
 

 

 

  



 International Journal of Reciprocal Symmetry and Theoretical Physics, Volume 1, No 2 (2014)                                                                                                                                 

Asian Business Consortium | IJRSTP Page 69 

 

 

Ambiguity in Lorentz Transformation and 

Reciprocal Symmetric Transformation as the 

Answer  

Mushfiq Ahmad*
1
 

 

Department of Physics, Rajshahi University, Bangladesh  

ABSTRACT 

We have shown that successive Lorentz transformations 
(LT) lead to ambiguous values for time and space, 
because of Wigner rotation and associated non 
associativity of LT. We have proposed a reciprocal 
symmetric transformation (RST) which gives unique 
values for time and space. RST also gives a rotation 
comparable to Wigner rotation. RST is complex. We 
have shown that the imaginary part corresponds to spin 
of Dirac electron. 
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INTRODUCTION  

Ungar wrote (Ungar, 2006), “The non-associativity of 
Einstein’s velocity addition is not widely known. A point in case is a recently published article 
(Sonego & Pin, 2005) in the journal in which its authors… wrongly assert that it is associative”.  
Thomas rotation gives rise to “a non associative group structure for the set of relativistically 
admissible velocities” (Ungar, 1989). Wigner (1939) has exploited this non associativity, and the 
implied property (13.1) [see Appendix A below], to explain Thomas precession. Ahmad and 
Alam (2009) have studied this non associativity and its pathological implications. In this paper 
we intend to see how this non associativity leads to ambiguities in the values of space and time 
components when two non collinear Lorentz boosts are applied. 
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We need an “Associative Lorentz Transformation” with an associative law of addition of 
velocities, which fulfills relativistic requirements (Lorentz invariance etc.), and should also 
have rotation properties similar to Wigner rotation, to accommodate Thomas precession 
(Moller, 1957). We shall see that Reciprocal Symmetric Transformation (Ahmad & Alam, 
2007) (RST) fulfills our requirements and is also associative, which makes it free from 
pathologies of LT. RST is complex. We shall see that complex nature involves Pauli algebra 
and makes it conform to Dirac’s electron theory and quantum mechanics. We have 
divided the paper into 4 parts. Part 1 (sections 2 to 7) deal with LT; Part 2 (section 8) deals 
with RST; Part 3 (sections 9 and 10) deals with Comparison between Rotations in LT and 
RST and Part 4 (section 11) deals with Compatibility between RST and Quantum 
Mechanics. Details of some calculations are given in appendices A and B (sections 13 and 
14). In Appendix C (section 15) we have included a short note on reciprocal symmetry and 
the justification for calling the transformation reciprocal symmetric. 

 

Part 1. Lorentz Transformation 

LT IN ONE SPACE DIMENSION 

We consider relativistic velocities which fulfill Einstein’s condition 

cuc                                                          (2.1) 

For convenience we form functions 
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Products of these functions give Lorentz-Einstein sum of velocities  
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Where w is the relativistic sum of velocities u and v  
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UPPER BOUND OF LENGTH AND LT  

Definition 1: ct is the (expanding) upper bound length. 
Definition 2: x is a Lorentz algebraic distance x, which obeys the condition  

ctxct                                                         (3.1) 

(3.1) means we remain within the light cone. 
Corresponding to (2.2) we form the functions 
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Including a t in the numerator and the denominator we may write (2.2) in the form 
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We exploit (3.3) to write the product 
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Where 't  and 'x are the Lorentz transforms of t  and x corresponding to (2.3) 

 2/' cxvtgt    and  xvtgx '                                (3.5) 

With 

 2
/1

1

cv
g


 ,     

 2
/1

1
'

cu
g


 ,    

 2
/1

1
"

cw
g

L
  and   

22)(

1
^

xct
g


  (3.6) 

We shall need the above definitions later. 
(3.5) follows from (3.1). Therefore, LT (3.5) implies that we remain within the light cone. 

GENERAL LT  

So far we have considered motion in one space dimension only. For the general case 
corresponding to (2.3) and using (3.4) and introducing the notation for Lorentz rule of 

multiplication L  (L for Lorentz) we have. Below in (4.2) we shall introducing the 

notation L  to represent Lorentz rule of addition 

Lcgg  )/( v  )/''( cgg u )/""( cgg Lw                              (4.1) 

Where Lw is given by  
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Corresponding to (3.4), we have for the general case 

'')()/( xxv  ctctcgg L                                      (4.3) 

't  and 'x will fulfill our relativistic requirements (Rindler, 1966) if 
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vx

xv
vx

vx
22

'
vv

gtg





                     (4.4) 

(4.3) and (4.4) agree with (2.4) and (3.5) in case of collinear motion. 
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GENERAL LT IN MATRIX FORM 

We may write (4.2) and (4.4) as a matrix product 
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Where 
Tv  is the transpose of v and (5.1) defines the operation represented by L  so that 
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(5.1) defines the operation represented by L . The column on the left of L  has to be 

replaced by the square matrix (Kyrala, 1967) in (5.2). Then, it is a matrix multiplication. 
Corresponding to (4.1) and (4.2) we have 
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Where  
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SUCCESSIVE LTS  

Consider the successive transforms  
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Left hand sides of (6.1) and (6.2) differ only in the way they are arranged. To write the 
middle part of (6.1) we have used (5.1) and for the middle part of (6.2) we have used the 

algebra of (5.3) with (6.3). "t  and "x are given by 
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Using (4.4) and  

 2/1'^ cgff yv                                                  (6.6) 

Working out the algebra we have from (6.1) 
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(6.2) gives 
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Lorentz invariance condition is fulfilled by both the sets: 
222222 )()^()^()"()"( xxx  ctctct                             (6.11) 

NON-ASSOCIATIVITY AND AMBIGUITY IN LT 

Comparison between (6.7) and (6.9) and between (6.8) and (6.10) show (Ahmad & Alam, 
2009) 

^" tt   and  ^" xx                                                  (7.1) 

 (6.1), (6.2) and the inequality (7.1) show that LT is not associative and that it leads to 
ambiguities. We need an associative transformation which will be free from these 
ambiguities. 
When x, v and y are collinear (Moller, 1957)  

^" tt   and  ^" xx                                                  (7.2) 
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Part 2. Reciprocal Symmetric Transformation  

ASSOCIATIVE TRANSFORMATION 

Postulate: We replace L  of (4.1) by RS defined (Ahmad & Alam, 2009) below. [See (14.6) 

of Appendix B] 

)()()()( vuvuvuvu  iababba RS                        (8.1) 

We shall call RS  the reciprocal symmetric multiplication and the corresponding transformation 

RST. In Appendix C, we shall give the justification for calling it reciprocal symmetric. 
 We now replace (6.1) and (6.2) by 

*)***(*)*()/''()()/()/''( xxy}xv{y  ctctcffctcggcff RSRSRS

(8.2) 
And  
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  (8.3) 

The right hand sides are equal because, unlike L ,  RS is associative. 

We use (8.1) repeatedly to determine **t  and **x  given by (8.2) and (8.3) [See 

Appendix B]. Lorentz invariance requirement (6.11) is fulfilled. 
2222 )(*)*(*)*( xx  ctct                                          (8.4) 

 

Part 3. Comparison between Rotations in LT and RST  

ROTATION IN LT  

In this section we want to study the nature and the quantity of the rotation which takes 

place when a Lorentz boost is given. For Lorentz 4-vector we write x ctRL  and for 

the transformed vector corresponding to (4.4) we write 
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In the limit c  we go over to Galilean transformation and there is no rotation. To see 

the maximum rotation we go to the limit 0c . We want to study the mathematical 

nature of it, so the physical interpretation (if any) of this limit does not interest us. We are 
interested in the rotation part only so we choose the dimension less quantity 
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Where   is the angle between x  and v . p gives the direction of the axis of rotation. It is a 

unit vector orthogonal to v  in the plane of x  and v .  

ROTATION IN RST  

To study the rotation corresponding to (9.2) for the reciprocal symmetric case, we replace 

LR' of (9.1) by *** x ctR RS where *ct  and *x are given by (14.10). 

*** x ctR RS  cctg /vx   ctg /vixvx                      (10.1) 

Corresponding to (9.2) we now have (Ahmad, etl. 2007)  
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Resemblance between (9.2) and (10.2) is close. q  gives the direction of the axis of rotation. 

It is a unit vector orthogonal to the plane of x  and v .  
 

Part 4. Compatibility between RST and Quantum Mechanics  

COMPATIBILITY BETWEEN RST AND DIRAC THEORY 

We write Dirac’s relativistic equation as (Schiff, 1970)  

  02  mccE pα                                           (11.1) 

For the purpose of comparison with (14.1) we set 0m  and we write (11.1) as 

  00   pσcE                                                (11.2) 

We operate on the left by  pσ  cE  to get 

 pσ  cE 0     
22

0 ppσ cEcE                           (11.3) 

(11.3) will be correct if  s of (11.2) have the properties of (14.3) and (14.4). To see the 

correspondence to spin consider the product of type 

  RSb  Bσ0    CBBCσCBCσ  icbbcc 0            (11.4) 

In the presence of electromagnetic field, in Dirac theory, we come across terms like (Schiff, 1970)  

  RSBσ    CBσCBCσ  i                                (11.5) 

The last term gives spin (Ahmad 2007). Therefore, the imaginary cross term of (8.1) 
corresponds to spin (Ahmad, etl. 2007). We conclude that RST is closer to quantum 
mechanics than LT. 

CONCLUSION 

Inequalities (7.1) show that LT is non associative and that it leads to ambiguities. RST is 
associative (section 8). RST also gives a rotation similar to Wigner rotation, and the 

extreme case of 0c , the two rotations are quantitatively the same, but with different 

axes of rotation. RST and Dirac’s electron theory share the same algebraic properties. 
Therefore, RST promises to bring relativity and quantum mechanics closer (Ahmad 2006). 
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Part 5. Appendices 

APPENDIX A: MATHEMATICAL PROPERTY OF ASSOCIATIVE ADDITION 

Theorem:  

If RS  stands for an associative addition  

Then 

)()()( yvvy  RSRS                                          (13.1) 

Proof:  

Using associativity of RS   and 0)(  vv RS , we have 

)}(){()( yvvy  RSRSRS =  )()}({ yvvy RSRSRS 0)(  yy RS   

(13.2) 
Therefore, 

0)}(){()(  yvvy RSRSRS                                    (13.3) 

Also we have 

0)}({  vyvy RSRSRS                                        (13.4) 

Comparison between (13.4) and (13.5) shows 

 )( vy RS )()( yv  RS                                         (13.5) 

Corollary 1: If addition L  is not commutative and if )()()( vyvy  LL , then 

addition L  is not associative. 

Proof:  

We assume that L   is associative. Then, by the theorem above  

)()()( yvvy  LL                                           (13.6) 

But  

)()()()()( yvvyvy  LLL                              (13.7) 

Therefore,(13.7) contradicts (13.6). Therefore, the assumption that L   is associative is 

wrong. The proposition that L   is associative is not correct. 

Corollary 2: LT L  as defined below is not associative. 
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Proof:  
By (10.8)  

)()()( vLL  yvy                                                 (13.9) 

Therefore, by Corollary 1, LT L as defined by (13.8) is not associative. 

Wigner (1939) has exploited inequality (13.7) of LT to explain Thomas precession.  



 International Journal of Reciprocal Symmetry and Theoretical Physics, Volume 1, No 2 (2014)                                                                                                                                 

Asian Business Consortium | IJRSTP Page 77 

 

 

APPENDIX B: PAULI QUATERNION 4-VECTORS AND RST  

Postulate: We postulate (Ahmad & Alam, 2009) that the 0+3 [scalar+Cartesian] vectors 

)( ua  etc. of (8.1) are, in fact, Pauli Quaternion (Rastall, 1964) 4-vectors.  
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where 











10

01
0 , 










01

10
x , 







 


0

0

i

i
y and 












10

01
z            (14.2) 

 s have the following properties 

 xy  zyx i  with cyclic permutations                           (14.3) 

x 0  xx  0  and   1xx  and also for y and z                         (14.4) 

We replace L  of (4.1) by  RS  (RS for Reciprocal Symmetric), and using (14.1) through 

(14.3) we get 

σvuvuvuvu  )()()()( 0 iababba RS                     (14.5) 

We shall also use RS  to mean (14.3) without the  s. i.e.  

)()()()( vuvuvuvu  iababba RS                    (14.6) 

We replace (6.1) and (6.2) by 

*)***(*)*()/''()()/()/''( xxy}xv{y  ctctcffctcggcff RSRSRS

(14.7) 
And  

*)***()()/^^()()/()/''( xxmx}vy{  ctctcffctcggcff RSRSRSRS

  (14.8) 

The right hand sides are equal because, unlike L ,  RS is associative. 

In place m of (6.4) given by (4.3) we now have, using (14.1)--(14.3), RSm  below 

2/1

/

c

ci
RSRS

vy

vyvy
vym




                                      (14.9) 

In place of 't  and 'x  we now have, for *t  and *x  of (14.7) given by 

2

2

)/(1

/
'*

cv

ct
tt






vx
  and  

2)/(1

/
*

cv

cit






vxvx
x                        (14.10) 

Working out the algebra we have for **t  and **x  given by (14.7) and (14.8) we have 

    

   22

3222

2
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/1/1

////1

)/(1

/**
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cicccvt

cy
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







yvxyxvxx
      

(14.11) 
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And 

       

   22

22

/1/1

/////
**

cycv

ctccicctt






yvyxvxyvxyvxyvx
x

(14.12) 
We again have corresponding to (6.11) 

2222 )(*)*(*)*( xx  ctct                                         (14.13) 

APPENDIX C: RECIPROCAL SYMMETRY 

Consider the relative velocity (2.4) in one dimension. We shall set 1c in this section  

u.v

uv
uvw






1
)(                                             (15.1) 

We note that 

)/(11

/1/1
)/1()/1(

u.v

uv
uvw






u.v

uv






1
uv  )(                   (15.2) 

When v  and u are replaced by their reciprocals, the sum remains unchanged. This 

property we call reciprocal symmetry. Consider the reciprocal symmetric sum 
corresponding to (4.2), using relation (14.9) 

uv1

uivuv
uvw




 RSRS

                                   (15.3) 

We shall call reciprocal of v any quantity 'v  which fulfills the condition 

1' vv                                                        (15.4) 

We choose the reciprocal  

vg

vigg
v




'                                                    (15.5) 

 
Theorem:  

 '' uv RS uv RS                                             (15.6) 

Proof: Let 

vg
vg

vigvg
v RS






1
^                                        (15.7) 

 
We observe that   

'^ vv gLt   or   'vvg  
gRS                                (15.8) 

Therefore, instead of '' uv RS  we write ^^ uv RSgLt   and we write for the left 

hand side of (15.6)  

    ugvg RSRSRSgLt                                       (15.9) 

Using (13.5) and associativity we get 
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        uggv RSRSRSgLt   uvuv RSRSgLt          (15.10) 

Using (15.8) and (15.10) we get (15.6). 
  One may also write (15.6) using (15.5). This gives 

        
      uggvggvgug

uggvgguggvgvggug
uvw






ii

iiiii
RSRS

.

.).( 
''

(15.11) 
Working out the algebra we find (15.6). 
Relation (15.6) justifies our calling the sum defined by (15.3) reciprocal symmetric. 
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