
Sciencia Acta Xaveriana Volume 1

ISSN. 0976-1152 No. 1

pp. 107–117

Graph equations for line graphs, middle graphs,

total closed neighborhood graphs and total closed

edge neighborhood graphs

B. Basavanagoud1∗ and Sangeeta N. Bhat2

1Department of Mathematics, Karnatak University, Dharwad–580 003, India

E-mail: bgouder1@yahoo.co.in

2Department of Mathematics, K. J. Somaiya College of Arts and Commerce,

Vidyavihar, Mumbai–400 077, India E-mail:sangeeta bhat74@yahoo.com

Abstract. Let G be a graph with vertex setV (G) , edge setE(G). For each

vertex (or edge) ofG, a new vertex is taken and the resulting set of vertices

is denoted byV1(G) (or E1(G)) respectively. LetG andL(G) denote the

complement graph and line graph ofG. The middle graph M(G) as an

intersection graphΩ(F) on the vertex setV (G) of any graphG. Let E(G)

be the edge set ofG and F = V ′(G)∪ E(G) whereV ′(G) indicates the

family of one-point subsets of the setV (G) , thenM(G)∼= Ω(F).

Thetotal closed neighborhood graph Ntc(G) of a graphG is defined as the

graph having vertex setV (G)∪V1(G) and two vertices are adjacent if they

correspond to adjacent vertices ofG or one corresponds to a vertexu′i of

V1(G) and the other to a vertexw j of G andw j is in N[ui] (see [1]).

For a graphG, we define thetotal closed edge neighborhood graph ENtc(G)

of a graphG as the graph having vertex setE(G)∪E1(G) with two vertices

are adjacent if they correspond to adjacent edges ofG or one corresponds

to an elemente′i of E1(G) and the other to an elemente j of E(G) wheree j

is in N[ei].
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In this paper, we solve the graph equationsL(G)∼=Ntc(H), L(G)∼=Ntc(H),

M (G) ∼= Ntc(H), M (G) ∼= Ntc(H), L(G) ∼= ENtc(H), L(G) ∼= ENtc(H),

M (G)∼= ENtc(H) andM (G)∼= ENtc(H).

The symbol∼= stands for isomorphism between two graphs.
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Total closed edge neighborhood graph.
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1 Introduction

By a graph, we mean a finite, undirected graph without loops or multiple edges. Defi-

nitions not given here may be found in [2]. For a graphG, let V (G) andE(G) denote

its vertex set and edge set respectively.

Hamada and Yoshimura [3] defined a graphM(G) as an intersection graphΩ(F) on

the vertex setV (G) of any graph G. LetE(G) be the edge set ofG and F = V′(G)∪E(G)

where V′(G) indicates the family of one-point subsets of the setV (G) . Let M(G) ∼=

Ω(F). M(G) is called the middle graph ofG.

Theopen-neighborhood N(u) of avertex u in V (G) is the set of all vertices adjacent

to u.

N(u) = {v/uv ∈ E(G)}

The closed neighborhoodN[u] of a vertexu in V (G) is given by

N[u] = {u}∪N(u).

For each vertexui of G, a new vertexu′i is taken and the resulting set of vertices is

denoted byV1(G).

The total closed neighborhood graph Ntc(G) of a graphG is defined as the graph

having vertex setV(G) ∪ V1(G) and two vertices are adjacent if they correspond to

adjacent vertices ofG or one corresponds to a vertexu′i of V1(G) and the other to a

vertexw j of G andw j is in N[ui] (see [1]).
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The open-neighborhoodN(ei) of an edgeei in E(G) is the set of edges adjacent

to ei.

N(ei) = {e j/ei ande j are adjacent inG}.

The closed-neighborhoodN[ei] of an edgeei in E(G) is given by

N[ei] = {ei}∪N(ei)

For each edgeei of G, a new vertexe′i is taken and resulting set of vertices is denoted

by E1(G).

For a graphG, we define thetotal closed edge neighborhood graph ENtc(G) of a

graphG as the graph having vertex setE(G)∪E1(G) with two vertices are adjacent if

they correspond to adjacent edges ofG or one corresponds to an elemente′i of E1(G)

and the other to an elemente j of E(G), wheree j is in N[ei].

In Fig. 1, a graphG and itsNtc(G) and ENtc(G) are shown.
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Figure 1: (a):G, (b): Ntc(G) and (c) ENtc(G).

The symbol∼= stands for isomorphism between two graphs. LetG, L(G) and

T (G) denote respectively the complement, the line graph and the total graph ofG.

Cvetkovìe and Simìe [4] solved graph equationsL(G)∼= T (H),L(G)∼= T (H). Akiyama

et al. [5] solved graph equationsL(G) ∼= M(H); M(G) ∼= T (H);M(G) ∼= T (H) and

L(G)∼= M(H). Here we solve the following graph equations:
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(1) L(G)∼= Ntc(H).

(2) L(G)∼= Ntc(H).

(3) M(G)∼= Ntc(H).

(4) M(G)∼= Ntc(H).

(5) L(G)∼= ENtc(H).

(6) L(G)∼= ENtc(H).

(7) M(G)∼= ENtc(H).

(8) M(G)∼= ENtc(H).

Beineke has shown in [6] that a graphG is a line graph if and only ifG has none of the

nine specified graphsFi, i = 1, 2, . . . , 9 as an induced subgraph. We depict here three of

the nine graphs which are useful to extract our later results. These areF1 = K1,3,F2 (see

Fig. 2), andF3 = K5− x, wherex is any edge ofK5. A graphG+ is theendedge graph

of a graphG if G+ is obtained fromG by adjoining an endedgeuiu′i at each vertexui of

G [5]. Hamada and Yoshimura [3] have proved thatM(G)∼= L(G+).
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Figure 2: F2.

2 The solution ofL(G)∼= Ntc(H)

Any graphH which is a solution of the above equation, satisfies the following proper-

ties:
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(i) H must be a line graph, sinceH is an induced subgraph ofNtc(H).

(ii) H does not contain a cut-vertex, since otherwise,F1 would be an induced subgraph

of Ntc(H).

(iii) H does not contain a component having more than two vertices, since otherwise,

F1 would be an induced subgraph ofNtc(H).

It is not difficult to see from observation (ii) thatH has no cut-vertices. We consider

the following cases:

Case 1.SupposeH is connected. ThenH is K1 or K2. The correspondingG is K1,2 or

K3◦K2 respectively.

Case 2.SupposeH is disconnected. ThenH is nK1 or nK2. The correspondingG is

nK1,2 or n(K3◦K2) respectively.

From the above discussion, we conclude the following

Theorem 2.1.

The following pairs(G,H) are all pairs of graphs satisfying the graph equation

L(G) = Ntc(H):

(nK1,2,nK1, n ≥ 1; and (n(K3◦K2),nK2), n ≥ 1) .

3 The solution ofL(G)∼= Ntc(H)

First, we observe that in this caseH satisfies the following properties:

(i) If H has at least one edge, then it is connected, since otherwise,F1 andF2 are

induced subgraphs ofNtc(H).

(ii) H does not contain a pathP4 as an induced subgraph, since otherwise,F1 is an

induced subgraph ofNtc(H).

(iii) H does not containCn, n ≥ 5 as an induced subgraph, since otherwise,F1 would

be an induced subgraph ofNtc(H).
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(iv) H does not contain more than one cut-vertex, since otherwise,F1 would be an

induced subgraph ofNtc(H).

(v) H does not containK1,4 as an induced subgraph, since otherwise,F3 would be an

induced subgraph ofNtc(H).

(vi) H does not contain a cut-vertex which lies on blocks other thanK2, since other-

wise,F2 is an induced subgraph ofNtc(H).

ThusH has at most one cut-vertex. We consider the following cases:

Case 1.SupposeH has exactly one cut-vertex. ThenH is K1,2 or K1,3. Corresponding

G is (C4◦K2)∪K2 or (K4◦K2)∪K2 respectively.

Case 2.SupposeH has no cut-vertices. We consider the following subcases:

Subcase 2.1.H = Kn. In this case(K1,n∪ nK2,Kn), n ≥ 1 and(K3∪3K2,K3) are the

solutions.

Subcase 2.2.H = Km,n. Then from observation (v),(C4◦K4,K2,3) and(K4◦K4,K3,3)

are the solutions.

Subcase 2.3.H is neither a complete graph nor a complete bipartite graph. From

observation (iii),H is Cn, n ≤ 4 or K4− x, wherex is any edge ofK4. In this case the

solutions are(K1,3∪3K2,C3), (K3∪3K2,C3), (C4◦C4, C4) and(G′,K4−x) whereG′ is

the graph shown in Fig. 3 are the solutions.
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Figure 3:G′.

Thus we have the following

Theorem 3.1.The following pairs(G,H) are all pairs of graphs satisfying the graph

equationL(G)∼= Ntc(H):
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((C4◦K2)∪K2,K1,2); ((K4◦K2)∪K2,K1,3); (K1,n ∪nK2,Kn), n ≥ 1 ; (K3∪3K2,K3);

(C4◦K4,K2,3); (K4◦K4,K3,3); (C4◦C4,C4); and(G′,K4− x), wherex is any edge of

K4 andG′ is the graph shown in Fig. 3.

4 The solution ofM(G)∼= Ntc(H)

Theorem 2.1 gives solutions of the graph equationL(G)∼= Ntc(H). But none of these is

of the form(G+,H). Hence, there is no solution of the equationM(G)∼= Ntc(H). Now,

we state the following result.

Theorem 4.1.There is no solution of the graph equationM(G)∼= Ntc(H).

5 The solution ofM(G)∼= Ntc(H)

Theorem 3.1 gives solution of the equationL(G)∼= Ntc(H). But none of these is of the

form (G+,H). Therefore there is no solution of the graph equationM(G) ∼= Ntc(H).

Now, we state the following result.

Theorem 5.1.There is no solution of the graph equationM(G)∼= Ntc(H).

6 The solution ofL(G)∼= ENtc(H)

In this case,H satisfies the following properties:

(i) H does not contain a cycleCn, n ≥ 3 as a subgraph, since otherwise,F1 is an

induced subgraph of ENtc(H).

(ii) H does not contain a component having more than one cut-vertex, since other-

wise,F1 is an induced subgraph of ENtc(H).

(iii) The maximum degree ofH does not exceed two, since otherwise,F1 is an induced

subgraph of ENtc(H).
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(iv) H does not contain a cut-vertex which lies on more than two blocks, since other-

wise,F1 is an induced subgraph of ENtc(H).

(v) H does not contain a cut-vertex which lies on a block other thanK2, since other-

wise,F1 is an induced subgraph of ENtc(H).

From observation (ii), it follows that every component ofH has at most one cut-

vertex. We consider the following cases:

Case 1.SupposeH has no cut-vertices. Then from observation (i),H is nK2, n ≥ 1.

The correspondingG is nK1,2, n ≥ 1.

Case 2.SupposeH has cut-vertex. We consider the following subcases:

Subcase 2.1.AssumeH is connected. ThenH is K1,2. The correspondingG is K3◦K2.

Subcase 2.2.AssumeH is disconnected. ThenH is nK1,2 ∪ mK2, m ≥ 0, n ≥ 1.

The correspondingG is n(K3◦K2)∪mK1,2. From above discussions, we conclude the

following:

Theorem 6.1.The following pairs(G,H) are all pairs of graphs satisfying the graph

equationL(G)∼= ENtc(H):

(nK1,2,nK2), n ≥ 1; (K3◦K2,K1,2); and

(n(K3◦K2)∪mK1,2, nK1,2∪mK2) , m ≥ 0, n ≥ 1.

7 The solution ofL(G)∼= ENtc(H)

In this case,H satisfies the following properties:

(i) If H is disconnected, then it has at most three components, each of which is K2

since otherwise,F3 is an induced subgraph of ENtc(H).

(ii) H is not a pathPn, n ≥ 5 since otherwise,F1 is an induced subgraph of ENtc(H).

(iii) H does not containCn, n ≥ 5, since otherwise,F2 is an induced subgraph of

ENtc(H).
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(iv) H is not a complete bipartite graphKm,n , for m ≥ 3 or n ≥ 3, since otherwise,F2

is an induced subgraph of ENtc(H).

(v) H does not contain more than two cut-vertices, since otherwise, F1 is an induced

subgraph of ENtc(H).

ThusH has at most two cut-vertices. We consider the following cases:

Case 1.If H has exactly one cut-vertex, thenH is K1,n, n ≥ 1 or K3◦K2.

For H = K1,n, n ≥ 1, G = K1,n∪ nK2

For H = K3◦K2 , G is a graph as shown in Fig. 3.

Case 2. If H has exactly two cut-vertices. ThenH is a pathP4. CorrespondingG is

(C4◦K2)∪K2.

Case 3.If H has no cut-vertices. We consider the following subcases:

Subcase 3.1.If H is disconnected. Then from observation (i),H is nK2 , n ≤ 3. Forn

= 1, H = K2 andG = 2K2. Forn = 2, H = 2K2 andG =C4. Forn = 3, H = 3K2 and

G = K4.

Subcase 3.2.If H is connected. We consider the following subcases.

Subcase 3.2.1.H =Kn. In this case, it follows from observation (iii), that(2K2,K2),(K3∪

3K2,K3),(K1,3∪3K2,K3) and (G′,K4) whereG′ is the graph shown in Fig. 4 are the so-

lutions.
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Figure 4:

Subcase 3.2.2.H = Km,n. Then from observation (iv),(2K2,K1,1),(K1,2∪ 2K2,K1,2)

and(C4◦C4,K2,2) are the solutions.

Subcases 3.2.3.H is neither a complete graph nor a complete bipartite graph. From

observation (iii),H is Cn, n ≤ 4 or K4 − x, wherex is any edge ofK4. In this case



116 Equations for graphs

(K3∪3K2,C3),(K1,3∪3K2,C3),(C4◦C4,C4) and(G′,K4− x), whereG′ is the graph as

shown in Fig. 5, are the solutions.
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Figure 5:

Thus the graph equation is solved and we have the following

Theorem 7.1.The following pairs(G,H) are all pairs of graphs satisfying the graph

equationL(G)∼= ENtc(H):

(K1,n ∪nK2,K1,n), n ≥ 1; ((C4◦K2)∪K2,P4); (C4,2K2);(K4,3K2);

(K3∪3K2,K3); (K1,3∪3K2,K3); (C4◦C4,C4);(G′,K3◦K2),

whereG′ is the graph as shown in Fig. 3;(G′,K4), whereG′ is the graph as shown in

Fig. 4; and(G′,K4− x), whereG′ is the graph as shown in Fig. 5.

8 The solution ofM(G)∼= ENtc(H)

Theorem 6.1 gives solutions of the equationL(G) ∼= ENtc(H). But none of these is of

the form(G+,H). Hence there is no solution of the equationM(G) ∼= ENtc(H). Thus

we obtain the following result.

Theorem 8.1.There is no solution of the graph equationM(G)∼= ENtc(H).

Theorem 7.1 gives the solution of the graph equationL(G) ∼= ENtc(H). Among

these only one solution(2K2,K2) is of the form(G+,H). Therefore, the solution of the

equationM (G)∼= ENtc(H) is (2K1,K2). Thus we have the following result.
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Theorem 8.2.There is only one solution(2K1,K2) of the graph equationM (G) ∼=

ENtc(H).
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