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ABSTRACT 

A potential of pointlike mass in the partially compactified 
multidimensional space is considered. The problem is 
reduced to the multidimensional Poisson equation with the 
Dirac comb source in r.h.s. Explicit solutions are built in the 
cases of 2D and 4D spaces with one compact dimension. The 
last example of the potential is used in the Schrödinger 
equation. Bound states of a gravitating test particle on 3D 
brane of 4D compactified space are studied by means of 
various approximate methods. 
 
PACs: 11.25.Mj: Compactification and four-dimensional 
models; 11.25.Uv: D branes; 03.65.Ge: Solutions of wave 
equations: bound states. 
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INTRODUCTION  

Attempts to unify the gravitation with other fundamental 
interactions have led to the idea that the space is more than 
three-dimensional (and the space-time is more than four-dimensional) (Duff, etel 1986). 
Shortly after the discovery of the general relativity, Kaluza and Klein unified the 
electrodynamics and gravitation in terms of 5D space-time. Einstein and other theorists 
assumed that a redundant dimension is compact, of very short extension, e.g., of order 

сm106.1 333  cGR Pl  , so that a resolution of physical devices is not 

sufficient to detect this dimension in experiments. 
As Kaluza-Klein and other unified theories developed (Appelquist, etel 1987), the number 
of hidden dimensions grew. A similar picture is characteristic of the modern superstring 
theory (Marshakov, 2002) where the space is N = 9 dimensional (hereinafter N does not 
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count a time dimension). All the conventional matter is attached to D < N dimensional 
submanifold in the space, but the gravity (and maybe other unknown kinds of “sterile” 

matter) can penetrate into redundant N – D  d  dimensions (9 – 3 = 6 in our case) which 
are very compact and thus invisible. 
Slightly different picture is given rise within the ADD-hypothesis based on the string 
theory (Arkani-Hamed, etel 1998; Rubakov, 2001). There the extension of the compact 
dimensions must not be very short. Since all the matter (but the gravity) is 3D, the extra 
dimensions may show up only via certain gravitation effects on microscopic or mesoscopic 
levels. A black hole creation in LHC (Krasnikov & Matveev, 2004) could be the first 
expected example. 
Explanation of how multidimensionality influences the gravitation does not need 
necessarily a framework of the string theory, Kaluza-Klein theory or even general 
relativity. In the present paper, the effect of extra compact dimensions on the gravity is 
demonstrated within the Newton theory. For this purpose, solutions of the Poisson 
equation with point like source in partially compactified spaces are considered. Low-
dimensional cases are studied. Explicit solutions are built in the cases of 2D and 4D spaces 
with one compact dimension. The latter potential is used in the quantum Kepler-Coulomb 
problem. The corresponding Schrödinger equation is solved by means of various 
analytical approximations and the numeral integration. Physical consequences of the 
derived solutions are discussed. 

POISSON EQUATION IN THE COMPACTIFIED SPACE 

Let us consider N-dimensional Euclidean space N which is infinite in all dimensions. 
Points of this space are parameterized by means of Cartesian coordinates z = {z1,…, zN}. A 
pointlike mass M generates in this space the gravitational potential satisfying the N-
dimensional Poisson equation: 
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and (N)(z) are the N-dimensional Laplacian and the Dirac -function, 
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is the area of a unit hypersphere, and G(N) is the gravitational constant in N. 
The solution of Eq. (2.1) is known (Ivanenko & Sokolov, 1953): 
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where z = |z|. It is valid for N  3 and reduces to Newton (or Coulomb) potential for N = 3. 

General case of compactification: N = D + d 

Let us now the space is infinite in part of dimensions, and is compact in other ones. In the 

simplest case such space is (N = D + d)-dimensional manifold MD+d = D×Td  D×S1 × · · · 
× S1 , where factors S1 of d-dimensional torus Td are assumed for simplicity to be circles of 
the same compactification radius R. Hereinafter the parameterization is used: x = {x1,…, xD}, 

xi  (-, ) of D, and y = {y1,…, yd}, yj   [0, 2R) of Td . 
The differential equation (2.1) is a local form of the gravity (or Coulomb) law, and no 
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global features of the space are involved in (2.1). Thus, this equation is applicable in the 
case of a compactified space. A topology of the manifold MD+d  is taken into account only 
via global properties of functions involved in the equation (2.1). In particular, 
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dDN   , where  (D)(z) is a usual D-dimensional -function, but 

)(
~ )( yd  is a d-dimensional Dirac comb (Flügge 1971), 2R-periodical in each dimension: 
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here  q = {n1/R,…, nd/R},    ni = 0, 1, 2,… Similarly, the solution (x,y) of the equation 
(2.1) can be presented via the Fourier integral and series: 
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When considering the asymptotics at |y| << R, the summation step |q|  1/R can be 
regarded as small one. Thus, a summation is closed to an integration: 
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the potential (2.3) for the infinite (N=D+d)-dimensional space. So physically, a 
compactness of the space MD+d  is not seen in the scale  << R. In order to calculate the 
asymptotics at |x| >> R we integrate r.-h.s. of Eq. (2.4)  over k: 
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then take into account the condition qx >> 1, except of the case q = 0, and use the 
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(Ivanenko & Sokolov, 1953) in r.-h.s. of Eq. (2.5). All terms of the sum (2.5) are 
exponentially small except that of q = 0. Thus, we arrive at the result: 
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which does not depend on the coordinates y of compact dimensions. Even more, it 
coincides formally with the potential (2.3) of a pointlike mass M in an infinite D-
dimensional space with the effective gravitational constant 
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Thus, compact dimensions Td of the space MD+d  are gravitationally invisible in the scale >> R. 
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The case of compactified plane: N = 1 + 1 

The compactified plane M1+1 = ×S1 is parameterized by variables x (-, ) and  y  [0, 

2R). The potential (2.4) turns into a formal series: 
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The term 0(x,y) of this sum is divergent, but it can be regularized by extracting an infinite 

constant 0(0,0) so that the difference Rxyx ||)0,0(),( 00   is finite. The rest of 

the sum yields complex conjugated terms, thus the regularized potential 
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is real; see Figure 1. Close to the source, where Riyx  || , the function (2.8) has 

the asymptotics )ln(  ),( )2( RMGyx   , the potential in an infinite plane. The limit 

Rx ||  leads to the uniform field RxMGyx ||),( )2(2
1 . 

 

Figure 1: Potential (x,y) of pointlike source M on the cylinder M1+1 =  ×S1 : 
 tension lines;  equipotential 1D surfaces. 

Noteworthy the potential (2.8) admits an electrotechnical treatment. If one lets variable y 

run all over the real axis , the potential turns periodical in y.  
It then describes the electrostatic field in 3D (infinite) space that is generated by the infinite 
lattice of wires placed in the plane x = 0 parallelly 

to the axis Oz with the step Ry 2  and 

charged up to 
2

)2( MG

z

q





 per unit length; see 

Figure 2. 

 

Figure 2: The electrotechnical treatment of the 
potential (2.8). 
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The case N = 3 + 1 

The compactified plane M3+1 = 3×S1 is important physically since it is related to the 
Kaluza-Klein theory. An evaluation of potential (2.4) is straightforward: 
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where r = |x|. Close to a source, where z = |r + iy| << R, the asymptotics is 
2

)4(2
1),( zMGyr  while at r >> R one has rGMyr ),( , i.e., the 

Newton potential with the effective gravitational constant  
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THE QUANTUM KEPLER PROBLEM IN THE COMPACTIFIED SPACE  

Let us consider the Schrödinger equation in the compactified space M3+1. Following the 
ADD hypothesis (Arkani-Hamed, etel 1998), the motion of a matter is constrained on the 3-

brane 3  M3+1 which corresponds to the value y = 0 of the compact coordinate. The 

potential energy of the test particle of the mass m on the brane is U(r) = m(r,0), where 

(r,y) is given in Eq. (2.9): 
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is a coupling constant. Asymptotics of the potential (3.1) at large and small distances 
follow from Subsection 2.3; they are 
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A deviation from the Newton gravity law is notable at r  R. A singularity of the potential 

at r  0 leads to a drop of a particle in the center if its angular momentum L is relatively 
small but not necessarily zero: 
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The drop in the center is an ill-posed peculiarity. It is unavoidable from the classical 
viewpoints but not from the quantum one. That is why we consider farther the quantum 

Kepler problem on the 3-brane 3  M3+1.  
In order to analyze the Schrödinger equation with the potential (3.1) let us perform the 

radial reduction and introduce the dimensionless variables gar , gEEE , 
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where 
,...1,0

 is the orbital quantum number and  = R/ag. The exact solution of this 
equation is unknown, and we apply approximate methods. 

Exact solutions in the lower-limiting Kratzer potential 

Let us consider the sum of asymptotics (see Eq. (3.3)) of the potential (3.6): 
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This is the Kratzer potential (Flügge 1971), but with the negative term 1/2. The Kratzer 
problem is exactly solvable. It reduces to the Coulomb problem: 
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for the radially reduced Hamiltonian H and its eigenfunctions )( ,   rn  but with the 

noninteger orbital quantum number  4)( 2

2
1

2
1    (instead of ,...1,0 ). 

The spectrum of bound states is  
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and ,...1,0rn (the radial quantum number). The potential (3.7) minorates the potential 

(3.6): () < u() for  (0,); Figure 3. Thus, one obtains the lower estimate for energy 

levels 
rn,E  of the Hamiltonian (3.5), (3.6): 

rr nn ,,  EE  . 

 
Figure 3: Behaviour of potentials for   = 1/16. 

 

The potentials (3.6) and (3.7) have the same singularity  2/2 at   0. Thus, both 
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quantum problems are well posed provided 

161g
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otherwise some lower energy levels 
rn,E (as well as 

rn,E ) become complex, and 

corresponding wave functions are not normalizable. Physically, this peculiarity 
corresponds to a drop in the center. In contrast to the classical problem, where the drop in 
the center is unavoidable for sufficiently small values of the angular momentum (3.4), 

quantum states are stable for arbitrary ,...1,0  provided the condition (3.10) holds. 

The ground state via the variational method 

The potential in Eq. (3.6) is expanded into a superposition of the Yukawa potentials. It is 
natural to apply in this case the variational approximation (Flügge, 1971) in order to 
derive an upper estimate for the ground state energy. 
The ground state wave function is concentrated in the vicinity of the center where its 

properties are determined by the behaviour of the potential at   0. In this area, the 
minoratig potential (3.7) simulates well the behaviour of the gravitational field – in 
contrast to the Newton potential; see Figure 3. Thus, it is appropriate, as a trial function, 
the scaled ground state wave function of the problem (3.8), i.e., 
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Integration techniques with hypergeometric functions (Landau & Lifshitz, 1981) lead to 
the expression for the average energy of the trial state: 
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the new variational parameter 0
2    is introduced for a conveniency (instead of 

), and ),(ζ z is the Hurwitz zeta function (Erdelyi, 1953): 
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which can be solved for  numerically. In such a way, one obtains the dependency of  on 

 1161
2
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0    and thus on . The substitution of the function () into Eq. (3.11) 

yields the dependency of the energy E  on . 
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The ground state via the numerical integration 

In order to estimate the precision of the variational approximation the problem (3.5), (3.6) 

was solved numerically, by means of the Runge-Kutta method, for different . Results are 

presented in Figure 4 and Table 1. It is seen that, as  grows, the ground state energy 

decreases slightly from ½ to 0.7 at   = 1/16. An error grows together with  but does 

not exceed 3¼ %. Noteworthy, the lowest level 
0,0E  of the problem (3.8) with the lower-

limiting potential (3.7) is very crude estimate for the ground state energy (particularly, at   

= 1/16), but the scaled eigenfunction )(~
0,0
   of this problem provides a satisfactory 

variational approximation for the problem (3.5), (3.6). 

 
Figure 4 & Table 1: Ground state energy vs ,  calculated via various methods: 
1. numeral integration; 2. variational method; 3. lower-limiting potential;             4. 
perturbation method; 0. Coulomb ground state energy (for a comparison).  

  0 1/64 1/32 3/64 1/16 

1 E num -½ -0.50345517 -0.51578916 -0.54513697 -0.70192749 

2 E var -½ -0.50215711 -0.51158195 -0.53649797 -0.67924964 

3 E min -½ -0.57437416 -0.68629150      -8/9           -2 

4 E per -½ -0.50307198 -0.51176891 -0.52540078 -0.54337917 

Arbitrary states via the perturbation method 

Wave functions of excited states extend far out the center as compared to one of the 
ground state. In this area, the potential (3.6) tends quickly to the Coulomb one; see Figure 

3. In view of the condition  < 1/16, the parameter  is small and thus it can serve as the 
expansion parameter in the perturbation method. Thus, the Kepler-Coulomb Hamiltonian 

with its eigenfunctions )( , 
rn  should be used in zero-order approximation. The 

perturbation potential then is: 
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In order to evaluate the 1st-order correction, one expresses )( , 
rn  in terms of the 

confluent hypergeometric function and uses some techniques from (Landau & Lifshitz, 
1981). The result is then represented in the form of finite sum: 
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E , (3.13) 

where the parameter  = 2/n is as small as , 
k

lC is the binomial coefficient, and 

[expression] in the upper limit of the sum stands for the integer part of expression. 

Let us evaluate for the sum (3.13) few lower-order terms of the expansion in   

 
  

  )32(ζ2)22(ζ
2 22

2

)1(

, nC
n

r

r

n

nnE ; 

here (z) is the Riemann zeta function (Erdelyi, 1953). As   grows, the  1st-order correction 

)()( 2222)1(

,

  
  OO

rnE  decreases quickly, as expected. But for the ground state the 

approximation is accurate for  small, and even better than the variational approximation 

if    0.03; see Table 1. An energy correction in the 2nd-order approximation of the 

perturbation method is not evaluated here but estimated as: )( 44)2(

,

 
 O

rnE .  

DISCUSSION 

In the present paper, we have considerd two problems of the mathematical physics which 
are related to the hypothesis about existence in the space of extra compacts dimension. 
The problem of a gravitation field generated by a pointlike mass in the compactified space 
of an arbitrary dimensionality is reduced to the multidimensional Poisson equation with 
the Dirac comb (or brush) source. A formal solution is expressed in terms of the Fourier 
integrals and series, the explicit form is derived for the spaces of 1+1 and 3+1 dimensions. 
The first example admits an electrotechnical treatment; the second one can be related to 
the nonrelativistic approximation of the Kaluza-Klein theory. 
Short-range and long-range asymptotics of the potentials are consistent with those 
obtained earlier within the relativistic consideration. Moreover, the relation between the 
“genuine” gravitational constant in the multidimensional space and the effective 
gravitational constant observed far from the source (2.7) has the same nature as the 
relation between the Plank scale and electro-weak energy scale in ADD-hypothesis 

(Arkani-Hamed, etel 1998). Indeed, in terms of quantum units 1 c  the gravitational 

constant in 3D space is 
2

Pl)3( 1 MGG  . Similarly, one can introduce for G(3+d) some 

mass Mf such that 
d

d MG 

  2

f)3( 1 . Up to numeral factors, the equality (2.7) yields for D 

= 3 the relation 
dd RMM  2

f

2

Pl  found in the Ref. (Arkani-Hamed, etel 1998) where fM  

is conjectured to be TeV 1ewf  MM , i.e., the electroweak scale. 

The second problem is the Kepler problem on 3D brane in 4D compactified space. It is 
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shown that a classical motion in this case is unstable while the quantum version of the 
problem is self-consistent provided the constraint (3.10) holds. By now the physical 
meaning of the quantum Kepler problem is controversial since for all known particles it is 
impossible to identify gravitational effects in the background of other interactions. For 
example, for the gravitating electron + proton system the analogue of the Bohr radius aB is 

ag   21039 aB which is bigger by many orders of the Universe extent, and a binding energy 
is negligibly small. The problem could be actual if there existed some dark matter 

superheavy particles of the mass  105 TeV for which  ag  1 mm (then it follows from (3.10) 

the condition R   0.1 mm what is in accordance with modern estimates (Arkani-Hamed, 
etel 1998; Rubakov, 2001)). Another possibility is a hypothetical existence of non-
gravitational sterile interactions penetrating into the extra dimensions (Rubakov, 2001). 
A methodological interest to the quantum Kepler-Coulomb problem in the compactified space 
consists in the solution of the Schrödinger equation with new physically motivated potential. 
The influence of the extra compact dimension reduces to a lowering the energy of the ground 

state and weakly excited s-states by a quantity about 
2

g

2 )( aR E . More accurate 

results are derived by means of the perturbational, variational and numeral methods. 
It is worth discussing the constraint (3.10) that is due to the singularity of the potential 
(3.1) at r = 0 within the nonrelativistic Schrödinger equation. One can argue that this 
constraint is meaningless since an actual relativistic motion is unstable because of another 
singularity on the Schwarzschild sphere. It turns out, however, that the constraint (3.10) 
has a relativistic implication. To show this, let us proceed from the following simple 
heuristic consideration. 

It is known that the expression for the gravitational radius 
2

g 2 cGMr  can be derived 

within the Newtonian mechanics: rg is equal to the radius of the body of the mass M for 
which the escape velocity v is equal to the light speed c. 
Similarly, one can obtain the gravitational radius Rg in 4D space (infinite or compactified if 
Rg < R). Taking into account Eq. (2.3) for N = 4, the energy of a test particle of the mass m 
in a gravity of the mass M in this case is equal to: 

2

)4(
2

22 r

mMGmv
E  . 

Conditions E = 0 and v = c lead to the expression which coincides with the gravitational 

radius of a black hole in 4D space: cMGR )4(g   (Myers & Perry, 1986).  

It is known from the quantum field theory that any particle cannot be localized in a lesser 

extent than the Compton length C . If C of a test particle is greater than the extent of a 

black hole, 

c

MG
R

mc

)4(

gC 22 


 ,    (4.1) 

a vicinity (and the horizon in particular) of the black hole influences weakly a state of the 
particle. Thus, the constraint (4.1) is a natural necessary stability condition within the 
relativistic consideration. Noteworthy the light speed c falls out the inequality (4.1) which 
upon Eqs. (2.10) and (3.2) reduces exactly to the constraint (3.10). 
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