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ABSTRACT 

This paper discusses the final fate of a 
gravitationally collapse of a massive star and the 
black hole formation. If the mass of a star 
exceeds Chandrasekhar limit then it must 
undergo gravitational collapse. This happens 
when the star has exhausted its nuclear fuel. As a 
result a space-time singularity is formed. It is 
conjectured that singularities must be hidden 
behind the black hole region which is called the 
cosmic censorship hypothesis. It has not been 
possible, to obtain a proof despite many 
attempts to establish the validity of cosmic 
censorship and it remains an open problem. An 
attempt has been taken here to describe causes of 
black hole formation and nature of singularities 
therein with easier mathematical calculations. 
 
PACs: 04.70-Bw: Classical black holes. 
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INTRODUCTION 

The existence of space-time singularities follows in the form of future or past incomplete non-
spacelike geodesics in the space-time. In the approximation of the star composed of 
homogeneous dust without any pressure, the curvature singularity forming as the end state of 
collapse will be completely covered by the event horizon and would be invisible to any 
external observer. The singularities forming in general gravitational collapse should always be 
covered by the event horizon of the gravity, and remains invisible to any external observer is 
called the cosmic censorship hypothesis. This hypothesis, originally proposed by Penrose, 
remain unproved as yet in the general case; despite many attempts towards a proof, and has 
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been recognized as one of the most important open problems in general relativity and 
gravitational physics. However, this throws the black hole dynamics into serious doubt. 
In the Schwarzschild solution such as a singularity was present at r = 0 which is the final fate 
of a massive star, whereas in the Friedmann model it was found at the epoch t = 0, which is 
the beginning of the universe, where the scale factor S(t) also vanishes and all objects are 
crushed to zero volume due to infinite gravitational tidal force (Hawking and Ellis 1973). 
When the star is heavier than a few solar masses, it could undergo an endless gravitational 
collapse without achieving any equilibrium state. This happens when the star has 
exhausted its internal nuclear fuel which provides the outwards pressure against the 
inwards pulling gravitational forces. Then for a wide range of initial data, a space-time 
singularity must develop. Thus, cosmic censorship implies that the final outcome of 
gravitational collapse of a massive star must necessarily be a black hole which covers the 
resulting space-time singularity. So, causal message from the singularity cannot reach the 
external observer at infinity. 

MANIFOLD IN DIFFERENTIAL GEOMETRY 

Any point p contained in a set S can be surrounded by an open sphere or ball rpx  , 

all of whose points lie entirely in S, where 0r ; usually it is denoted by; 

    rxpdxrpS  ,: , .   (1) 

Let M be a non-empty set. A class T of subsets of M is a topology on M if T satisfies the 
following three axioms (Lipschutz 1965): 

1. M and   belong to T, 

2. the union of any number of open sets in T belongs to T, and 
3. the intersection of any two sets in T belongs to T. 

The members of T are open sets, and the space (M, T) is called topological space. 
Let p be a point in a topological space M. A subset N of M is a neighborhood of p iff N is a 

superset of an open set O containing p, i.e., NOp  . 

Let 
nR  be the set of n-tuples  nxx ,...,1

 
of real numbers. A set of points M is defined to be 

a manifold if each point of M has an open neighborhood which is continuous one-one map 

onto an open set of nR  for some n. 
 
A manifold is essentially a space which is locally similar to Euclidean space in that it can 
be covered with coordinate patches, but which need not be Euclidean globally. Map 

OO :  where 
nRO   and 

mRO   is said to be a class  0rC r
 if the 

following conditions are satisfied. If we choose a point p of coordinates  nxx ,...,1
 on O 

and its image  p  of coordinates   nxx  ,...,1

 
on O  then by 

rC  map we mean that 

the function   is r-times differential and continuous. If a map is 
rC for all 0r  then we 

denote it by 
C ; also by 

0C map we mean that the map is continuous.  

An n-dimensional, 
rC , real differentiable manifold M is defined as follows(Hawking and Ellis 

1973): 
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M has a 
rC altas   , U  where U  are subsets of M and   are one-one maps of the 

corresponding U  to open sets in nR  such that (figure 1);  

1. U  cover M i.e., 


UM  , 

2. If  UU  then the map      UUUU  :1  is a 

rC
 
map of an open subset of  nR  to an open subset of nR . 

Condition (2) is very important for overlapping of two local coordinate neighborhoods. 

Now suppose U  and U  overlap, and there is a point p in  UU  . Now choose a 

point q in   U  and a point r in   U . Now   pr 1

 , 

     qrp    1

   . Let coordinates of q be  nxx ,...,1

 
and those of r be 

 nyy ,...,1
.  

At this stage, we obtain a coordinate transformation; 

 

Figure 1: The smooth maps 
1

    on the n-dimensional Euclidean space 
n giving the 

change of coordinates in the overlap region. 
 

 nxxyy ,...,111   

 nxxyy ,...,122   

…    …     … 

 nnn xxyy ,...,1 . 

The open sets U , U , and maps 
1

    and 
1

    are all n-dimensional, so that 
rC

 
manifold M is r-times differentiable and continuous, i.e., M is a differentiable manifold. 
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GENERAL RELATIVITY AND E INSTEIN EQUATION  

By the covariant differentiations, we can write (Mohajan 2013a); 



 ARAA  ;;;;

,     (3) 
 

where  


















  ;;R      (4) 

 
is a tensor of rank four and called Riemann curvature tensor. 
 
The covariant curvature tensor is defined by; 




















































xx

g

xx

g

xx

g

xx

g
R

2222

2

1
+  









 g . (5) 

 
Ricci tensor is defined as; 

.



 RgR 
     

(6) 

Further contraction of (6) gives Ricci scalar; 


 RgR ˆ .      (7) 

For a perfect fluid R  is defined as; 

 pVVR 34  
     (8) 

where 
V  denotes the timelike tangent vector. 

 
The equation for geodesic is; 

0 




uu
dt

du
.      (9) 

Now we want to derive Jacobi equation that characterizes the coming together or moving 
away of space-time geodesics from each other as a result of the space-time curvature. Let 
us consider a smooth one-parameter family of affinely parametrized  non-spacelike 

geodesics, characterized by the parameters  vt,  with vt,  where t is the affine 

parameter along a geodesic and v = constant characterizes different geodesics in the family 
(figure 2). 

Let vectors 
t

T



  and 

v
V




  be the coordinate vectors for which,   0, VT , and 

then;  

TV VT    TVVT 



  . 

Again T is tangent to the geodesics, so, 

0 


 TT . 
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Non-space like geodesics 

 
Figure 2: A one-parameter family of non-spacelike geodesics with the tangent vector T and 

separation vector V. 
 

Now, define operator D by 
TD  then;  

   



 TVDV   

       



 TDVTDVVD   2

  

   








 TTVTTT   . 

By the equation (3) we can write; 








 TRTT  , 

so that,  

         











 TVTRTVTTTVVD   2
 

      











 TVTRTTTTV       

   








 TVTRTTV       


 TVTR . 

The equation; 



 TVTRVD 2

     (10) 
 

is called the equation of geodesic deviation or Jacobi equation. 

  



 TVTRVD 2

 .    (11) 
 

If 0
R  then 02 VD , if 0

R  then the neighboring non-spacelike geodesics 

will necessarily accelerated towards or away from each other. 
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Einstein’s field equation can be written as; 




T

c

G
RgR

4

 8

2

1
     (12) 

 

where 
2131110673.6  skgmG  is the gravitational constant and 

810c m/s is the 

velocity of light but in relativistic unit G = c = 1.  Hence in relativistic units (12) becomes 
(Stephani et al. 2003); 

  TRgR  8
2

1
  .    (13) 

 

A perfect fluid is characterized by pressure  xpp  , then the energy momentum 

tensor can be written as; 

    pguupT       (14) 
 

where   is the scalar density of matter. 
 

It is clear that the divergence of both sides of (12) and (13) is zero. For empty space 

0T  and hence  gR   , then; 

0R  for 0     (15) 

which is Einstein’s law of gravitation for empty space. 

MINKOWSKI SPACE-TIME 

The Minkowski space-time (M, g) is the simplest empty space-time in general relativity 
and is, in fact, the space-time of the special relativity. Mathematically it is the manifold M 

= 
4  and so the metric can be written as (Mohajan 2013a); 

22222 dzdydxdtds     (16) 
 

where  zyxt ,,, . Here coordinate t is timelike and other coordinates x, y, z are 

spacelike. This is a flat space-time manifold with all the components of the Riemann tensor 

0
R . So the simplest empty space-time solution to Einstein equation is; 

08   TG      (17)  
 

which underlies of the physics of special theory of relativity. Under Lorentz 
transformation, the Minkowski metric preserves both time and space orientations. The 

vector 
t 


 provides a time orientation for this model. 

In spherical polar coordinates   ,,,rt , where t = t,   sinsinrx  , 

 cossinry   and cosrz   then (16) takes the  

22222  drdrdtds     (18) 
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with  20  ,0  ,0  r  and 
2222  sin  ddd  . Here coordinate t is 

timelike and other coordinates   ,,r  are spacelike. There are two apparently 

singularities for r = 0 and 0sin  ; however this is because the coordinates used are not 
admissible coordinates at these points, i.e., we used spherical polar coordinates and the 

frames are now non-inertial. That is why we have restriction of  ,,r  as above and we 

need two such coordinate neighborhoods to cover all of the Minkowski space-time, then 
(18) will be regular. We assumed that all the components of the Riemann curvature tensor 

vanish for the Minkowski space-time which is a flat space-time. In  zyxt ,,,  coordinates 

this is very clear that all the metric components are constant, i.e., diagonal   ,,, , so 

all the connection coefficients, Γ’s, will vanish. But in spherical polar coordinates 

  ,,,rt , the connection coefficients , Γ’s, will not vanish, for example, r1

22
; 

however all the Riemann curvature components will still vanishes, 0
R  i.e., the 

manifold is still gravitation free, i.e., flat space-time (Hawking and Ellis 1973, Joshi 1996).   

CAUSALITY AND SPACE-TIME TOPOLOGY  

Given an event p in M, the lines at 450 to the time axis through that event give null 
geodesics in M. Such null geodesics form the boundary of the chronological future or past 

 pI   of an event p which contains all possible timelike material particle trajectories 

through p including timelike geodesics (Hawking and Ellis 1973, Joshi 2013, Mohajan 

2013c). The causal future  pJ 
 is the closure of  pI 

, which includes all the events in 

M, which are either timelike or null related to p by means of future directed non-spacelike 
curves from p. An event p chronologically precedes another event q, denoted by p << q, if 
there is a smooth future directed timelike curve from p to q. If such a curve is non-

spacelike then, p causally precedes q i.e., p < q. The chronological future  pI 
 and past 

 pI 

 
of a point p are defined as (figure–3).   

 

   qpMqpI  / , and 

   pqMqpI  / . 

 
The causal future (past) of p can be defined as; 
 

   qpMqpJ  / , and 

      pqMqpJ  / . 
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Chronological future 

 
Figure 3: Causality and chronology in M. 

 
Also qp   and rq   or qp   and rq  implies rp  . Hence, 

   pJpI    and    pJpI    . 

SCHWARZSCHILD SPACE-TIME MANIFOLD 

The Schwarzschild metric which represents the outside metric for a star is given by 
(Mohajan 2013c); 

 2 2sin222
1

2
12 

2
12  ddrdr

r

m
dt

r

m
ds 




















     (19) 

 

If 0r  is the boundary of a star then 0rr 
 
gives the outside metric as in (19). If there is no 

surface, (19) represents a highly collapsed object viz. a black hole of mass m (will be 
discussed later). The metric (19) has singularities at r = 0 and r = 2m, so it represents 

patches mr 20   or  rm2 . If we consider the patches mr 20   then it is 
seen that as r tends to zero, the curvature scalar, 

6

248

r

m
RR 



    
(20) 

tends to 
 
and it follows that r = 0 is a genuine curvature singularity i.e., space-time 

curvature components tend to infinity (Mohajan 2013a, c, Mohajan 2014a). 
 

At r = 2m the curvature scalars are well behaved at this point, so it is a singularity due to 
inappropriate choice of coordinates. The maximal extension of the manifold (19) with 

 rm2  was obtained by Kruskal (1960) and Szekeres (1960). We now discuss about 
this, which uses suitably defined advanced and retarded null coordinates. For null 
geodesics (19) takes the form, 

2

1

2 2
1 

2
1 dr

r

m
dt

r

m





















 

dr
mr

r
t  


2
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















 1

2
log2

m

r
mr constant 

*rt  +constant.     (21) 
 
The null coordinates u and v are defined by; 

*rtu  ,   
*rtv   

2

* uv
r


       (22) 

Now; 

2

1

2 2
1 

2
1 dr

r

m
dt

r

m



















  

 2*2 1
2

2
drdt

m

r

r

m









  

 

dudvee
r

m
m

uv
m

r

  
2

22



      

 

.   
2 22222 




drdudvee
r

m
ds m

uv
m

r

   (23) 

As mr 2  corresponds to u  or v , we define new coordinates U and V by 
(Mohajan 2014b); 

m
u

eU 4  , m
v

eV 4  
 

dudve
m

dUdV m
uv

 
16

1
4

2



 . 

Hence, (23) becomes; 

 
222

3
2  

32



drdUdVe

r

m
ds m

r

.     (24) 

Hence there is no singularity at U = 0 or V = 0 which corresponds to the value at r = 2m.  
Let us take a final transformation by;  

2

VU
T


   and 

2

UV
X


 , then (23) becomes;             

  22222

3
2 32




drdXdTe
r

m
ds m

r

     (25) 

which is Kruskal-Szekeres form of Schwarzschild metric. Then transformation  rt,  to 

 XT ,  becomes; 

 








  1

2
 2222

m

r
eeUVTX mrmuv

   (26) 
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m

t

X

T

4
tanh   

X

T
mt 1tanh4  .    (27) 

 

From (27), 0r  gives 122 TX . The physical singularity at r = 0 gives 

  2
1

2 1 TX , and we observe that there is no singularity now at r = 2m.  

FRIEDMANN, ROBERTSON–WALKER (FRW) MODEL 

In   ,,, rt  coordinates the Friedmann, Robertson-Walker line element is given by; 

   










 2222

2

2
222 sin

1
 ddr

kr

dr
tSdtds   

         

(28) 

where  tS  is the scale factor and k is a constant which denotes the spatial curvature of 

the three-space and could be normalized to the values +1, 0, –1. When k = 0 the three-space 

is flat and (28) is called Einstein de-Sitter static model, when 1k and 1k  the 
three-space are of positive and negative constant curvature; these incorporate the closed 
and open Friedmann models respectively. Here coordinate t is timelike, and other 

coordinates   ,,r  are spacelike,   and   are the corresponding angular coordinates in 

the co-moving frame (Mohajan 2014b). 

THE KERR METRIC 

We know astronomical bodies are rotating. As a result the solution outside them cannot be 
exactly spherically symmetric. The Kerr solutions are the stationary axisymmetric 
asymptotically flat field outside certain rotating object, in fact, a rotating black hole. In 

Boyer-Lindquist (1967) coordinates   ,,, rt  the metric can be written as; 

22
2

22 sin4
 

2
1 


ddrdtd

amr
dt

mr
ds 


















   

22
22

22 sin
sin2




d
mra

ar 









    (29) 

where 222 cosar  , 
22 2 amrr       (30) 

m and a are constants; m is gravitating mass, J is total angular momentum such that 

m

J
a  , so a is angular momentum per unit mass. The Kerr geometry is stationary as it 

admits a timelike Killing vector field. When a = 0 the solution reduces to the 

Schwarzschild solution. Again if r  then the metric components tend to the 
Minkowski values, which indicate the space-time is asymptotically flat. 

The non-removable curvature singularity lies at 0cos222  ar . This would 

happen when 0cos  r  and the singularity has the structure of a ring of radius a, 
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which lies in the equatorial plane z = 0. The square of timelike Killing vector 
 0

2   is 

given by; 

  1222

00

2 cos2   
 amrrg .    (31) 

The stationary limit surface in Kerr geometry is given as a surface where the Killing vector 
  becomes null. Hence  2222 cos20 amrr  , which gives; 

   2
1

222 cos ammr  .       (32) 

Of the two values given above, generally the outer stationary limit is relevant for most of 
the discussions. To locate the black hole surface, we note that the metric has a singularity, 

similar to the mr 2  Schwarzschild case when 0 , then (30) becomes; 

  2
1

22 ammr          
(33) 

22 ma   gives rise two null event horizons. Here 
 rr  is a null surface. Thus, a particle 

which crosses it in future direction cannot return again to the same region. It forms the 
boundary of the region in the space-time from which particles can escape to the future null 

infinity. Here  rr  is the event horizon or the black hole surface for the future null 

infinity. Hence the Kerr solution is regular in three regions given by  rr0 , 

  rrr  and  rr
 
(Mohajan 2013a). 

SPACE-TIME SINGULARITY 

Let us consider a space-time manifold M 
4 . Einstein’s empty space equation (17) is 

0R . From this we have Schwarzschild metric (19), where there are singularities at 

0r  and r = 2m, because one of the 
g  or g  is not continuously defined. Again we 

have shown in (20) that 0r  is a real singularity in the sense that along any non-
spacelike trajectory falling into the singularity as r  the Kretschman scalar 


 RR  tends to infinity and r = 2m is a coordinate singularity (Kruskal 1960 and 

Szekeres 1960). Again in FRW models the Einstein equations imply that 03  p  at all 

times, where   is the total density and p is the pressure, there is a singularity at t = 0, 

since   02 tS  when 0t  in the sense that curvature scalar 
RRR ˆ  bends to 

infinity. Here we consider the time t = 0 is the beginning of the universe. Thus there is an 
essential curvature singularity at t = 0 which cannot be transformed away by any 
coordinate transformation. The existences of real singularities where the curvature scalars 
and densities diverge imply that all the physical laws break down. Let us consider the 
metric;  

2222

2

2 1
dzdydxdt

t
ds          (34) 

which is singular on the plane t = 0. If any observer starting in the region t > 0 tries to 
reach the surface t = 0 by traveling along timelike geodesics, he will not reach at t = 0 in 
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any finite time, since the surface is infinitely far into the future. If we put  tt  log  in t 

< 0 then (34) becomes; 
22222 dzdydxtdds         (35) 

with  t  which is Minkowski metric, and there is no singularity at all, which is 
a removable singularity like Schwarzschild singularity at r = 2m. Let us consider a non-
spacelike geodesic which reaches the singularity in a proper finite time. Such a geodesic 
will have not any end point in the regular part of the space-time. A timelike geodesic 
which, when maximally extended, has no end point in the regular space-time and which 
has finite proper length, is called timelike geodesically incomplete.  

GRAVITATIONAL COLLAPSE OF A MASSIVE STAR 

Here we describe the final fate of a massive star when it has exhausted its nuclear fuels. 
The star burning hydrogen produces helium, and the volume of the star get contraction in 
this process. At one stage the gravitational contraction is halted, and the star enters a 
quasi-static period, when it supports itself against gravity by means of the thermal and 
radiation pressures. This process may continue for billions of years, depending on the 

original mass of the star. If 
O

MM  (where 
33102

O
M gm, the mass of the sun), 

this period is longer than 1010 years, but if 
O

10MM   it has to be less than 
7102  

years which means the heavier stars burn out their nuclear fuel much faster. The star has 
then exhausted much of hydrogen and produces helium, but the collapse must continue 
further if the star is still sufficiently massive. In the process, the core temperatures rise 
again to initiate thermonuclear reactions converting helium into carbon, and the core 
stabilizes again. For heavy enough star this process continues until a large core of stable 
nuclei, such as iron and nickel, is built up. The final state for such an evolution is either an 
equilibrium star or state of continual endless gravitational collapse. Two stability states of 
stars come either from electron degeneracy pressure when the star becomes a white dwarf 
or from neutron degeneracy pressure giving a neutron star. Indian scientist S. 
Chandrasekhar introduced maximum mass for a non-rotating star to achieve a white 
dwarf stable state as (Chandrasekhar 1983); 

 
       (36) 

 
 
 

where c  is the constant mean molecular weight per electron. The maximum mass for 

non-rotating white dwarf lies in the range 
O

5.1
O

0.1 MM   depending on the 

composition of matter and for neutron stars this range to be 
O

7.2
O

3.1 MM   (Arnett 

and Bowers 1977). 
A typical white dwarf has a radius of ~104 km and central density ~106 gm cm–3 whereas for a 
neutron star these numbers are given by ~10 km and ~1015 gm cm–3 respectively. Many 
examples of white dwarfs are known to exist in the universe and the discovery of pulsars has 

O

2
4.1

2

MM
c

c 










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provided strong support for the existence of neutron stars. If a star has a mass higher than or 

about 5
O

M , it has exhausted all its nuclear fuel and no equilibrium configurations are 

possible unless it manages to throw away most of its mass by some process during this 
evolution, which is discovered by supernova explosion for the star. When the core collapse is 
halted or slowed down at nuclear densities, a stock wave is produced which propagates 
outwards in the envelope of the star. While the inner core remains a neutron star, the outer 
parts are driven away by the shock, releasing enormous mass and energy. But the theory of 
such ejection of matter is not well understood, and it seems very unlikely that the massive stars 
will be able to throw away almost all of their masses in such a process. Because for stars of 

mass 10
O

M , this would amount to throwing away about 90% of the mass of the star, but no 

mechanism is detected in support of this (Joshi 1996). 

BLACK HOLES 

The stars contract due to gravitation until all matters in the star collapses to a space-time 
singularity, when the star is sufficiently massive so that no equilibrium state is possible 
and the gravitational full overcomes all the internal pressures and stresses which might 
stop the collapse. This creates a black hole in the space-time which covers the space-time 

singularity. In the Schwarzschild metric a region of trapped surface form below mr 2 , 
from which no light rays escape to an observer at infinity, so a black hole is created. Again 
at singularity r = 0, the curvature and density is infinite, the singularity is completely 
hidden within the trapped surface region. So, no signal from the singularity could go out 
to any observer at infinity, and the singularity is disconnected from the outside observers 
(Joshi 1996).  
The black hole region is formalized by Roger Penrose as trapped surface in M which is 
closed compact spacelike two-surface T such that the two families of null geodesics 

orthogonal to it are converting at T i.e., 01 
 g  and 02 

 g  where 1  

and 2  are the two null second fundamental forms of T. In the spherical symmetric 

case the event horizon is formed marginally trapped surfaces T i.e., for which 

01 
 g  and 02 

 g  which means one family of null geodesics orthogonal to 

T  has zero convergence whereas the other family converges ‘inwards’. So the trapped 
surfaces must be fully contained within the black hole region, not visible from I +, where I + 

is future null infinity, defined by imbedding M into another conformal manifold M . In 
an asymptotic flat space-time M, a black hole region is defined by (figure 4); 

 JMB (I +).        (37) 
The boundary of B in M is defined by; 

 JH  (I +) M         (38) 

is called the event horizon. 

In the Minkowski space-time 
J (I +) = M  and there is no black hole but in Schwarzschild 

case 
J (I +) is the region for space-time exterior to mr 2  and the event horizon is 

given by the null hypersurface mr 2  which is the boundary of black hole region 
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mr 20  , so 
 JT (I +) = . 

The black hole region 
 JMB (I +) is closed in M. Hence, the event horizon is 

contained in B. Any event Hx  lies on the boundary of black hole region. So smallest 

perturbation could make x enter 
J (I +), and causally connected to infinity. Then the 

space-time is no longer asymptotically predictable. This is avoided by demanding that for 
the partial Cauchy surface S,  

   JSJ (I +)  SD .       (39) 

The area of the horizon increases monotonically until the horizon reaches surface of the 

star. Outside, this area is a constant and is given by 
2

0 16 mA  . 

 
Figure 4: The black hole is a region of space-time from which no causal communications, 
that is, non-spacelike curves can reach the future null infinity I +.  
 

For the Kerr-metric (29) the event horizon is defined by  rr  in (33). The area is 

obtained by setting t = constant,  rr  which gives the metric on the surface. Then we 

have (Mohajan 2013a);  

  




  2
1

228 ammmddgA  .     (40) 

Hence, the area of the horizon is non-increasing function. For strongly asymptotically 
predictable space-time in general, the area of the black hole horizon must remain constant 

or must increase, provided 0
 KKR  for all null vectors 

K . For all null geodesic 

generators of H, the expansion   must be everywhere non-negative, 0 . So, the area 
of the event horizon must be non-decreasing in future. If two or more black holes merge to 
form a single black hole, the area of its boundary must be greater than or equal to the sum 

of the original black hole areas. Consider two black holes with masses 1m  and 2m , and 

angular momenta 1a  and 2a  which collide to give a third hole with these parameters 3m , 

and 3a . The area of a single hole is given by (40), so the area theorem implies (Joshi 1996); 

     





 





 





  2
1

2

2

2

222
2

1
2

1

2

111
2

1
2

3

2

333 ammmammmammm . (41) 

The energy radiated is 321 mmm  , or the function of total energy radiated is;  
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21

31
mm

m
f


 .        (42) 

Then using the inequality (41) it can be seen that 
2

1
f , that is, at most half the initial 

energy could be released on black hole collisions. We can introduce irreducible mass 0m  

for a black hole by the relation;  
2

0 16 mA  .         (43) 

By (43) we can find; 

2

0

2
2

0

2

4m

J
mm          (44) 

where J is the angular momentum of the black hole. The second term of (44) represents the 
rotational contribution to the black hole mass. According to the area theorem above, for all 
physically allowed processes, the total area  of black holes cannot decrease, that is, 

0A . For Schwarzschild black hole, the only way to reduce this area is to extract mass 
from black hole, which is impossible because no particle or photons can cross the event 
horizon to come out. Also one can increase area by throwing particles in black hole. Black 
hole physics is equivalent to the second law of thermodynamics, which states the total 

entropy of all the matter in the universe is non-decreasing, that is, 0S . A black hole is 
a perfect absorber and does not emit at all, so the thermodynamic temperature of a black 
hole in classical relativity will be absolute zero. But Hawking has shown that when 
quantum particle creation effects are taken into account, a black hole actually radiates with 
a black body spectrum at a temperature proportional to the surface gravity. 

CONCLUDING REMARKS 

In this article we have discussed the gravitational collapse of a massive star with the help 
of topology and differential geometry. Chandrasekhar expressed that if the mass of a star 
is greater than 1.4 times of the solar mass then it must undergo gravitational collapse 
when it has exhausted its nuclear fuel due to the outwards pressure against the inwards 
pulling gravitational forces. When the star is heavier than a few solar masses, it could 
undergo an endless gravitational collapse without achieving any equilibrium state. At this 
situation the star becomes a black hole in the space-time which covers the space-time 
singularity, which is called the cosmic censorship hypothesis. Throughout the paper, we 
have tried to represent every section with easier mathematical calculations. 
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