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Abstract. LetG be a graph with vertex s¥t(G) , edge seE(G). For each
vertex (or edge) o6, a new vertex is taken and the resulting set of vertices
is denoted by (G) (or E1(G)) respectively. LeG andL(G) denote the
complement graph and line graph Gf The middle graph M(G) as an
intersection grapk(F) on the vertex se¥ (G) of any graphG. Let E(G)

be the edge set db andF = V/(G) UE(G) whereV/(G) indicates the
family of one-point subsets of the 3&{G) , thenM(G) = Q(F).

Thetotal closed neighborhood graph Nic(G) of a graphG is defined as the
graph having vertex s&(G) UV;(G) and two vertices are adjacent if they
correspond to adjacent vertices@for one corresponds to a vertaxof
V1(G) and the other to a vertex; of G andw; is in N[uj] (see[1]).

For a graplG, we define théotal closed edge neighborhood graph ENi¢(G)

of a graphG as the graph having vertex $8tG) U E1(G) with two vertices
are adjacent if they correspond to adjacent edgés af one corresponds
to an elemend of E1(G) and the other to an elemesgtof E(G) wheree;
isin N[g].
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In this paper, we solve the graph equatitis) = Nic(H), L (G) = Nee(

H
M(G) = Nee(H), M(G) = Nee(H), L(G) = ENie(H), L(G) = ENie(H),
M (G) = ENio(H) andM (G) = ENio(H).
The symboE stands for isomorphism between two graphs.
Keywords: Line graph, Middle graph, Total closed neighborhood graph,
Total closed edge neighborhood graph.
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1 Introduction

By a graph, we mean a finite, undirected graph without loopsuitiphe edges. Defi-
nitions not given here may be found I [2]. For a grdphletV(G) andE(G) denote
its vertex set and edge set respectively.

Hamada and Yoshimural[3] defined a gragfG) as an intersection grag®(F) on
the vertex se¥ (G) of any graph G. LeE(G) be the edge set @ and F = V(G)UE(G)
where V(G) indicates the family of one-point subsets of the\86B) . Let M(G) =
Q(F).M(G) is called the middle graph @.

Theopen-neighborhood N(u) of avertexuin V(G) is the set of all vertices adjacent
to u.

N(u) ={v/uve E(G)}

The closed neighborhodd[u] of a vertexu in V(G) is given by
N[u] = {u} UN(u).

For each vertex; of G, a new vertexy is taken and the resulting set of vertices is
denoted by (G).

Thetotal closed neighborhood graph Ni¢(G) of a graphG is defined as the graph
having vertex seV(G) U V1(G) and two vertices are adjacent if they correspond to
adjacent vertices of or one corresponds to a verteiof V;(G) and the other to a
vertexw; of G andw; is in N[u;] (see[1]).
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The open-neighborhool(e) of an edges in E(G) is the set of edges adjacent
toq.
N(e)={ej/& andej are adjacentiiG}.

The closed-neighborhodd[e] of an edges in E(G) is given by

N[e] = {e} UN(e)

For each edge of G, a new vertexd is taken and resulting set of vertices is denoted
by E1(G).

For a graphG, we define thetotal closed edge neighborhood graph ENi¢(G) of a
graphG as the graph having vertex $etG) U E1(G) with two vertices are adjacent if
they correspond to adjacent edgesGobr one corresponds to an elemehof E; (G)
and the other to an elemegjtof E(G), wheree; is in N[g].

In Fig.[, a graptG and itsNic(G) and EN¢(G) are shown.

(@) (b) (c)

Figure 1: (a):G, (b): Nic(G) and (c) ENc(G).

The symbol= stands for isomorphism between two graphs. GetL(G) and
T(G) denote respectively the complement, the line graph andata graph ofG.

Cvetkove and Sime [4] solved graph equatiohG) = T(H),L(G) = T(H). Akiyama

et al. [5] solved graph equationgG) = M(H); M(G) =2 T(H);M(G) = T(H) and
L(G) =2 M(H). Here we solve the following graph equations:
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(1) L(G) = Nee(H).
(2) L(G) = Nee(H).
(3) M(G) = Nie(H).

(4) M(G) = Neg(H).
(5) L(G) = ENie(H).

~—

(6) L(G) 2 ENtc(H).

(7) M(G) =ENc(H).

(8) M(G) = ENgc(H).

Beineke has shown in|[6] that a gra@s a line graph if and only i has none of the
nine specified graphs,i=1, 2, ..., 9 as an induced subgraph. We depict here three of
the nine graphs which are useful to extract our later restlitese aré; = Ky 3, (see
Fig.[2), andF = K5 — X, wherex is any edge oKg. A graphG™ is theendedge graph

of agraphG if G* is obtained fronG by adjoining an endedggu; at each vertex; of

G [5]. Hamada and Yoshimural[3] have proved tNHIG) = L(G™).

Figure 2: .

2 The solution ofL(G) = Ny(H)

Any graphH which is a solution of the above equation, satisfies theiollg proper-
ties:
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(i) H must be a line graph, siné¢ is an induced subgraph dk:(H).

(i) H does not contain a cut-vertex, since otherwksayould be an induced subgraph
of Nic(H).

(i) H does not contain a component having more than two vertioes stherwise,
F1 would be an induced subgraphM(H).

It is not difficult to see from observation (ii) th&t has no cut-vertices. We consider
the following cases:
Case 1.SupposeH is connected. TheH is Ky or K,. The corresponding is Ky » or
K3 o K5 respectively.
Case 2.SupposeH is disconnected. TheH is nK1 or nK,. The correspondin is
nK12 or n(KzoKy) respectively.

From the above discussion, we conclude the following

Theorem 2.1.

The following pairs(G,H) are all pairs of graphs satisfying the graph equation
L(G) = Ne(H):

(NK12,nKg, n>1; and (n(KzoKp),nKp), n>1).

3 The solution ofL(G) = Ny(H)

First, we observe that in this cabkesatisfies the following properties:

(i) If H has at least one edge, then it is connected, since otheisadF, are
induced subgraphs d§:(H).

(i) H does not contain a paf as an induced subgraph, since otherwigeis an
induced subgraph dfic(H).

(iii) H does not contai€,, n > 5 as an induced subgraph, since otherwisayould
be an induced subgraph Nf.(H).
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(iv) H does not contain more than one cut-vertex, since othenkisaiould be an
induced subgraph dfc(H).

(v) H does not contaiKy 4 as an induced subgraph, since otherwiseyould be an
induced subgraph dfc(H).

(vi) H does not contain a cut-vertex which lies on blocks other grsince other-
wise, R, is an induced subgraph dc(H).

ThusH has at most one cut-vertex. We consider the following cases:
Case 1.SupposeH has exactly one cut-vertex. Thehis Ky 2 or Kq 3. Corresponding
Gis (C4o0Ko) UKy or (Kg0Kz) UKj respectively.
Case 2.SupposeH has no cut-vertices. We consider the following subcases:
Subcase 2.1H = Kp. In this casgKynU nK2,Kp), n > 1 and(Kz U 3K3, K3) are the
solutions.
Subcase 2.2H = Kynn. Then from observation (vV)Ca o Ks,K33) and (Ks 0 Kg,K3 3)
are the solutions.
Subcase 2.3.H is neither a complete graph nor a complete bipartite graplemF
observation (iii),H is C,, n < 4 or K4 — X, wherex is any edge oK. In this case the
solutions aréKj 3U3K2,C3), (K3U3K3,C3), (C40Cy, Cs) and(G', K4 — x) whereG' is
the graph shown in Fi¢l 3 are the solutions.

Figure 3:G'.
Thus we have the following

Theorem 3.1.The following pairs(G,H) are all pairs of graphs satisfying the graph

equatiorL(G) = Nyc(H):
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((Ca0Kz) UKz, K12); ((KaoKz) UKz, Ky 3); (KinUnKz,Kn), N> 17 (K3U3Kz,Ks),
(C40Ka,K23); (KaoKa,Kz3); (CaoCy,Ca); and(G',Ka —X), wherex is any edge of
K4 andG' is the graph shown in Figl 3.

4 The solution of M(G) = Ny (H)

Theorem 2.1 gives solutions of the graph equakig®) = Nic(H ). But none of these is
of the form(G*,H). Hence, there is no solution of the equatM(G) = Nic(H). Now,
we state the following result.

Theorem 4.1.There is no solution of the graph equatldifG) = Nic(H).

5 The solution ofM(G) = Nic(H)

Theoren 3.11 gives solution of the equatiofG) = Nic(H). But none of these is of the

form (G, H). Therefore there is no solution of the graph equatb(G) = Nic(H).
Now, we state the following result.

Theorem 5.1.There is no solution of the graph equatldifG) = Nic(H).

6 The solution ofL(G) = ENy(H)

In this caseH satisfies the following properties:

() H does not contain a cyclé,, n > 3 as a subgraph, since otherwiég,is an
induced subgraph of ENH ).

(i) H does not contain a component having more than one cut-vyesitgse other-
wise,F; is an induced subgraph of EH).

(iif) The maximum degree dfl does not exceed two, since otherwiBgis an induced
subgraph of EN(H).
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(iv) H does not contain a cut-vertex which lies on more than twokslpsince other-
wise,F; is an induced subgraph of Ej{H).

(v) H does not contain a cut-vertex which lies on a block other tarsince other-
wise,F; is an induced subgraph of Ej{H).

From observation (ii), it follows that every componenttbfthas at most one cut-
vertex. We consider the following cases:

Case 1.SupposeH has no cut-vertices. Then from observation i)js nKo, n > 1.
The corresponding is nK1, n > 1.

Case 2.SupposeH has cut-vertex. We consider the following subcases:
Subcase 2.1AssumeH is connected. TheH is Ky . The correspondin is Kz o Ko.
Subcase 2.2. AssumeH is disconnected. TheH is nKy, UMKy, m> 0, n> 1.

The corresponding is n(Kz o K2) UmK 1 ». From above discussions, we conclude the
following:

Theorem 6.1.The following pairs(G,H) are all pairs of graphs satisfying the graph
equatiorL(G) = ENyc(H):

(NK12,nK2), n>1; (KzoKyKio); and
(n(K3 o Kg) U mK]_’z, nK]_’zU sz) , m>0, n>1.

7 The solution ofL(G) = ENi(H)

In this caseH satisfies the following properties:

() If H is disconnected, then it has at most three components, éadhich is Ko
since otherwisels is an induced subgraph of EH ).

(i) His nota patth, n> 5 since otherwiser; is an induced subgraph of EH).

(i) H does not contairC,, n > 5, since otherwisel; is an induced subgraph of
ENic(H).
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(iv) H is not a complete bipartite graptin, , for m > 3 orn > 3, since otherwiser,
is an induced subgraph of E{H).

(v) H does not contain more than two cut-vertices, since otherpkisis an induced
subgraph of EN(H).

ThusH has at most two cut-vertices. We consider the following sase
Case 1.If H has exactly one cut-vertex, thehis Ky n, n > 1 orKzoKo.
ForH =Kyn, n>1,G=KgnU nKy
ForH = K30Ky, Gis a graph as shown in Figl 3.
Case 2.If H has exactly two cut-vertices. Théhis a pathP;. Correspondings is
(C4 o Kz) U Ko.
Case 3.If H has no cut-vertices. We consider the following subcases:
Subcase 3.1If H is disconnected. Then from observation H)js nK, , n < 3. Forn
=1, H=KyandG=2K,. Forn=2,H = 2K, andG=C4. Forn= 3, H = 3K, and
G =K.
Subcase 3.2If H is connected. We consider the following subcases.
Subcase 3.2.1H =K. In this case, it follows from observation (jii), the@Kz, Ky), (K3U
3K2,K3), (K1 3U3K2,K3) and G, K4) whereG' is the graph shown in Figl 4 are the so-
lutions.

Figure 4:

Subcase 3.2.2H = Kynn. Then from observation (iv),2Kz, Ky 1), (K12 U 2K2,Kq )
and(C40C4,Kp2) are the solutions.

Subcases 3.2.3H is neither a complete graph nor a complete bipartite grapbmF
observation (iii),H is Cy, n < 4 or K4 — X, wherex is any edge oK4. In this case
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(K3U3K2,C3), (K13U3K2,C3), (Ca0Cs,Cq) and(G', K4 — x), whereG' is the graph as
shown in Fig[h, are the solutions.

Figure 5:
Thus the graph equation is solved and we have the following

Theorem 7.1.The following pairs(G,H) are all pairs of graphs satisfying the graph
equatiorL(G) = ENg(H):

(KinUnK2,Kin), n>1; ((CaoKp)UK2,Pa); (Ca,2Kz); (Ka,3K2);

(K3U3Kp,K3); (K1 3U3Kz2,K3);  (C40C4,Cy); (G, Kz0Kp),

whereG' is the graph as shown in Flg. 85',K4), whereG' is the graph as shown in

Fig.[4; and G, K4 —x), whereG' is the graph as shown in F[g. 5.

8 The solution ofM(G) = ENy(H)

Theoreni 6.1l gives solutions of the equatldi®) = ENi(H). But none of these is of
the form(G*,H). Hence there is no solution of the equatidiiG) = EN¢(H). Thus
we obtain the following result.

Theorem 8.1.There is no solution of the graph equathdiiG) = ENyc(H).

Theoreni 7.1l gives the solution of the graph equatid®) = ENic(H). Among
these only one solutiof2K»,Ky) is of the form(G™,H). Therefore, the solution of the

equationM (G) = ENc(H) is (2K1,K2). Thus we have the following result.
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Theorem 8.2.There is only one solutiofi2K1,Kz) of the graph equatioM (G) =
ENic(H).
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