Sciencia Acta Xaveriana ISSN. 0976-1152

Volume 1 No. 1 pp. 107–117

Graph equations for line graphs, middle graphs, total closed neighborhood graphs and total closed edge neighborhood graphs

B. Basavanagoud^{1*} and Sangeeta N. Bhat²

¹Department of Mathematics, Karnatak University, Dharwad–580 003, India E-mail: bgouder1@yahoo.co.in

²Department of Mathematics, K. J. Somaiya College of Arts and Commerce, Vidyavihar, Mumbai-400 077, India E-mail: sangeeta_bhat74@yahoo.com

Abstract. Let *G* be a graph with vertex set V(G), edge set E(G). For each vertex (or edge) of *G*, a new vertex is taken and the resulting set of vertices is denoted by $V_1(G)$ (or $E_1(G)$) respectively. Let \overline{G} and L(G) denote the complement graph and line graph of *G*. The *middle graph* M(G) as an intersection graph $\Omega(F)$ on the vertex set V(G) of any graph *G*. Let E(G) be the edge set of *G* and $F = V'(G) \cup E(G)$ where V'(G) indicates the family of one-point subsets of the set V(G), then $M(G) \cong \Omega(F)$.

The *total closed neighborhood graph* $N_{tc}(G)$ of a graph G is defined as the graph having vertex set $V(G) \cup V_1(G)$ and two vertices are adjacent if they correspond to adjacent vertices of G or one corresponds to a vertex u'_i of $V_1(G)$ and the other to a vertex w_j of G and w_j is in $N[u_i]$ (see [1]).

For a graph *G*, we define the *total closed edge neighborhood graph* $\text{EN}_{tc}(G)$ of a graph *G* as the graph having vertex set $E(G) \cup E_1(G)$ with two vertices are adjacent if they correspond to adjacent edges of *G* or one corresponds to an element e'_i of $E_1(G)$ and the other to an element e_j of E(G) where e_j is in $N[e_i]$.

In this paper, we solve the graph equations $L(G) \cong N_{tc}(H), L(G) \cong N_{tc}(H),$ $M(G) \cong N_{tc}(H), \overline{M(G)} \cong N_{tc}(H), L(G) \cong EN_{tc}(H), \overline{L(G)} \cong EN_{tc}(H),$ $M(G) \cong EN_{tc}(H)$ and $\overline{M(G)} \cong EN_{tc}(H).$ The symbol \cong stands for isomorphism between two graphs. **Keywords:** Line graph, Middle graph, Total closed neighborhood graph, Total closed edge neighborhood graph. **2000 Mathematics Subject Classification: 05C99**

(Received: 22 December 2009)

1 Introduction

By a graph, we mean a finite, undirected graph without loops or multiple edges. Definitions not given here may be found in [2]. For a graph G, let V(G) and E(G) denote its vertex set and edge set respectively.

Hamada and Yoshimura [3] defined a graph M(G) as an intersection graph $\Omega(F)$ on the vertex set V(G) of any graph G. Let E(G) be the edge set of G and $F = V'(G) \cup E(G)$ where V'(G) indicates the family of one-point subsets of the set V(G). Let $M(G) \cong$ $\Omega(F)$. M(G) is called the middle graph of G.

The *open-neighborhood* N(u) of a *vertex* u in V(G) is the set of all vertices adjacent to u.

$$N(u) = \{v/uv \in E(G)\}$$

The closed neighborhood N[u] of a vertex u in V(G) is given by

$$N[u] = \{u\} \cup N(u).$$

For each vertex u_i of G, a new vertex u'_i is taken and the resulting set of vertices is denoted by $V_1(G)$.

The total closed neighborhood graph $N_{tc}(G)$ of a graph G is defined as the graph having vertex set $V(G) \cup V_1(G)$ and two vertices are adjacent if they correspond to adjacent vertices of G or one corresponds to a vertex u'_i of $V_1(G)$ and the other to a vertex w_i of G and w_i is in $N[u_i]$ (see [1]). The open-neighborhood $N(e_i)$ of an edge e_i in E(G) is the set of edges adjacent to e_i .

 $N(e_i) = \{e_i / e_i \text{ and } e_i \text{ are adjacent in } G\}.$

The closed-neighborhood $N[e_i]$ of an edge e_i in E(G) is given by

$$N[e_i] = \{e_i\} \cup N(e_i)$$

For each edge e_i of G, a new vertex e'_i is taken and resulting set of vertices is denoted by $E_1(G)$.

For a graph *G*, we define the *total closed edge neighborhood graph* $\text{EN}_{tc}(G)$ of a graph *G* as the graph having vertex set $E(G) \cup E_1(G)$ with two vertices are adjacent if they correspond to adjacent edges of *G* or one corresponds to an element e'_i of $E_1(G)$ and the other to an element e_i of E(G), where e_i is in $N[e_i]$.

In Fig. 1, a graph *G* and its $N_{tc}(G)$ and $EN_{tc}(G)$ are shown.

Figure 1: (a): G, (b): $N_{tc}(G)$ and (c) $EN_{tc}(G)$.

The symbol \cong stands for isomorphism between two graphs. Let \overline{G} , L(G) and T(G) denote respectively the complement, the line graph and the total graph of G. Cvetkoviè and Simiè [4] solved graph equations $L(G) \cong T(H), \overline{L(G)} \cong T(H)$. Akiyama et al. [5] solved graph equations $L(G) \cong M(H)$; $M(G) \cong T(H); \overline{M(G)} \cong T(H)$ and $\overline{L(G)} \cong M(H)$. Here we solve the following graph equations:

- (1) $L(G) \cong N_{tc}(H)$.
- (2) $\overline{L(G)} \cong N_{tc}(H)$.
- (3) $M(G) \cong N_{tc}(H)$.
- (4) $\overline{M(G)} \cong N_{tc}(H)$.
- (5) $L(G) \cong \text{EN}_{tc}(H)$.
- (6) $\overline{L(G)} \cong \text{EN}_{tc}(H)$.
- (7) $M(G) \cong \text{EN}_{tc}(H)$.
- (8) $\overline{M(G)} \cong \operatorname{EN}_{tc}(H)$.

Beineke has shown in [6] that a graph *G* is a line graph if and only if *G* has none of the nine specified graphs F_i , i = 1, 2, ..., 9 as an induced subgraph. We depict here three of the nine graphs which are useful to extract our later results. These are $F_1 = K_{1,3}$, F_2 (see Fig. 2), and $F_3 = K_5 - x$, where *x* is any edge of K_5 . A graph G^+ is the *endedge graph* of a graph *G* if G^+ is obtained from *G* by adjoining an endedge $u_iu'_i$ at each vertex u_i of *G* [5]. Hamada and Yoshimura [3] have proved that $M(G) \cong L(G^+)$.

Figure 2: F_2 .

2 The solution of $L(G) \cong N_{tc}(H)$

Any graph H which is a solution of the above equation, satisfies the following properties:

- (i) *H* must be a line graph, since *H* is an induced subgraph of $N_{tc}(H)$.
- (ii) *H* does not contain a cut-vertex, since otherwise, F_1 would be an induced subgraph of $N_{tc}(H)$.
- (iii) *H* does not contain a component having more than two vertices, since otherwise, F_1 would be an induced subgraph of $N_{tc}(H)$.

It is not difficult to see from observation (ii) that H has no cut-vertices. We consider the following cases:

Case 1. Suppose *H* is connected. Then *H* is K_1 or K_2 . The corresponding *G* is $K_{1,2}$ or $K_3 \circ K_2$ respectively.

Case 2. Suppose *H* is disconnected. Then *H* is nK_1 or nK_2 . The corresponding *G* is $nK_{1,2}$ or $n(K_3 \circ K_2)$ respectively.

From the above discussion, we conclude the following

Theorem 2.1.

The following pairs (G,H) are all pairs of graphs satisfying the graph equation $L(G) = N_{tc}(H)$:

 $(nK_{1,2}, nK_1, n \ge 1; \text{ and } (n(K_3 \circ K_2), nK_2), n \ge 1).$

3 The solution of $\overline{L(G)} \cong N_{tc}(H)$

First, we observe that in this case H satisfies the following properties:

- (i) If *H* has at least one edge, then it is connected, since otherwise, $\overline{F_1}$ and $\overline{F_2}$ are induced subgraphs of $N_{tc}(H)$.
- (ii) *H* does not contain a path P_4 as an induced subgraph, since otherwise, $\overline{F_1}$ is an induced subgraph of $N_{tc}(H)$.
- (iii) *H* does not contain C_n , $n \ge 5$ as an induced subgraph, since otherwise, $\overline{F_1}$ would be an induced subgraph of $N_{tc}(H)$.

- (iv) *H* does not contain more than one cut-vertex, since otherwise, $\overline{F_1}$ would be an induced subgraph of $N_{tc}(H)$.
- (v) *H* does not contain $K_{1,4}$ as an induced subgraph, since otherwise, $\overline{F_3}$ would be an induced subgraph of $N_{tc}(H)$.
- (vi) *H* does not contain a cut-vertex which lies on blocks other than K_2 , since otherwise, $\overline{F_2}$ is an induced subgraph of $N_{tc}(H)$.

Thus *H* has at most one cut-vertex. We consider the following cases:

Case 1. Suppose *H* has exactly one cut-vertex. Then *H* is $K_{1,2}$ or $K_{1,3}$. Corresponding *G* is $(C_4 \circ K_2) \cup K_2$ or $(K_4 \circ K_2) \cup K_2$ respectively.

Case 2. Suppose *H* has no cut-vertices. We consider the following subcases:

Subcase 2.1. $H = K_n$. In this case $(K_{1,n} \cup nK_2, K_n)$, $n \ge 1$ and $(K_3 \cup 3K_2, K_3)$ are the solutions.

Subcase 2.2. $H = K_{m,n}$. Then from observation (v), $(C_4 \circ K_4, K_{2,3})$ and $(K_4 \circ K_4, K_{3,3})$ are the solutions.

Subcase 2.3. *H* is neither a complete graph nor a complete bipartite graph. From observation (iii), *H* is C_n , $n \le 4$ or $K_4 - x$, where *x* is any edge of K_4 . In this case the solutions are $(K_{1,3} \cup 3K_2, C_3)$, $(K_3 \cup 3K_2, C_3)$, $(C_4 \circ C_4, C_4)$ and $(G', K_4 - x)$ where *G'* is the graph shown in Fig. 3 are the solutions.

Figure 3: G'.

Thus we have the following

Theorem 3.1. The following pairs (G,H) are all pairs of graphs satisfying the graph equation $\overline{L(G)} \cong N_{tc}(H)$:

 $((C_4 \circ K_2) \cup K_2, K_{1,2}); ((K_4 \circ K_2) \cup K_2, K_{1,3}); (K_{1,n} \cup nK_2, K_n), n \ge 1; (K_3 \cup 3K_2, K_3); (C_4 \circ K_4, K_{2,3}); (K_4 \circ K_4, K_{3,3}); (C_4 \circ C_4, C_4); and (G', K_4 - x), where x is any edge of K_4 and G' is the graph shown in Fig. 3.$

4 The solution of $M(G) \cong N_{tc}(H)$

Theorem 2.1 gives solutions of the graph equation $L(G) \cong N_{tc}(H)$. But none of these is of the form (G^+, H) . Hence, there is no solution of the equation $M(G) \cong N_{tc}(H)$. Now, we state the following result.

Theorem 4.1. There is no solution of the graph equation $M(G) \cong N_{tc}(H)$.

5 The solution of $\overline{M(G)} \cong N_{tc}(H)$

Theorem 3.1 gives solution of the equation $\overline{L(G)} \cong N_{tc}(H)$. But none of these is of the form (G^+, H) . Therefore there is no solution of the graph equation $\overline{M(G)} \cong N_{tc}(H)$. Now, we state the following result.

Theorem 5.1. There is no solution of the graph equation $\overline{M(G)} \cong N_{tc}(H)$.

6 The solution of $L(G) \cong EN_{tc}(H)$

In this case, *H* satisfies the following properties:

- (i) *H* does not contain a cycle C_n , $n \ge 3$ as a subgraph, since otherwise, F_1 is an induced subgraph of $EN_{tc}(H)$.
- (ii) *H* does not contain a component having more than one cut-vertex, since otherwise, F_1 is an induced subgraph of $EN_{tc}(H)$.
- (iii) The maximum degree of *H* does not exceed two, since otherwise, F_1 is an induced subgraph of $EN_{tc}(H)$.

- (iv) *H* does not contain a cut-vertex which lies on more than two blocks, since otherwise, F_1 is an induced subgraph of $EN_{tc}(H)$.
- (v) *H* does not contain a cut-vertex which lies on a block other than K_2 , since otherwise, F_1 is an induced subgraph of $EN_{tc}(H)$.

From observation (ii), it follows that every component of H has at most one cutvertex. We consider the following cases:

Case 1. Suppose *H* has no cut-vertices. Then from observation (i), *H* is nK_2 , $n \ge 1$. The corresponding *G* is $nK_{1,2}$, $n \ge 1$.

Case 2. Suppose *H* has cut-vertex. We consider the following subcases:

Subcase 2.1. Assume *H* is connected. Then *H* is $K_{1,2}$. The corresponding *G* is $K_3 \circ K_2$. **Subcase 2.2.** Assume *H* is disconnected. Then *H* is $nK_{1,2} \cup mK_2$, $m \ge 0$, $n \ge 1$. The corresponding *G* is $n(K_3 \circ K_2) \cup mK_{1,2}$. From above discussions, we conclude the following:

Theorem 6.1. The following pairs (G,H) are all pairs of graphs satisfying the graph equation $L(G) \cong EN_{tc}(H)$:

 $(nK_{1,2}, nK_2), n \ge 1; (K_3 \circ K_2, K_{1,2});$ and $(n(K_3 \circ K_2) \cup mK_{1,2}, nK_{1,2} \cup mK_2), m \ge 0, n \ge 1.$

7 The solution of $\overline{L(G)} \cong EN_{tc}(H)$

In this case, *H* satisfies the following properties:

- (i) If *H* is disconnected, then it has at most three components, each of which is K_2 since otherwise, $\overline{F_3}$ is an induced subgraph of $EN_{tc}(H)$.
- (ii) *H* is not a path P_n , $n \ge 5$ since otherwise, $\overline{F_1}$ is an induced subgraph of $EN_{tc}(H)$.
- (iii) *H* does not contain C_n , $n \ge 5$, since otherwise, $\overline{F_2}$ is an induced subgraph of $EN_{tc}(H)$.

- (iv) *H* is not a complete bipartite graph $K_{m,n}$, for $m \ge 3$ or $n \ge 3$, since otherwise, F_2 is an induced subgraph of $EN_{tc}(H)$.
- (v) *H* does not contain more than two cut-vertices, since otherwise, $\overline{F_1}$ is an induced subgraph of $EN_{tc}(H)$.

Thus *H* has at most two cut-vertices. We consider the following cases:

Case 1. If *H* has exactly one cut-vertex, then *H* is $K_{1,n}$, $n \ge 1$ or $K_3 \circ K_2$.

For $H = K_{1,n}$, $n \ge 1$, $G = K_{1,n} \cup nK_2$

For $H = K_3 \circ K_2$, *G* is a graph as shown in Fig. 3.

Case 2. If *H* has exactly two cut-vertices. Then *H* is a path P_4 . Corresponding *G* is $(C_4 \circ K_2) \cup K_2$.

Case 3. If *H* has no cut-vertices. We consider the following subcases:

Subcase 3.1. If *H* is disconnected. Then from observation (i), *H* is nK_2 , $n \le 3$. For n = 1, $H = K_2$ and $G = 2K_2$. For n = 2, $H = 2K_2$ and $G = C_4$. For n = 3, $H = 3K_2$ and $G = K_4$.

Subcase 3.2. If *H* is connected. We consider the following subcases.

Subcase 3.2.1. $H = K_n$. In this case, it follows from observation (iii), that $(2K_2, K_2), (K_3 \cup 3K_2, K_3), (K_{1,3} \cup 3K_2, K_3)$ and (G', K_4) where G' is the graph shown in Fig. 4 are the solutions.

Figure 4:

Subcase 3.2.2. $H = K_{m,n}$. Then from observation (iv), $(2K_2, K_{1,1}), (K_{1,2} \cup 2K_2, K_{1,2})$ and $(C_4 \circ C_4, K_{2,2})$ are the solutions.

Subcases 3.2.3. *H* is neither a complete graph nor a complete bipartite graph. From observation (iii), *H* is C_n , $n \le 4$ or $K_4 - x$, where *x* is any edge of K_4 . In this case

 $(K_3 \cup 3K_2, C_3), (K_{1,3} \cup 3K_2, C_3), (C_4 \circ C_4, C_4)$ and $(G', K_4 - x)$, where G' is the graph as shown in Fig. 5, are the solutions.

Figure 5:

Thus the graph equation is solved and we have the following

Theorem 7.1. The following pairs (G,H) are all pairs of graphs satisfying the graph equation $\overline{L(G)} \cong EN_{tc}(H)$: $(K_{1,n} \cup nK_2, K_{1,n}), n \ge 1; ((C_4 \circ K_2) \cup K_2, P_4); (C_4, 2K_2); (K_4, 3K_2);$ $(K_3 \cup 3K_2, K_3); (K_{1,3} \cup 3K_2, K_3); (C_4 \circ C_4, C_4); (G', K_3 \circ K_2),$ where G' is the graph as shown in Fig. 3; (G', K_4) , where G' is the graph as shown in Fig. 4; and $(G', K_4 - x)$, where G' is the graph as shown in Fig. 5.

8 The solution of $M(G) \cong EN_{tc}(H)$

Theorem 6.1 gives solutions of the equation $L(G) \cong EN_{tc}(H)$. But none of these is of the form (G^+, H) . Hence there is no solution of the equation $M(G) \cong EN_{tc}(H)$. Thus we obtain the following result.

Theorem 8.1. There is no solution of the graph equation $M(G) \cong EN_{tc}(H)$.

Theorem 7.1 gives the solution of the graph equation $\overline{L(G)} \cong \text{EN}_{tc}(H)$. Among these only one solution $(2K_2, K_2)$ is of the form (G^+, H) . Therefore, the solution of the equation $\overline{M(G)} \cong \text{EN}_{tc}(H)$ is $(2K_1, K_2)$. Thus we have the following result.

Theorem 8.2. There is only one solution $(2K_1, K_2)$ of the graph equation $M(G) \cong EN_{tc}(H)$.

References

- V. R. Kulli and Nanda S. Warad, *On the total closed neighborhood graph of a graph*, J. of Discrete Math. Sci. and Cryptography, 4 (2001), No. 2–3, 109–144.
- [2] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, (1969).
- [3] T Hamada and I. Yoshimura, *Traversability and connectivity of the middle graph of a graph*, Discrete Math. **14** (1976) 247–256.
- [4] D. M. Cvetkoviè and S. K. Simiè, *Graph equations for line graphs and total graphs*, Discrete Math. **13** (1975) 315–320.
- [5] T. Akiyama, T. Hamada and I. Yoshimura, *Graph equations for line graphs, total graphs and middle graphs* TRU Math. **12** (2) (1976).
- [6] L. W. Beineke, *Derived graphs and digraphs*, in : H. Sachs, V. Voss and H. Walther, eds. Beiträge Zur Graphentheorie (Teubner, Leipzig. 1968) 17–33.