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Abstract. A total labeling of a graph G(V,E) with n vertices and e edges is

a bijection λ : V ∪E → {1,2, . . . ,n+ e}. In this paper we introduce the concept

of weight of a graph associated with a total labeling and find the lower and upper

bounds for the same for an arbitrary graph. The concept of weight magic-graph is

also introduced.
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1 Introduction

All graphs in this paper are finite, simple and undirected. The graph G(V,E) has vertex
set V = V (G) and edge set E = E(G). A total labeling of a graph G(V,E) with n
vertices and e edges is a bijection λ : V ∪E→{1,2, . . . ,n+ e}. The weight of a vertex
with respect to λ is defined by wt(v) = λ (v)+∑λ (vw) where the summation is taken
over all edges incident to v. The weight of an edge vw is defined by wt(vw) = λ (v)+
λ (vw)+λ (w). The weight of G with respect to a total labeling λ is defined as the sum
of the weight of all its elements (vertices and edges) and is denoted by wtλ (G). That
is, wt(G) = ∑wt(v)+∑wt(e).
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In this paper, we find the lower bound and upper bound for the weight of an arbitrary
graph. Also, we introduce the concept of weight-magic graphs.

2 Main results

2.1 Bounds for the weight of a graph

Each vertex label contributes d(v)+1 times to wtλ (G) and each edge label is counted
thrice towards wtλ (G). Let L be the set of all total labelings of G. We define wt?(G) =

min
λ∈L

wtλ (G)} and wt?(G) = max
λ∈L

wtλ (G)}. wt?(G) and wt?(G) are called the lower and

upper bounds of wt(G) and we call the corresponding labeling, a minimal and maximal
labeling of G.

First, we will find the bounds for some simple graphs and then extend the idea for
any finite arbitrary graph. The following lemma is useful for this purpose.

Lemma 2.1. Let a and b be positive integers and a < b. For any positive integers x and
y we have ax+by≤ ay+bx iff x≥ y.

Proof. (ax+by)− (ay+bx)≤ 0 iff (a−b)(x− y)≤ 0, which proves the lemma.

Since vertices of lower degree contribute less to wt(G), as an application of the
above lemma, we assign smaller numbers to vertices of lower degree and larger num-
bers to vertices of higher degree to determine wt∗(G) and other way for wt∗(G).

Proposition 2.2. For n≥ 3, 6n2−7n+3≤ wt(Pn)≤ 6n2−3n−3.

Proof. Let λ be a total labeling that assigns 2n− 1, 2n− 2 to the end vertices and
2n− 3,2n− 4, . . . ,2,1 to the remaining elements of Pn in any order. By Lemma 2.1,
this will be a minimal labeling of Pn and wt∗(Pn) = 6n2− 7n+ 3. A maximal total
labeling of Pn assumes 1 and 2 to the end vertices and 3, 4,. . . , 2n− 2, 2n− 1 to the
intermediate vertices and edges of Pn and hence wt∗(Pn) = 6n2−3n−3.
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Corollary 2.3. wt∗(Pn) + 2nr + r(r− 1)/2 ≤ wt(PnUrK1) ≤ wt∗(Pn) + r(r + 1)/2 +

r(6n−5),r ≥ 1.

Proposition 2.4. 14n2 +16n+1≤ wt(Wn)≤ 19n2 +9n+1.

Proof. Wn = Cn +K1, n ≥ 3, has n+ 1 vertices and 2n edges and hence has 3n+ 1
elements. Let λ be any total labeling of Wn. In the calculation of wt(Wn), the label of
the central vertex v0 occurs d(v0)+ 1 = n+ 1 ≥ 4 times, label of the vertices vi (i =
1,2, . . . ,n) in the cycle Cn occurs d(vi)+1 = 4 times. Label the vertex v0 by 1; vi (1≤
i ≤ n) by 2, 3, . . . , n+ 1 and the edges by n+ 2, n+ 3, . . . , 3n+ 1. Then wt∗(Wn) =

14n2+16n+1. Label the edges by 1,2, . . . , 2n; vi (1≤ i≤ n) by 2n+1, . . . , 3n and v0

by 3n+1. Then wt∗(Wn) = 19n2 +9n+1.

Proposition 2.5. Let G be any k-regular (k ≥ 2) graph with n vertices. Then

(i) wt∗(G) = wt∗(G) = 3n(2n+1) when k = 2.

(ii) 1/2{3(n+e)(n+e+1)+(k−2)n(n+1)} ≤wt(G)≤ 1/2{(k+1)(n+e)(n+e+
1)+(2− k)e(e+1)} when k ≥ 3.

Proof. Let G be a k-regular (k ≥ 2) graph with n vertices and e edges. Then G has
n+ e elements where e = nk/2. Let λ be a total labeling of G by the integers 1, 2. . . ,
n+ e.

Case(i): When k = 2, G is the cycle Cn and e = n. In a cycle, the contribution of any
vertex or edge to its weight is thrice its label. Hence the elements of G can be labeled by
the integers 1, 2, . . . , 2n in any order. Hence wt∗(G) = wt∗(G) = wt(G) = 3n(2n+1).

Case (ii): When k≥ 3, the contribution of the vertices towards wt(G) is k+1≥ 4 times
of its label. Assign the numbers 1, 2, . . . , n to the vertices and n+1,n+2, . . . ,n+ e to
the edges. Then wt∗(G) = 1/2{3(n+ e)(n+ e+1)+(k−2)n(n+1)}.

Assign 1, 2, . . . , e to the edges and e+ 1,e+ 2, . . . ,e+ n to the vertices. Then
wt∗(G) = 1/2{(k+1)(n+ e)(n+ e+1)+(2− k)e(e+1)}.
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Corollary 2.6.
1
2
{3(n+ e)(n+ e+1)+(n−3)n(n+1)} ≤ wt(Kn)

≤ 1
2
{n(n+ e)(n+ e+1)+(3−n)n(n+1)}

where e = n(n−1)/2.

Theorem 2.7. Let G be a graph with n vertices and e edges. Denote the number of
vertices of degree i as ni, i = 0,1, 2, . . . , r. Then

wt∗(G) =
1
2

r

∑
i=0

(i+1)ni(ni +1)+
r

∑
i=1

(i+1)(n0 +n1 + · · ·+ni−1)ni

+(n+n1 +2n0 +2e)e+
3
2

e(e+1)

and wt∗(G) =
1
2

r

∑
i=0

(i+1)ni(ni +1)

+
r

∑
i=1

i(ni +ni+1 + · · ·+nr−1 +nr)ni−1

+(3n−n1−2n0)e+
3
2

e(e+1).

Proof. Let λ be a total labeling of G that assigns i0 (1≤ i0≤ n0) to the isolated vertices;
n0+ i1 (1≤ i1 ≤ n1) to the pendant vertices; n0+n1+ i2 (1≤ i2 ≤ n2) to the vertices of
degree 2; n0 +n1 +n2 + ie (1≤ ie ≤ e) to the edges; n0 +n1 +n2 +e+ i3 (1≤ i3 ≤ n3)

to the vertices of degree 3 and so on, finally, assigns n0 +n1 + · · ·+nr−1 + e+ ir (1 ≤
ir ≤ nr) to the vertices of degree r. By Lemma 2.1, this will be a maximal labeling of
G.

Hence

wt∗(G) = 1/2
r

∑
i=0

(i+1)ni(ni +1)+
r

∑
i=1

(i+1)(n0 +n1 + · · ·+ni−1)ni

+(n+n1 +2n0 +2e)e+
3
2

e(e+1).

A minimal total labeling of G assigns the labels 1, 2, 3, . . . , n+ e to the elements of G,
starting from the vertices of degree r and going through the elements of G according to
their contribution to wt(G) in descending order.
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Hence

wt∗(G) = 1/2
r

∑
i=0

(i+1)ni(ni +1)+
r

∑
i=1

i(ni +ni+1 + · · ·+nr−1 +nr)ni−1

+(3n−n1−2n0)e+
3
2

e(e+1).

Hence the theorem.

3 Weight magic graphs

Exoo et al. [2] call a function λ a totally magic labeling of a graph G if λ is both a
vertex magic and edge magic total labeling of G. A total labeling λ of a graph G(V,E)
is called (i) vertex magic total labeling if for any vertex v in V , wt(v) = h for some
constant h. (ii) Edge magic total labeling if for any edge e in E, wt(e) = k for some
constant k.

We introduce the concept of weight magic graphs. A graph G is called weight magic
if weight of G is the same for any total labeling λ of G.

Theorem 3.1. Any cycle Cn is weight magic with constant weight 3n(2n+1).

Proof. Let λ be any total labeling of Cn. All the three numbers which contribute to
the weight of any vertex or edge are distinct. Then, wt(Cn) = 3n(2n+ 1) which is
independent of λ . Hence Cn is weight magic.

Lemma 3.2. Let x1,x2, . . . ,xm, k be positive integer such that for each permutation
a1,a2, . . . ,am; b1,b2, . . . ,bn of labels 1, 2, . . . , m+n, a1x1+a2x2+ · · ·+amxm+k(b1+

b2 + · · ·+bn) =C, a constant. Then x1 = x2 = · · ·= xm = k.

Proof. The numbers 1, 2, . . . , m+n can be permuted to a1, a2, . . . , am, b1, b2, . . . , bn

in (m+n)! ways. For each such permutation,

x1a1 + x2a2 + · · ·+ xmam + k(b1 +b2 + · · ·+bn) =C (Constant). (1)
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Consider the permutation where a1 and b1 interchange their positions in (1). Then
we have,

x1b1 + x2a2 + · · ·+ xmam + k(a1 +b2 + · · ·+bn) =C. (2)

(1)-(2) gives

x1(a1−b1) = k(a1−b1)

x1 = k.

Similarly considering the permutations where a2, a3, . . . , am interchange their po-
sitions with b1 in (1), we get,

x2 = x3 = · · ·= xm = k.

Theorem 3.3. A graph is weight magic iff it is 2-regular.

Proof. Let G be a weight magic graph with constant weight k. Let v1, v2, . . . , vm and
e1, e2, . . . , en be the vertices and edges of G respectively. Let λ be a total labeling of
G. Then wt(v1)+ · · ·+wt(vm)+wt(e1)+ · · ·wt(en) = k. That is, λ (v1)(d(v1)+ 1)+
· · ·+λ (vm)(d(vm)+ 1)+ 3(λ (e1)+ · · ·+λ (en)) = k, which becomes x1λ (v1)+ · · ·+
xmλ (vm)+3(λ (e1)+· · ·+λ (en))= k, where xi = d(vi)+1, 1≤ i≤m, λ (v1), . . . ,λ (vm),
λ (e1), . . . ,λ (en) are all distinct. Therefore, x1 = · · ·xm = 3 (by Lemma 3.2). Hence,
d(vi) = 2, 1≤ i≤ m. which implies that G is 2-regular.

Conversely, let G be 2-regular. Let λ be a total labeling of G by the integers 1, 2,
. . . , m+n. In the calculation of wtλ (G), the label of each vertex and each edge appears
exactly three times. Hence wtλ (G) is the same for any total labeling λ of G and hence
G is weight magic.

Note: The above theorem says that only cycles and disjoint union of cycles are
weight magic.
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