubes, SIAM J. Discrete Mathematics 2 (1989), 467-472.
[2] David Moews, Pebbling Graphs, Journal of Combinatorial Theory, Vol 55, 1992, No. 2, 244-252.
[3] G. Hurlbert, Recent progress in graph pebbling, graph Theory Notes of New York, XLIX (2005), 25-34.
[4] D. A. Mojdeh and A. N. Ghameshlou, Domination in Jahangir Graph J ${ }_{2, \mathrm{~m}}$, Int. J. Contemp. Math. Sciences, Vol. 2, 2007, No. 24, 1193 - 1199.
[5] L. Pachter, H. S. Snevily and B. Voxman, On Pebbling Graphs, Congr. Numer. 107 (1995),65-80.
[6] C. Xavier and A. Lourdusamy, Pebbling numbers in Graphs, Pure Appl.Math.Sci., 43 (1996), no. 1-2,73-79.

