Sciencia Acta Xaveriana An International Science Journal ISSN. 0976-1152

Vol. 2 No. 1 pp. 31–47 March 2011

Edge Mean Graph

P. Annammal, ¹ T. Nicholas ² and A. Lourdusamy ³

- ¹ Department of Mathematics, Rani Anna Government College for Women, Tirunelveli–627008, India
- ² Department of Mathematics, St. Jude's College, Thoothoor–629176, India
- ³ Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai-627002, India

Abstract. Let G=(V,E) be a finite simple undirected graph of order p and size q having no isolated vertices. Let $L=\{1,2,\ldots,q\}$ except for graphs having a tree as one component in which case $L'=\{0,1,2,\ldots,q\}$. Let $f:E\to L(L')$ be an injection. For every v in V, let $f^*(v)=\left\lceil\frac{x}{d(v)}\right\rceil$ where $x=\sum f(e)$, the summation being taken over all edges e incident on v and $\lceil y \rceil$ denotes the smallest integer greater than or equal to y. If $f^*(v)$ are all distinct and belong to L(L'), we call f an edge mean labeling of G and a graph G that admits an edge mean labeling is called an edge mean graph. In other words f is an edge mean labeling of G if f induces an injection $f^*: V \to L(L')$. In this article, we investigate certain classes of graphs that admit edge mean labeling. We also show that cycles, complete graphs on 4 vertices and complete bipartite graph $K_{2,3}$ are not edge mean graphs.

Keywords: Edge mean labeling, edge mean graph

AMS Subject Classification: 05C78

(Received: 03 August 2010)

1 Introduction

A graph G is an ordered pair of sets G = (V, E) where the elements of V are called points or vertices and the elements of E are called lines or edges. Labeling methods trace their origin to one introduced by Rosa in 1967. Labeling is a fast growing research area in Graph Theory. There are a number of graph labelings such as graceful labeling, harmonious labeling, cordial labeling, arithmetic labeling, magic-type labeling, antimagic labeling, prime labeling, mean labeling etc.

Definition: Let G = (V, E) be a finite simple undirected graph of order p and size q having no isolated vertices. Let $L = \{1, 2, \ldots, q\}$ except for graphs having a tree as one component in which case $L' = \{0, 1, 2, \ldots, q\}$. Let $f : E \to L(L')$ be an injection. For every v in V, let $f^*(v) = \left\lceil \frac{x}{d(v)} \right\rceil$, where $x = \sum f(e)$, the summation being taken over all edges e incident on v and $\lceil y \rceil$ denotes the smallest integer greater than or equal to y. If $f^*(v)$ are all distinct and belong to L(L'), we call f an edge mean labeling of G and a graph G that admits an edge mean labeling is called an edge mean graph. In other words, f is an edge mean labeling of G if f induces an injection $f^*: V \to L(L')$. Some edge mean graphs are given in Fig. 1.1.

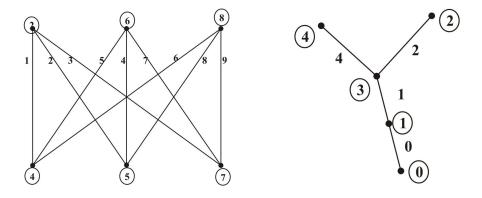


Figure 1.1: Some edge mean graphs.

In [1], Acharya and Hegde defined (k,d)-arithmetic graphs. They proved that if G is a (k,d)-arithmetic graph with k odd and d even then G is bipartite. They also proved that any (1,1)-arithmetic or (2,2)-arithmetic graph is either a star or has a triangle. In [5], Ponraj has defined mean graphs. A graph G = (V,E) with p vertices and q edges is called a mean graph if it is possible to label the vertices $v \in V$ with distinct elements f(v) from $0,1,\ldots,q$ in such a way that when edge e=uv is labeled with [f(u)+f(v)]/2 if [f(u)+f(v)] is even and [f(u)+f(v)+1]/2 if [f(u)+f(v)] is odd, the resulting edge labels are distinct. f is called a mean labeling of G. He has showed that combs, cycles are mean graphs while the complete graph k_n (n>3), the wheel W_n (n>4) are not mean graphs. Similar concepts can be found in [2,6]. A detailed account of various labeling problems can be found in the survey [3]. In this paper, we investigate certain classes of graphs that admit edge mean labeling and certain graphs which are not edge mean graphs. For terminology and symbols we refer to [4].

2 Main results

We note that from the definition, $K_2 = P_2$ is not an edge mean graph. Copies of K_2 are also not edge mean graphs.

Theorem 2.1. Let T be a tree of order p and size q. If T is an edge mean graph, then 0 must be the label of a pendant edge.

Proof. Since T is a tree, p = q + 1. Therefore all the numbers $0, 1, 2, \ldots, q$ must appear as vertex labels. If 0 is the label of an intermediate edge, there will be no vertex with label 0.

Theorem 2.2. Let T be a tree of order p and size q and be an edge mean graph. If v is a vertex of degree ≥ 3 such that there is at least one non-pendant edge incident on v.

Then the following cannot happen. Label of a non-pendant edge incident on v is q and the label of any other edge incident on v is q-1 simultaneously.

Proof. Let f be an edge mean labeling of T. Suppose the above statement is true, then $f^*(v) = \left\lceil \frac{q + (q-1) + \cdots}{d(v)} \right\rceil \le q - 1$ so that there cannot be any vertex with label q as q is the label of a non-pendant edge. Hence the theorem.

Theorem 2.3. Let G be a graph with an edge mean labeling f and u be a pendant vertex of G. Let the vertex v adjacent to u be of degree 2. If f(uv) = n $(1 \le n \le q)$, then the label of the other edge incident on v cannot be n-1.

Proof. Let the other edge incident on
$$v$$
 be e . Suppose $f(e) = n - 1$, then $f^*(v) = \left\lceil \frac{f(e) + f(uv)}{2} \right\rceil = \left\lceil \frac{\overline{n-1} + n}{2} \right\rceil = n = f^*(u)$ which is a contradiction.

Theorem 2.4. Let G = (p,q) be an edge mean graph with an edge mean labeling f which is not a tree and let $\delta(G) \ge p-2$. Then for every v in V, $f^*(v) \ge (p-1)/2$ or p/2 according as p is odd or even.

Proof. Since
$$\delta(G) \ge p-2$$
, there are at least $p-2$ edges incident on any $v \in V$. Hence $f^*(v) \ge \left\lceil \frac{1+2+\cdots+p-2}{p-2} \right\rceil = \frac{p-1}{2}$ or $\frac{p}{2}$ according as p is odd or even.

3 Edge mean labeling of some trees

In this section, we investigate certain trees for edge mean labeling.

Theorem 3.1. Any path P_n (n > 2) is an edge mean graph.

Proof. Let P_n be the path $u_1u_2\cdots u_{n-1}u_n$. Define $f:E(P_n)\to\{0,1,2,\ldots,n-1\}$ by

$$f(u_i u_{i+1}) = \begin{cases} i-1, & 1 \le i \le n-2 \\ n-1, & i = n-1. \end{cases}$$

Then
$$f^*(u_i) = i - 1, 1 < i < n$$
.

Theorem 3.2. The star graph $K_{1,n}$ is an edge mean graph.

Proof. $K_{1,2}$ is the path P_3 and hence an edge mean graph. Consider $K_{1,n}$ $(n \ge 3)$ with central vertex u and pendant vertices u_i $(1 \le i \le n)$.

Define $f: E(K_{1,n}) \to \{0, 1, 2, ..., n\}$ by

$$f(uu_i) = \begin{cases} i - 1, & 1 \le i \le \left\lceil \frac{n}{2} \right\rceil \\ i, & \left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n. \end{cases}$$

Then $f^*(u_i) = f(uu_i)$ and $f^*(u) = \left\lceil \frac{n}{2} \right\rceil$.

Theorem 3.3. Let f be any edge mean labeling of $K_{1,n}$ $(n \ge 3)$. Then 1 and n must occur as edge labels.

Proof. Let u be the central vertex of $K_{1,n}$.

Suppose 1 is not an edge label.

Then
$$f^*(u) = \left\lceil \frac{0+2+\cdots+n}{n} \right\rceil = \left\lceil \frac{n+1}{2} \right\rceil \ge 2$$
, since $n \ge 3$.

Therefore there is no vertex with label 1.

Similarly, if n is not an edge label, there is no vertex with label n contradicting that f is an edge mean labeling.

Theorem 3.4. The labeling in Theorem 3.2 is the only edge mean labeling of $K_{1,n}$.

Proof. Let f be an edge mean labeling of $K_{1,n}$ and let r be the number which we are not using in labeling $K_{1,n}$. Then by Theorem 3.3, 1 < r < n and $f^*(u) = \left\lceil \frac{0+1+\cdots+n-r}{n} \right\rceil = \left\lceil \frac{n+1}{2} - \frac{r}{n} \right\rceil$.

Case (i): n is odd, say, n = 2m + 1. Then $f^*(u) = \left\lceil \frac{2m+2}{2} - \frac{r}{n} \right\rceil = m + 1$ since $\frac{r}{n} < 1$. Therefore we cannot use m + 1 as an edge label. Hence r = m + 1.

Case (ii): n is even, say, n = 2m.

$$f^*(u) = \left\lceil \frac{2m+1}{2} - \frac{r}{2n} \right\rceil = \left\lceil m + \frac{1}{2} - \frac{r}{2m} \right\rceil.$$

Subcase (i): Let r < m. Then $\frac{r}{2m} < \frac{1}{2}$ and hence $f^*(u) = m + 1 = f^*(u_i)$ for some i.

Subcase (ii): Let r > m. Then $\frac{r}{2m} > \frac{1}{2}$. Also $\frac{r}{2m} < 1$. Therefore $f^*(u) = m = f^*(u_i)$ for some i.

Thus, the edges of $K_{1,n}$ should be labeled by $0,1,2,\ldots,m,m+2,\ldots,n$ if n=2m+1 and by $0,1,2,\ldots,m-1,m+1,\ldots,n$ if n=2m. Hence the theorem.

Theorem 3.5. The bistar $B_{n,n}$ is an edge mean graph.

Proof. $B_{1,1}$ is P_4 and hence an edge mean graph. $B_{2,2}$ is an edge mean graph with the given labeling. An edge mean labeling of $B_{2,2}$ is given in Fig. 3.1.

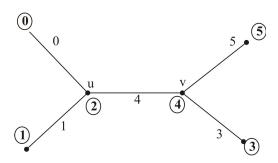


Figure 3.1: An edge mean labeling of $B_{2,2}$.

Let $n \ge 3$. Let u and v be the central vertices and u_i , v_i $(1 \le i \le n)$ be the pendant vertices of $B_{n,n}$.

Case (i): Let
$$n = 2m + 1$$
. Define $f : E(B_{n,n}) \to \{0, 1, 2, \dots, 2n + 1\}$ by
$$f(uu_i) = \begin{cases} i - 1, & 1 \le i \le m + 1 \\ i, & m + 2 \le i \le n \end{cases}$$
$$f(vv_i) = \begin{cases} n + i, & 1 \le i \le m \\ n + i + 1, & m + 1 \le i \le n \end{cases}$$

and f(uv) = m + 1.

Then $f^*(u_i) = f(uu_i)$ and $f^*(v_i) = f(vv_i)$. Also, $f^*(u) = m+1$ and $f^*(v) = n+m+1$.

Case (ii): Let n = 2m. Define $f : E(B_{n,n}) \to \{0, 1, 2, \dots, 2n + 1\}$ as in Case (i) except

for f(uv) = n + m + 1. It can be verified that $f^*(u) = m + 1$ and $f^*(v) = n + m + 1$. \square

Corollary 3.6. Let u and v be the central vertices of $B_{n,n}$. There always exists an edge mean labeling such that $f^*(v) = n + f^*(u)$.

Proof. The labeling f given in Theorem 3.5 is one such labeling.

Theorem 3.7. For any $n \ge 2$, 1 and 2n + 1 cannot be the label of the intermediate edge of $B_{n,n}$.

Proof. Let u and v be the central vertices and u_i , v_i $(1 \le i \le n)$ be the pendant vertices of $B_{n,n}$.

(1). Let f(uv) = 1.

Case (i): Let n = 2. Let u_1 , u_2 and v_1 , v_2 be the vertices adjacent to u and v respectively. Let $f(uu_1) = 0$. To get the vertex label 1, the only choice is $f(uu_2) = 2$.

Hence, $f(vv_1), f(vv_2) \in \{3,4,5\}$ and $f(vv_1) \neq f(vv_2)$.

But, for any such choice of $f(vv_1)$ and $f(vv_2)$, the induced map f^* cannot be an injection.

Case (ii): $n \ge 3$. Then $\min f^*(u)$ or $\min f^*(v) = \left\lceil \frac{(0+2+3+\cdots+n)+1}{n+1} \right\rceil \ge 2$.

Hence there is no vertex with label 1.

Hence $f(uv) \neq 1$.

(2). Suppose, f(uv) = 2n + 1.

Then $\max f^*(u)$ or $\max f^*(v) = \left\lceil \frac{(n+1) + (n+2) + \dots + (n+n) + 2n + 1}{n+1} \right\rceil \le 2n$.

Therefore, there is no vertex with label 2n + 1. Hence the theorem.

Theorem 3.8. Combs are edge mean graphs.

Proof. Let G_n be the comb obtained from a path $P_n: u_1u_2 \cdots u_{n-1}u_n$ by joining a vertex v_i to u_i $(1 \le i \le n)$. Define $f: E(G_n) \to \{0, 1, 2, \dots, 2n-1\}$ by

$$f(u_i u_{i+1}) = \begin{cases} 1, & i = 1 \\ 2(i-1), & 2 \le i \le n-1 \end{cases}$$
$$f(u_i v_i) = \begin{cases} 0, & i = 1 \\ 2i-1, & 2 \le i \le n. \end{cases}$$

Then $f^*(v_i) = f(u_i v_i)$, for $1 \le i \le n$.

$$f^*(u_1) = 1$$
, $f^*(u_2) = 2$, $f^*(u_i) = 2i - 2$, $3 \le i \le n - 1$, $f^*(u_n) = 2n - 2$.

Therefore f is an edge mean labeling of G_n .

4 Edge mean labeling of some graphs other than trees

Definition 4.1. The graph G^2 of a graph G has $V(G^2) = V(G)$ with u, v adjacent in G^2 whenever $d(u, v) \le 2$ in G. The powers G^3 , G^4 ... of G are similarly defined.

Theorem 4.2. P_n^k where $k = \min\{n/2, 5\}$ is an edge mean graph.

Proof. Let P_n be the path $u_1u_2\cdots u_n$.

 P_n^k has *n* vertices and $q = kn - \frac{k(k+1)}{2}$ edges.

$$E(P_n^k) = \{u_i u_{i+r}: 1 \le r \le k \text{ and } 1 \le i \le n-r\}.$$

Define $f: E(P_n^k) \to \{0, 1, 2, \dots, q\}$ by

$$f(u_i u_{i+r}) = ki - (k-r), 1 \le r \le k-1 \text{ and } 1 \le i \le n-k+1.$$

$$f(u_iu_{i+k})=ki, 1\leq i\leq n-k.$$

$$f(u_{n-k+2}u_{n-k+3}) = kn - k(k-1) = A$$
 (say).

$$f(u_{n-k+s}u_{n-k+s+1}) = A + (k-2) + (k-3) + \dots + (k-s+1), 3 \le s \le k-1,$$

$$f(u_{n-k+s}u_{n-k+s+t}) = f(u_{n-k+s}u_{n-k+s+t-1}) + 1, 2 \le s \le k-t \text{ and } 2 \le t \le k-2.$$

It can be verified that

(i) For
$$1 \le i \le k$$
, $f^*(u_i) = \left\lceil \frac{x}{d(u_i)} \right\rceil$ where $d(u_i) = k + i - 1$ and $x = \sum_{r=1}^{k} [ki - (k-r)] + \sum_{r=2}^{i} [(i-r)k + r - 1]$.

r=2
(ii) For
$$1 \le i \le n - 2k$$
, $f^*(u_{k+i}) = \left\lceil \frac{x}{d(u_{k+i})} \right\rceil$ where $d(u_{k+i}) = 2k$ and $x = \sum_{r=1}^{k} \left[k(k+i) - (k-r) \right] + \sum_{r=2}^{k+1} \left[(k+i-r)k + r - 1 \right]$.
To determine $f^*(u_{n-k+1})$, $f^*(u_{n-k+2})$, ..., $f^*(u_n)$.

(i)
$$k = 2$$
.
 $f^*(u_{n-1}) = 2n - 4$; $f^*(u_n) = 2n - 3$.

(ii)
$$k = 3$$
.
 $f^*(u_{n-2}) = 3n - 10$; $f^*(u_{n-1}) = 3n - 9$, $f^*(u_n) = 3n - 7$.

(iii)
$$k = 4$$
.
 $f^*(u_{n-3}) = 4n - 19$; $f^*(u_{n-2}) = 4n - 16$, $f^*(u_{n-1}) = 4n - 14$, $f^*(u_n) = 4n - 12$.

(iv)
$$k = 5$$
.
 $f^*(u_{n-4}) = 5n - 30$; $f^*(u_{n-3}) = 5n - 27$, $f^*(u_{n-2}) = 5n - 24$, $f^*(u_{n-1}) = 5n - 21$, $f^*(u_n) = 5n - 19$.

Hence the theorem.

An edge mean labeling of P_{12}^5 is given in Fig. 4.1.

Theorem 4.3. The complete graph k_n $(n \ge 5)$ is an edge mean graph.

Proof. Case (i): Let n = 5. An edge mean labeling of K_5 is given in Fig. 4.2.

Case (ii): Let
$$n \ge 6$$
. Let $V(K_n) = \{v_1, v_2, ..., v_n\}$.

Then
$$E(K_n) = \{v_i v_j : 1 \le i \le n - 1 \text{ and } i + 1 \le j \le n\}$$
 and $q = \frac{n(n-1)}{2}$.

Define
$$f: E(K_n) \to \{1, 2, ..., q\}$$
 by $f(v_1v_j) = q - (j-2), 2 \le j \le n$.

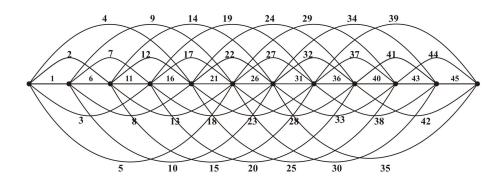


Figure 4.1: An edge mean labeling of P_{12}^5 .

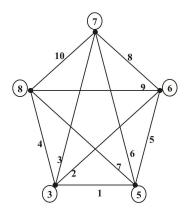


Figure 4.2: An edge mean labeling of K_5 .

$$f(v_iv_j) = f(v_{i-1}v_n) - (j-i), \ 2 \le i \le n-1 \ \text{and} \ i+1 \le j \le n.$$
 It can be verified that $f^*(v_1) = \left\lceil \frac{n^2-2n+2}{2} \right\rceil$. For $2 \le r \le n$, $f^*(v_r) = \left\lceil \frac{x}{n-1} \right\rceil$ where $x = (r-1)q' + (n-r)q'' - (r-2)(n-2) - (r-3)(n-3) - \dots - 1(n-r+1) - \frac{(n-r-1)(n-r)}{2}$. Here $q' = q - r + 2$ and $q'' = q - (r-1)n + \frac{(r-1)r}{2}$.

Therefore f is an edge mean labeling of K_n .

An edge mean labeling of K_8 is given in Fig. 4.3.

Theorem 4.4. The wheel $W_n = C_n + k_1 \ (n > 3)$ is an edge mean graph.

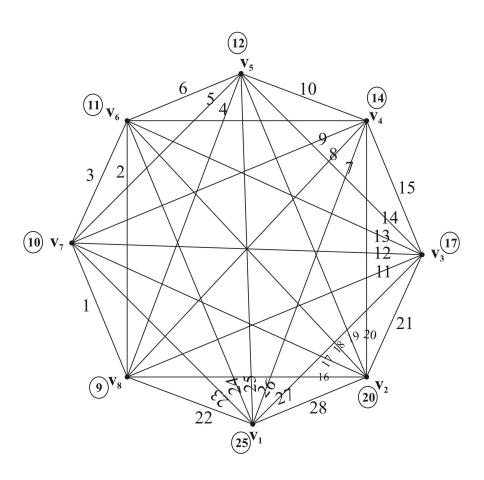


Figure 4.3: An edge mean labeling of K_8 .

Proof. Let C_n be the cycle $u_1u_2\cdots u_nu_1$ and $k_1=\{u\}$. Then $E(W_n)=\{u_iu_{i+1},u_iu,\ 1\leq i\leq n\}$ and $L=\{1,2,\ldots,2n\}$. **Case (i)**: $n\equiv 0\pmod 6$. That is, $n=6r,\ r=1,2,3\ldots$. Define $f:E(W_n)\to L$ by $f(u_iu_{i+1})=2i,\ 1\leq i\leq n-3;$ $f(u_{n-2}u_{n-1})=2n,\ f(u_{n-1}u_n)=2n-2,$ $f(u_nu_1)=2n-4.$

$$f(u_i u) = 2i - 1, 1 \le i \le n$$
. Then $f^*(u) = n, f^*(u_1) = 4r, f^*(u_i) = 2i - 1, 2 \le i \le n - 3$.
 $f^*(u_{n-2}) = 2n - 3, f^*(u_{n-1}) = 2n - 1, f^*(u_n) = 2n - 2$.

Case (ii): $n \equiv 1 \pmod{6}$. That is n = 6r + 1, $r = 1, 2, 3 \dots$

Define $f: E(W_n) \to L$ by $f(u_i u_{i+1}) = 2i - 1$; $f(u_i u) = 2i$, $1 \le i \le n$.

Then $f^*(u) = n+1$, $f(u_1) = 4r+2$; $f^*(u_i) = 2i-1$, $2 \le i \le n$.

Case (iii): $n \equiv 2 \pmod{6}$. That is n = 6r + 2, r = 1, 2, ...

Define $f: E(W_n) \to L$ by $f(u_i u_{i+1}) = 2i$, $1 \le i \le n-2$; $f(u_{n-1} u_n) = 2n$; $f(u_n u_1) = 2n-2$.

 $f(u_i u) = 2i - 1, 1 \le i \le n.$

Then $f^*(u) = n$; $f^*(u_1) = 4r + 2$; $f^*(u_i) = 2i - 1$, $2 \le i \le n - 2$.

 $f^*(u_{n-1}) = 2n - 2$; $f^*(u_n) = 2n - 1$.

Case (iv): $n \equiv 3 \pmod{6}$. That is n = 6r + 3, r = 0, 1, 2, ...

Subcase (i): When r = 0, n = 3 and $W_3 = C_3 + K_1 = K_4$ which is not an edge mean graph by Theorem 5.2.

Subcase (ii): When r = 1, 2, 3, ...

Define $f: E(W_n) \to L$ by

$$f(u_iu_{i+1}) = 2i - 1, 1 \le i \le n - 2;$$

$$f(u_{n-1}u_n) = 2n-1$$
; $f(u_nu_1) = 2n-3$; $f(u_iu) = 2i$, $1 \le i \le n$.

Then
$$f^*(u) = n+1$$
; $f^*(u_1) = 4r+2$, $f^*(u_i) = 2i-1$, $2 \le i \le n-2$.

$$f^*(u_{n-1}) = 12r + 4$$
; $f^*(u_n) = 12r + 5$.

Case (v): $n \equiv 4 \pmod{6}$. That is n = 6r + 4, r = 0, 1, 2, ...

Subcase (i): When r = 0, n = 4.

An edge mean labeling of W_4 is given in Fig. 4.4.

Subcase (ii): When r = 1, 2, 3, ...

Define $f: E(W_n) \to L$ by

$$f(u_iu_{i+1}) = 2i$$
, $f(u_iu) = 2i - 1$, $1 \le i \le n$.

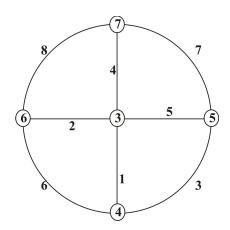


Figure 4.4: An edge mean labeling of W_4 .

Then
$$f^*(u) = n$$
, $f^*(u_1) = 4r + 4$, $f^*(u_i) = 2i - 1$, $2 \le i \le n$.

Case (vi): $n \equiv 5 \pmod{6}$. That is n = 6r + 5, r = 0, 1, 2, ...

Define $f: E(W_n) \to L$ by

$$f(u_iu_{i+1}) = 2i - 1, 1 \le i \le n - 2.$$

$$f(u_{n-1}u_n) = 2n-1$$
; $f(u_nu_1) = 2n-3$, $f(u_iu) = 2i$, $1 \le i \le n$.

Then
$$f^*(u) = n+1$$
, $f^*(u_1) = 4r+4$, $f^*(u_i) = 2i-1$, $2 \le i \le n-2$.

$$f^*(u_{n-1}) = 12r + 8$$
; $f^*(u_n) = 12r + 9$.

Thus, W_n is an edge mean graph for n > 3.

An edge mean labeling of W_8 is given in Fig. 4.5.

5 Some graphs which are not edge mean graphs

In this section we prove that the cycle C_n , the complete graph K_4 and the complete bipartite graph $K_{2,3}$ are not edge mean graphs.

Theorem 5.1. The cycle C_n is not an edge mean graph.

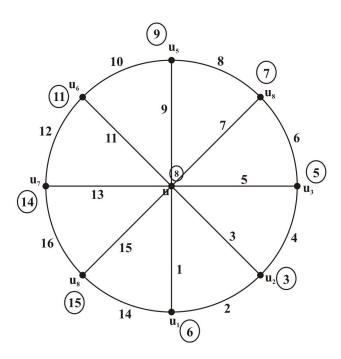


Figure 4.5: An edge mean labeling of W_8 .

Proof. Let f be an edge mean labeling of C_n .

Since q = p = n in C_n , all the numbers 1, 2, ..., n must appear as vertex label. Also, since d(v) = 2 for every vertex v in C_n , min $f^*(v) = \left\lceil \frac{1+2}{2} \right\rceil = 2$.

Therefore, there will not be any vertex with label 1. Hence the theorem. \Box

Theorem 5.2. The complete graph K_4 is not an edge mean graph.

Proof. Let $V(K_4) = \{v_1, v_2, v_3, v_4\}.$

Then $E(K_4) = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_2v_4, v_3v_4\}.$

Let f be an edge mean labeling of k_4 .

For any vertex v in K_4 , d(v) = 3.

$$\min f^*(v) = \left\lceil \frac{1+2+3}{3} \right\rceil = 2 \text{ and } \max f^*(v) = \left\lceil \frac{4+5+6}{3} \right\rceil = 5.$$

Hence the four vertices get the labels 2, 3, 4, 5 and are distinct. To get the label 2 all

the three edges incident on a vertex must be labeled 1, 2, 3.

Let
$$f(v_1v_2) = 1$$
, $f(v_1v_3) = 2$, $f(v_1v_4) = 3$ so that $f^*(v_1) = 2$.

Case (i): Let $f(v_2v_3) = 4$.

Then $f(v_2v_4), f(v_3v_4) \in \{5,6\}$ and $f(v_2v_4) \neq f(v_3v_4)$.

In both cases $f^*(v_2) = f^*(v_3) = 4$.

Case (ii): Let $f(v_2v_3) = 5$.

Then $f(v_2v_4) = 4$ and $f(v_3v_4) = 6$ give $f^*(v_3) = f^*(v_4) = 5$.

$$f(v_2v_4) = 6$$
 and $f(v_3v_4) = 4$ give $f^*(v_2) = f^*(v_3) = 4$.

Case (iii): Let $f(v_2v_3) = 6$.

Then $f(v_2v_4), f(v_3v_4) \in \{4,5\}$ and $f(v_2v_4) \neq f(v_3v_4)$ give $f^*(v_2) = f^*(v_4) = 4$.

Therefore, f cannot be an edge mean labeling of K_4 .

Hence K_4 is not an edge mean graph.

Theorem 5.3. $K_{2,3}$ is not an edge mean graph.

Proof. Let $V = \{V_1, V_2\}$ where $V_1 = \{u_1, u_2\}$ and $V_2 = \{v_1, v_2, v_3\}$ be a bipartition of $V(K_{2,3})$.

Then $E(K_{2,3}) = \{u_1v_i, u_2v_i: 1 \le i \le 3\}.$

Suppose $f: E(K_{2,3}) \rightarrow \{1,2,3,4,5,6\}$ is an edge mean labeling of $K_{2,3}$.

Since for any $v \in V$, $2 \le f^*(v) \le 6$, all the labels 2, 3, 4, 5, 6 must be assumed by the vertices of $K_{2,3}$.

Now, to get the vertex label 2 all the edges incident on u_1 or u_2 must have the labels 1, 2, 3 (or) the edges incident on v_1 or v_2 or v_3 must have the label pair (1, 2) or (1, 3). In the first case, there is no possibility of getting the vertex label 6.

Case (ii): Let
$$f(u_1v_1) = 1$$
 and $f(u_2v_1) = 2$.

Then $f^*(v_1) = 2$. Now to get the label 6 we must have

(*)
$$f(u_1v_2), f(u_2v_2) \in \{5, 6\}$$
 and $f(u_1v_2) \neq f(u_2v_2)$ or

(**)
$$f(u_1v_3), f(u_2v_3) \in \{5,6\}$$
 and $f(u_1v_3) \neq f(u_2v_3)$.

The two cases (*) and (**) are identical. So, we discuss only the case (*).

Subcase (i): Let $f(u_1v_2) = 5$ and $f(u_2v_2) = 6$.

Then $f(u_1v_3), f(u_2v_3) \in \{3,4\}$ and $f(u_1v_3) \neq f(u_2v_3)$ imply $f^*(u_2) = f^*(v_3) = 4$.

Subcase (ii): Let $f(u_1v_2) = 6$ and $f(u_2v_2) = 5$.

Then $f(u_1v_3)$, $f(u_2v_3) \in \{3,4\}$ and $f(u_1v_3) \neq f(u_2v_3)$.

In this case $f^*(u_1) = f^*(u_2) = f^*(v_3) = 4$.

Case (iii): Let $f(u_1v_1) = 1$ and $f(u_2v_1) = 3$. Then $f^*(v_1) = 2$. Proceed as in Case (ii).

Subcase (i): Let $f(u_1v_2) = 5$ and $f(u_2v_2) = 6$.

Then $f(u_1v_3) = 2$ and $f(u_2v_3) = 4$ imply $f^*(u_1) = f^*(v_3) = 3$.

 $f(u_1v_3) = 4$ and $f(u_2v_3) = 2$ imply $f^*(u_1) = f^*(u_2) = 4$.

Subcase(ii): Let $f(u_1v_2) = 6$ and $f(u_2v_2) = 5$.

Then $f(u_1v_3) = 2$ and $f(u_2v_3) = 4$ imply $f^*(u_1) = f^*(v_3) = 3$.

$$f^*(u_1v_3) = 4$$
 and $f(u_2v_3) = 2$ imply $f^*(u_1) = f^*(u_2) = 4$.

Therefore f is not an edge mean labeling of $K_{2,3}$.

Hence $K_{2,3}$ is not an edge mean graph.

References

- [1] B.D. Acharya and S.M. Hegde, *Arithmetic Graphs*, Journal of Graph Theory, **14**(3), 275–299 (1989).
- [2] L.W. Beineke and S.M. Hegde, *Strongly Multiplicative Graphs*, Discussions Mathematics—Graph Theory, **21**(2001) 63–75.
- [3] J.A. Gallian, *A Dynamic survey of Graph Labeling*, The Electronic Journal of Combinatorics **14** (2007) #DS6.
- [4] F. Harary, Graph Theory, Addison-Wesley, Reading MA (1969).

- [5] R.M. Ponraj, Mean Graph, Ph.D. Thesis, Manonmaniam Sundaranar University, Tamil Nadu (2005).
- [6] M. Sundaram, R. Ponraj and S. Somasundaram, On a Prime Labeling conjecture, ARS Combinatoria, 79 (2006), 205–209.