Evaluation of traditional rice cultivars of Sri Lanka for some yield components and grain yield in *Yala* and *Maha* seasons

A. L. RANAWAKE AND U. G. S. AMARASINGHE

Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Sri Lanka

Received:8-4-2014, Revised:17-5-2014, Accepted: 24-5-2014

ABSTRACT

One hundred Sri Lankan traditional rice cultivars were evaluated in two consecutive seasons of 2011/2012 'Maha' and 2012 'Yala' seasons for yield and yield components. Analysis of data through ANOVA and mean separation using SAS statistical software reveals that in 'Maha' season, 73 cultivars recorded higher plant height, eight cultivars showed more, number of tillers plant¹, 43 cultivars had more number of fertile tillersplant¹ fertility percentage was more in twenty nine cultivars and yield per plant¹ was high for thirty five cultivars. Number of productive tillers per plant and fertility percentage remained unchanged for 36 and 60 cultivars respectively in two seasons. Forty four cultivars showed higher yield per plant¹ in Yala season than at Maha season while thirty two cultivars remained more or less same in their regards. According to DMRT groupings, all the parameters of cultivar Hondarawala, Karayal I, Dewaredderi, Kotathavalu II, Kokuvellai, Karayal III, Karabewa, Muthumanikam, Induru Karayal, Dik wee 328, Maha Murunga Badulla, Kaharamana and Jamis wee I changed significantly at two seasons. Among them cultivar Hondarawala, Kotathavalu II, Kokuvellai, Karayal III, Karabewa, Muthumanikam, Dik wee 328 and Jamis wee I increased all the parameters in 'Maha' season compared to those of in 'Yala' season. Interestingly, the days to maturity of these cultivars were around four months. The best rice cultivars can be selected based on the performances of them in 'Yala' and 'Maha' seasons.

Keywords: Maha, traditional rice cultivars, yala, yield, yield components

Asia is the leader in rice production which accounts for about 90% of the world's total production. In Sri Lanka, 1.5 million families engage in rice cultivation, which means 6.75 million people directly or indirectly depend on rice cultivation (Jayawardana, 2000). The country's total rice production and average yield of Maha is higher than Yala (De Silva and Yamao, 2009). On average 646,000 hectares are cultivated during Maha season and 419,000 hectares during Yala season making the average annual extent sown with rice to about 106,500 hectares (Anon., 2010). During 2009/2010 Maha season, Sri Lanka produced about 2,629,566 metric tons of paddy and during 2010 Yala season it produced 1,671,054 metric tons making national average yield of 4,189,059 metric tons for the year 2010 (Department of Census and Statistics, 2010).

Yala and Maha are the main rice growing seasons of Sri Lanka and total rice production and average yield of Maha is higher than that of at Yala season (De Silva and Yamao, 2009). The principal cultivation season in Sri Lanka is known as Maha (wet season) and is from October to March and the subsidiary cultivation season, known as Yala (dry season) is from April to September (Zubair, 2002). In Mapalana, where the experiment was carried out, there were only two wet months in Yala (May and June) while Maha season has three consecutive wet months during September to November (Weerasinghe, 1989). Solar radiation is not a limiting factor for rice growth in almost all rice growing regions of Sri Lanka. However, when all other conditions such as water, nutrients and temperature are non-limiting, the intensity of sunlight may determine the yield level depending on the location and season. In the Wet zone, where experiment was carried out solar radiation may limit the rice yield during Yala season due to high cloud cover arising from the southwest monsoonal circulation whereas a similar situation could expect in the Dry zone during Maha season due to overcast conditions that may result due to weather systems formed in the Bay of Bengal and northeast monsoonal circulation. Generally, in Sri Lanka Yala is referred as dry season while Maha is referred as wet season (Weerasinghe, 1989) Further it has been reported that plant height and crop duration of rice are higher in dry seasons than that of in wet seasons (Hach and Nam, 2006). These differences may affect on the yield and yield components in rice since grain yield is a complex polygenic quantitative trait, greatly affected by environment. Hence, selection of best quality genotypes based on the yield solely is not effective in the countries where different cropping seasons are available(Salametal., 2009, Kumbharetal., 2013).

The main effect for genotypes reflects breeding advances and the main effect for environments characterizes the site (Zobel *et al.*, 1988). Plant height has been the main target for improvement of lodging resistance in rice. Rice cultivars with "New Plant Type" were developed with plant height about 100 cm

Email: lankaranawake@hotmail.com,

J. Crop and Weed, 10(1)

Evaluation of rice cultivars

(Kumar *et al.*, 1999). Different morphological traits play very important role for more rice production with new plant type characteristics associated with the plant yield (Yang *et al.*, 2007; Yang & Hwa, 2008). However plant height greatly varied with the environmental factors.

Yield with yield components should be considered to determine the selection criteria of germplasm on the basis of available genetic variation (Habib *et al.*, 2005). Among yield components, productive tillers are very important because the final yield is mainly a function of the number of panicle bearing tillers per unit area (Baloch *et al.*, 2006). Kovi *et al.* (2011) also found that temperature across the three seasons played a vital role in determining the plant height, panicle length and spikelets per panicle in rice.

The present study aims to understand the behaviour of traditional rice cultivars during *Yala* and *Maha* seasons where the climatic factors change with the season while the soil factors remained constant at the field conditions. There is no information available on the changes of agronomic characteristics in traditional rice cultivars of Sri Lanka in *Yala* and *Maha* seasons.

MATERIALS AND METHODS

One hundred traditional rice cultivars (Table 1) collected from PGRC Gannoruwa, Sri Lanka were used in the experiment during 2011/2012 Maha season and repeated in 2012 Yala season at the Faculty of Agriculture, Mapalana, Sri Lanka. Two week old seedlings were transplanted in the paddy field according to the randomized complete block design with four replications and 20 plants per plot at 15x20 cm spacing. Weed management and pest management was done properly. The field was covered by the birds' nest to prevent bird attack on panicles. The recommended fertilizer dosage for improved rice cultivars has been introduced by Faculty of Agriculture, University of Ruhuna, Sri Lanka was applied for the field: Basal dressing: Urea 50 Kg/ha, TSP 62.5 Kg/ha, MOP 50 Kg/ha and top dressing: Urea 37.5 Kg/ha – 2 weeks after planting and 8 weeks after planting. Forty plants were selected for the data recording. Data on plant height (cm), number of tillers per plant, number of productive tillers per plant, percent grain fertility and yield/plant (g) were collected at maturity. According to plant height in Maha season rice cultivars can be grouped as Table1 and according to days to maturity these cultivars can be grouped according to table 2.Data were analyzed using ANOVA and mean comparison was done by DMRT using SAS (SAS Institute Inc., 2000).

RESULTS AND DISCUSSIONS

All the parameters of cultivar Hondarawala,

Karayal I, Dewaredderi, Kotathavalu II, Kokuvellai, Karayal III, Karabewa, Muthumanikam, Induru Karayal, Dik wee 328, Maha Murunga Badulla, Kaharamana and Jamis wee I changed significantly in Yala and Maha seasons. Among them cultivar Hondarawala, Kotathavalu II, Kokuvellai, Karayal III, Karabewa, Muthumanikam, Dik wee 328 and Jamis wee I increased all the parameters at Maha season than that of at Yala season. The age of these cultivars were around four months (Table 2). Cultivar Podi sudu wee didn't significantly change in any parameter at Yala and Maha seasons (Table 3).

Among the evaluated cultivars, according to DMRT groupings, 73 cultivars increased plant height significantly in *Maha* season while 10 cultivars remained constant in both *Yala* and *Maha* seasons. The remaining 17 rice cultivars increased the plant height in *Yala* season. Rice plant height is a quantitative trait governed by genetic factors and environmental factors (Huang *et al.*, 1996; Atchley and Zhu, 1997; Fang and Wu, 2001). Further it has been reported that plant height is negatively correlated with the yield in rice (Senapathy *et al.* 2009). The plant height of 90 tested rice cultivars changed with the season in the present experiment (Table 2).

Among yield components, productive tillers are very important because the final yield is mainly a function of the number of panicles bearing tillers per unit area (Baloch *et al.*, 2006).

In the tested one hundred rice cultivars twenty nine cultivars recorded significantly higher number of fertile tillers. plant⁻¹ in *Maha* season than in *Yala* season. However 35 cultivars increased number of fertile tillers in *Yala* season compared to the value in *Maha* season. When consider the number of total tillers. plant⁻¹, 38 cultivars recorded significantly higher number of total tillers in *Maha* season than that of in *Yala* season and 34 cultivars didn't significantly change the number of tillers in *Yala* and *Maha* seasons.

According to the Yang *et al.* (2008) rice grain yield highly varies on cropping season under the tropical irrigated conditions. Among tested cultivars in the present study forty four traditional rice cultivars recorded more yield plant⁻¹ in *Maha* season while 31 cultivars showed more or less similar yield plant⁻¹ in *Yala* and *Maha* seasons (Table 3). Percent fertility of 60 cultivars didn't show significant seasonal changes while 5 cultivars increased percent fertility significantly at *Yala* season compared to *Maha* season.

Forty four cultivars increased their yield/plant in *Maha* season while 31 cultivars didn't show significant

height (IRR)		Intonno all'ata	(110	Carris damagef	(1
Tall cultivars	(more than 130 cm)	Intermediate cultivars		Semi-dwarf cultivars	(less than 110 cm)
Sudu wee Ratnapura	130.15	Bala Ma wee II	110.73	Palasithari 601	79.40
Chinnapodiyan	130.73	Murungakayan 3	111.03	Polayal I	86.45
Mudukiriel	130.98	Rata wee	112.88	Akuramboda	90.93
EAT Samba	131.00	Madoluwa	113.00	Sinnanayan 398	91.35
Suduru Samba III	131.48	Lumbini I	114.75	Polayal II	92.10
Kotathavalu I	131.55	Kirikara	115.75	BG 34-8	95.00
Dena wee	131.88	Kaharamana I	116.13	Puwakmalata Samba	97.45
Jamis wee II	132.28	Murungakayan 101	116.63	Kottakaram	101.28
Kiri Murunga wee	132.65	Naudu wee	117.20	Podisayam	101.20
Geeraga Samba	132.80	Gangala	119.00	Kaharamana II	101.00
Seevalee Ratnapura	132.00	Periamorungan	120.23	Murunga wee	103.75
Ingrisi wee	133.18	Halabewa	120.23	Suduru Samba I	104.75
Madael	134.43			BG 35-7	
		Sudu Karayal Katatharaha H	123.15		105.78
Heendik wee	134.78	Kotathavalu II	123.38	BG 35-2	105.88
Buruma Thavalu	134.93	Herath Banda	123.58	Matara wee	106.10
Dik wee 328	134.95	Maha Murunga Badulla		Wanni Heenati	106.43
Madabaru	135.40	Ranruwan	123.83	MI 329	107.70
Kokuvellai	135.78	Rajes	123.83	Yakada wee I	107.95
Kalu gires	135.95	Madael Kalutara	124.40		
H 10	135.95	Kaluhandiran	124.63		
Pokuru Samba	136.08	Heenpodi wee	124.85		
Miti Riyan	136.10	Suduru	125.03		
Lumbini II	136.35	Karayal III	125.13		
Thunmar Hamara	136.35	Kiri Naran	125.90		
Tissa wee	136.88	Giress	127.33		
Kalukanda	137.13	Bala Ma wee I	129.00		
Karayal II	137.63	Madael Galle	129.23		
Kahata Samba	137.83	Suwanda Samba	129.48		
Handiran	138.43				
Gunaratna	138.43				
Sudu wee	138.83				
Suduru Samba II	140.70				
Kalu Karayal	141.20				
Induru Karayal	141.78				
A 6-10-37					
	142.83				
Sirappu Paleusithri	142.90				
Muthu Samba	143.48				
Muthumanikam	143.78				
Karayal I	144.58				
Podi sudu wee	147.03				
Seeraga Samba Battic					
Heendikki	150.38				
Dewaredderi	150.50				
Yakada wee II	150.78				
Sinnanayam	150.93				
Sudu Goda wee	151.50				
Dingiri Menika	152.38				
Jamis wee I	152.58				
Balakara	152.60				
Dandumara	153.69				
Dandumara Bathkiri el Karabewa Manchel Perunel	155.30 162.73				
Manchel Perunel Hondarawala	166.88 178.14				

 Table 1: Grouping of traditional rice cultivars according to IRRI standard evaluation system for plant height (IRRI 2002).

J. Crop and Weed, 10(1)

Acc.	Name	Mat	urity	Acc.	Name	Mat	urity
3673	Kaluhandiran		Late	3645	Muthumanikam		Late
3674	Kirikara	119	Medium	3646	Induru Karayal	118	Medium
3675	Kotathavalu I	118	Medium	3647	Kalu gires	127	Late
3676	Dena wee	117	Medium	3650	Madabaru		Late
3677	Herath Banda	117	Medium	3651	Balakara	119	Medium
3678	Hondarawala	125	Late	3652	Buruma Thavalu	124	Late
3679	Kottakaram		Late	3517	Seeraga Samba Batticaloa		
3681	Dandumara		Late	3518	H 10		Medium
3686	Karayal I		Late	3519	Manchel Perunel		Medium
3687	Dewaredderi		Late	3562	Thunmar Hamara		Medium
3469	Sudu wee		Late	3567	Dingiri Menika	119	Medium
3477	Sudu Goda wee	110	Medium	3570	Madael		Medium
3479	Kiri Naran		Late	3571	Miti Riyan		Late
3480	Karayal II		Late	3572	Suduru Samba II		Late
3482	Akuramboda		Late	3589	Gangala		Very late
3486		163	Very late	3588	Heenpodi wee		Late
3487	Palasithari 601	123	Late	3497	Sinnanayan 398		Late
3489	Murungakayan 3	125	Late	3498	Geeraga Samba		Medium
3490	Murungakayan 101	128	Late	3504	Dik wee 328		Medium
3496	Bala Ma wee I	122	Late	3506	MI 329	111	Medium
3654	Pokuru Samba	125	Late	3507	Suwanda Samba	121	Medium
3655	Rata wee	118	Medium	3508	Madael Galle	123	Medium
3660	Suduru	119	Medium	3510	Sudu wee Ratnapura		Medium
3658	Ingrisi wee	124	Late	3511	Maha Murunga Badulla	123	Medium
3659	Kotathavalu II	119	Medium	3514	Madael Kalutara	123	Medium
3653	Kalu Karayal	125	Late	3516	Seevalee Ratnapura		Late
3668	Ranruwan	113	Medium	3383	EAT Samba		Late
3669	Rajes	119	Medium	3389	Sirappu Paleusithri		Medium
3670	Madoluwa	127	Late	3394	Muthu Samba	129	Medium
3671	Suduru Samba I		Late	3395	Podi sudu wee	114	Medium
3688	Handiran	118	Medium	3401	Wanni Heenati	120	Medium
3691	Gunaratna	155	Very late	3409	BG 35-2	117	Medium
3661	Polayal I		Late	3410	BG 35-7	127	Medium
3664	Tissa wee	124	Late	3415	BG 34-8		Medium
3665	Sudu Karayal		Late	3416	A 6-10-37		Medium
3666	Podisayam		Late	3417	Periamorungan		Late
3423	Giress		Late	3591	Mudukiriel		Late
3427	Naudu wee		Late	3594	Suduru Samba III		Late
3434	Kokuvellai		Late	3595	Kaharamana II		Late
3463	Karayal III	115	Medium	3598	Bala Ma wee II		Late
3438	Murunga wee	117	Medium	3606	Chinnapodiyan		Late
3435	Matara wee		Late	3607	Kiri Murunga wee		Late
3440	Kaharamana I	127	Late	3610	Heendikki		Late
3447	Karabewa	127	Late	3612	Jamis wee I		Late
3451	Halabewa		Late	3613	Lumbini II		Medium
3445	Yakada wee I	123	Medium	3613 3614	Sinnanayam		Medium
3638	Lumbini I	119	Medium	3615	Yakada wee II		Late
3639	Polayal II	110	Medium	3615	Jamis wee II		Medium
3641	Heendik wee		Late	3550	Bathkiri el		Late
	тееник wee	120	Late	3330	Dullikiri ei	130	Late

Table 2: Days to maturity of rice cultivars

<90-Very early, <105-Early, <120-Medium, <135-Late, <150-Very late</pre>

J. Crop and Weed, 10(1)

Increased yield in			Yield remained constant			Increased yield in		
Maha season		14.1	in Maha and Yala seasons		Yala season			
721 1 1		Maha	D		Maha	17 1 1 1	Yala Maha	
Kotathavalu I			Dena wee Herath Banda			Kaluhandiran Kirikara	7.59^{a} 5.32^{b}	
Hondarawala							11.54° 7.43 ^b	
Dandumara			Kottakaram	10.55 ^a		Karayal I	11.84° 9.47 ^b	
Dewaredderi			Sudu wee	8.52 ^ª		Sudu Goda wee	$10.47^{\circ} 16.26^{\circ}$	
Kiri Naran			Karayal II			Puwakmalata Samba	7.38° 5.01°	
Akuramboda			Palasithari 601			Murungakayan 3	11.14 ^a 8.83 ^b	
Bala Ma wee I			Suduru			Murungakayan 101	12.46 ^a 8.19 ^b	
Pokuru Samba			Ingrisi wee			Suduru Samba I	10.38 ^a 4.94 ^b	
Rata wee			Kalu Karayal			Yakada wee I	10.32° 6.10 ^b	
Kotathavalu II			Ranruwan			Gunaratna	22.43 ^a 11.26 ^b	
Madoluwa		16.19 ^ª				Polayal II	6.33° 3.47 ^b	
Tissa wee			Handiran			Buruma Thavalu	25.81 ^a 11.14 ^b	
Sudu Karayal			Polayal I	6.24 ^ª	4.92 ^ª	Seeraga Samba Batticaloa	15.59^{a} 9.15^{b}	
Giress	8.07 ^b	10.66^{a}	Podisayam	6.23 ^a	8.15 ^ª	Gangala	23.10° 12.72°	
Naudu wee	8.43 ^b	11.67^{a}	Murunga wee	10.27^{a}	8.69 ^ª	Sinnanayan 398	9.37 ^a 5.74 ^b	
Kokuvellai	8.92 ^b	20.34^{a}	Matara wee	14.90 ^a	16.61 ^ª	Sudu wee Ratnapura	18.02 ^a 12.13 ^b	
Karayal III	7.49 [♭]	64.97 ^ª	Halabewa	8.37ª	8.60 ^ª	Maha Murunga Badulla	19.64 ^a 5.34 ^b	
Kaharamana I	9.28 ^b	11.46 ^ª	Kalu gires	9.89 ^ª	8.56ª	Seevalee Ratnapura	14.43 ^a 10.79 ^b	
Karabewa	4.52 ^b	13.44 ^ª	Balakara	8.89 ^a	8.02 ^ª	EAT Samba	19.80° 15.85°	
Lumbini I	7.19 ^⁵	13.00 ^a	H 10	13.19 ^ª	11.39ª	BG 35-2	10.50 ^a 7.73 ^b	
Heendik wee	17.08 ^b	20.68 ^a	Manchel Perunel	12.48 ^a	13.70 ^ª	Bala Ma wee II	18.47 ^a 15.76 ^b	
Kahata Samba	20.77 ^b	24.52°	Thunmar Hamara	17.44ª	17.76 ^ª	Chinnapodiyan	10.46 ^a 7.93 ^b	
Muthumanikam			Miti Riyan			Heendikki	16.00° 11.71°	
Induru Karayal			Heenpodi wee	10.62 ^ª	10.06 ^ª	Lumbini II	13.53 ^a 9.19 ^b	
Madabaru			Geeraga Samba	6.55 ^ª	6.05 ^ª	Yakada wee II	19.32 ^a 12.88 ^b	
Dingiri Menika			Suwanda Samba		9.02ª			
Madael			Muthu Samba		14.59 ^ª			
Suduru Samba II			Podi sudu wee		14.25 ^ª			
Dik wee 328			BG 35-7		13.48 ^ª			
MI 329			Mudukiriel		14.12 ^ª			
Madael Galle			Kiri Murunga wee					
Madael Kalutara		12.10 ^ª	itti i intai anga wee	2.00	2.10			
SirappuPaleusithri								
Wanni Heenati		12.22 ^ª						
BG 34-8		12.22 14.33 ^ª						
A 6-10-37		19.65 ^a						
Periamorungan	4.37 ^b							
Suduru Samba III	4.37 6.17 ^b	8.70 9.00ª						
Kaharamana II		9.00 26.82 ^a						
		20.82 19.30 ^a						
Jamis wee I		19.30 14.12 ^ª						
Sinnanayam								
Jamis wee II		31.41 ^a						
Bathkiri el	27.91 ^b							
Kalukanda		28.75 ª	1	:		mns are not significantly changed		

 Table 3: Grouping of traditional rice cultivars on the basis of grain yield in Yala and Maha seasons

DMRT groupings are denoted in superscript lettes. The same letters in the adjacent columns are not significantly changed

J. Crop and Weed, 10(1)

Evaluation of rice cultivars

changes in yield/plant in *Yala* and *Maha* seasons (Table 3). Yang *et al.* (2008) achieved significantly higher grain yields in dry season than in wet season. The reason has been explained as that mean daily radiation was higher in dry season than wet season, particularly during grain filling stage than before flowering. The greater the radiation during ripening in dry season contributed to the higher grain yield (Yang *et al.*, 2008). At Mapalana, Sri Lanka where the experiment was carried out *Maha* season was wet and *Yala* season was dry as usual in the years of experiment.

Trait determination of traditional rice cultivar is varied with the cropping season. Among 100 evaluated traditional rice cultivars only 12, 34, 36, 60 and 31 number of cultivars remained unchanged in plant height, number of tillers/plant, number of fertile tillers/plant, percent fertility and yield/plant respectively in Yala and Maha seasons. The most suitable cropping season for the individual rice cultivar can be determined using the data of the present study. As an example cultivars such as Kotathavalu I, Hondarawala, Dandumara, Dewaredderi, Kiri Naran, Akuramboda, Bala Ma wee I, Pokuru Samba, Rata wee, Kotathavalu II, Madoluwa and Tissa wee are more suitable for cultivating in Maha season while cultivars such as Kaluhandiran, Kirikara, Karayal I, Sudu Goda wee, Puwakmalata Samba, Murungakayan 3, Murungakayan 101 and Suduru Samba I are more suitable for Yala season

Acknowledgment

Authors would like to acknowledge plant genetic resource center, Gannoruwa, Sri Lanka for providing traditional rice seed materials and University of Ruhuna for TURIS research grant

REFERENCES

- Atchley, W.R. and Zhu, J. 1997. Developmental quantitative genetics, conditional epigenetic variability and growth in rice. *Genetics* 147:765-76.
- Baloch, M.S., Awan, I.U. and Hassan, G. 2006. Gowth and yield of rice as affected by transplanting dates and seedlings per hill under high temperature of Dera Ismail Khan, *Pakistan. J Zhejiang Univ Sci* B. 7: 572-79.
- De Silva, D.A.M. and Yamao, M. 2009. Rice pinch to war thrown nation: An overview of the rice supply chain of Sri Lanka and the consumer attitudes on government rice risk management. *J. Agric. Sci.* 4:77-96.
- Anonymous. 2010. *Paddy Statistics*. Department of Census and Statistics, Sri Lanka.

- Fang, P. and Ping, Wu. 2001. QTL \times N-level interaction for plant height in rice (*Oryza sativa* L.). *Pl. Soil* **236**:237-42.
- Hach, C.V. Nam, N.T.H. 2006. Response of some promising high yielding rice valeties to nitrogen fertilizer. *Omonrice* 14:78-91.
- Huang, N., Courtois, B., Khush, G.S., Lin, H. and Wang, G., 1996. Association of quantitative trait loci for plant height with major dwarfing genes in rice. *Heredity* 77:130-37.
- IRRI. 2002. *Standard Evaluation System of Rice*, International rice research institute, Manila, Philippines.
- Jayawardana, S.S.B.D.G., 2000. *Past, present and future of golden grain, rice in Sri Lanka,* agrilearning.goviya.lk/paddy/paddyresearch/padd y-pdf/set.pdf. Retrieved on 13 Aug 2013.
- Kovi, M.R, Bai, X., Mao, D. and Xing, Y. 2011. Impact of seasonal changes on spikelets per panicle, panicle length and plant height in rice (Oryza sativa L.). Euphytica, 179: 319-31.
- Kumar, A., Tiwari, R.K.S., Parihar, S.S., Pandya, K.S. and Janoria, M.P. 1999. Performance of prototype rice lines from ideotype breeding. *Int. Rice Res. Notes*, 24:18-19.
- Salam, K.A., Muhammad, I. and Muhammad, A. 2009. Estimation of genetic variability and correlation for grain yield components in rice (*Oryza sativa L.*). Amer. Eurasian J. Agric. Env. Sci. 6:585-90.
- SAS Institute Inc. 2000. SAS Online Doco, Version 8, Cary, NC: SAS Institute Inc.
- Senapathy, B.K., Pal, S., Roy, S., De, D.K. and Pal, S. 2009. Selection criteria for high yield in early segregating generation of rice (*Oryza sativa L.*) crosses. J. Crop Weed.5:12-14.
- Weerasinghe, K.D.N. 1989. The rainfall probability analysis of Mapalana and its application to agricultural production of the area. Sri Lanka, J. Nat. Sci. Coun. 17 :173-86. www.agridept.gov.lk retreieved 12 May 2012.
- Yang, W., Peng, S., Laza, R.C., Visperas, R.M. and Dionisio-Sese, M.L., 2008. Yield gap analysis between dry and wet season rice crop grown under high yielding management conditions. *Agron. J.* **100**:1390-95.
- Zobel, R.W., Wright, M.W. and Gauch, H.G. 1988. Statistical analysis of a yield trial. *Agron. J.* **80**:388-93.
- Zubair, L., 2002. El Nino Influences on Rice Production in Sri Lanka. *Int. J. Climatol.* **22**:249-60.