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ABSTRACT 

Lorentz transformation is the basic tool for the study of 

Relativistic mechanics. There are different types of Lorentz 

transformations such as Special, Most general, Mixed number, 

Geometric product, and Quaternion Lorentz transformations. In 

this paper we have studied the reciprocal property of the above 

Lorentz transformations where the velocity of a particle is very 

close to the speed of light.  

 

Key Words: Lorentz transformation and Reciprocal Property. 

PACS: 03.30. + p 
 

1 INTRODUCTION 

1.1 Special Lorentz transformation 

 

Figure 1: The frame S is at rest and the frame S is moving with respect to S 

with uniform velocity V along x-axis. 
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Consider two inertial frames of Refeence S and S  where the frame S is at rest 

and the frame S  is moving along X-axis with velocity V with respect to S 

frame. The space and time coordinates of S and S  are (x, y, z, t) and (x, y, z, 

t) respectively.Then the relation between the coordinates of S and S   is 

called special Lorentz Transformation which can be written as [1] 
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1.2 Most General Lorentz Tranformation 
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Figure -2: The frame S is at rest and the frame S is moving with respect to S 

with uniform velocity V


 along any arbitrary direction. 

When the velocity V


 of S  with respect to the S is not along X-axis i.e. the 

velocity V


 has three components Vx, Vy and Vz. Then the relation between the 

coordinates of S and S   is called most general Lorentz Transformation which 

can be written as [2] 
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(4) 

Where  VV


  

1.3 Mixed Number Lorentz Transformation 

Mixed number [3-7]   is the sum of a scalar x and a vector A


 . 

i.e. Ax


  

The product of two mixed numbers is defined as [3-7]  

BAiAyBxBAxyByAx


 .))((  
 

(5) 

Taking 0 yx , we get from equation (5) 

BAiBABA


 .

                                                                          

(6)

                     

 

This product is called mixed product [7] and the symbol   is chosen for it. We can 

generate a type of most general Lorentz transformation using this mixed product. 
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Using 1c and            
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in equations(1) and (2), we can write 
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Now from equation (7), we get  

 
)( vtxvxtxt  

 

)]()[(, xtvxtxtor    
 

(9) 

Using (t' + x') = p' and (t + x) = p in equation (9), we can write 

)( pvpp    
 

(10) 

Now from equation (8), we get 

        )( tvxxvtxt    

)]()[(, xtvxtxtor    
 

(11) 

Using  pxt  )(  and pxt  )(  in equation (11), we can write 

)( vppp    
 

(12) 

In the case of the most general Lorentz transformation, the velocity V


 of S' 

with respect to S is not along the X-axis; i.e., the velocity V


 has three 

components, Vx, Vy, and Vz. Let in this case Z and Z' be the space parts in the S 

and S' frames, respectively. In this case equation (10) can be written as 
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)( VPPP


   
 

(13) 

Where, )( ZtP

  and )( ZtP


  are two mixed numbers [5].  

Therefore,  

       ])()[()( VZtZtZt


   

)0)(()[()(, VZtZtZtor


   
 

(14) 

Using equation (6), we can write 

VZiVtVZVZt


 .)0)((  
 

(15) 

From (14) and (15) we get, 

        )]..()[()( VZiVtVZZtZt


      

)().()(, VZiVtZVZtZtor


   
 

(16) 

Equating the scalar and vector part from the both sides of equation (16), we 

can write  
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Similarly, we can show that 

)(

).(

VZiVtZZ

VZtt











 

 

(18) 

Equations (17) and (18) are the mixed-number Lorentz transformation.  

1.4 Geometric Product Lorentz Transformation 

Bidyut Kumar Datta and his co-workers defined the geometric product of 

vectors as [8, 9] 

BABABA


 .                                                                         
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where A


and B


 are two vectors.  We use the symbol   instead of the symbol

 . Therefore, the geometric product of vectors can be written as  

BABABA


 .  
 

(19) 

We can also generate a type of most general Lorentz transformation using this 

geometric product. 

In this case the velocity V


 of S' with respect to S also has three components, 

Vx, Vy, and Vz as the most general Lorentz transformation. Let in this case Z


 

and Z

  be the space parts in the S and S' frames respectively. Equation (14) is 

       )]0)(()[()( VZtZtZt


             

])()[()(, VZVtZtZtor


   
 

(20) 

From equation (19) the geometric product of two vectors is  

BABABA


 .                                                                    

Therefore, we can write 

VZVZVZ
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(21) 

From (20) and (21) we get, 
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Equating the scalar and vector part from the both sides of equation (22), we can write 
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Similarly, we can show that 
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(24) 

Equations (23) and (24) are the geometric product Lorentz transformation. 

1.5 Quaternion Lorentz Transformation 

The quaternion can also be written as the sum of a scalar and a vector [10]  

i.e., AaA


  

The multiplication of any two quaternions  AaA


  and BaB


  is 

given by  

[10-12]  

BAAbBaBAabBbAaBA


 .))((  
(25) 

Taking a = b = 0, we get from equation (25) 

BABABA


 .  
 

(26) 

This product is called quaternion product. We can also generate a type of 

most general Lorentz transformation using this quarterion product. 

In this case the velocity V


 of S' with respect to S has also three components, 

Vx, Vy, and Vz as the most general Lorentz transformation. Let in this case Z


and Z

  be the space parts in the S and S' frames, respectively. In this case, 

equation (14) is 

)]0)(()[()( VZtZtZt


                                     

Here, )( Zt

  , )( Zt


  and )0( V


  are three quaternions [9] 

According to the product of quaternions [10-12] we can write 

VZVtVZVZt


 .)0)((  
 

(27) 

From (27) and (14) we get 
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Equating the scalar and vector part from the both sides of equation (28), we 

can write 
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Similarly, we can show that 
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(30) 

Equations (29) and (30) are the quaternion Lorentz transformation.  

2 RCIPROCAL PROPERTY OF DIFFERENT LORENTZ TRANSFORMATIONS 

2.1 Rciprocal property of Special Lorentz Transformation 

The velocity addition formula for the Special Lorentz transformation can be 

written as 
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Dividing numerator and denominator of equation by t we get 
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If we replace U by P where 1PU  then W  will be change to W   where  

           PV
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Reciprocal Property demands that if 1PU then  
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So,  1WW  (33) 

Consequently, the Special Lorentz Tranformation satisfies the Reciprocal property. 

2.2 Rciprocal property of Most General Lorentz Tranformation 

From the transformation equations of addition of velocities of Most General 

Lorentz Tranformation [2] we have 
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Dividing numerator and denominator by t we get 
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Where      
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So, 1. WW


 (35) 

Consequently, the Most General Lorentz Tranformation does not satisfy the 

Reciprocal property [13]. 

2.3 Rciprocal property of Mixed Number Lorentz Transformation  

From the transformation equations of addition of velocities of mixed number 

Lorentz Tranformation [3] we have 
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Dividing numerator and denominator of equation (36) by t we get 
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Similarly 

If we replace V


 by Q


 where 1. QV


then W


 will be change to W 


where 

1. WW


 

Consequently, the   Mixed Number Lorentz Transformation satisfies the 

reciprocal property [13].  

2.4 Rciprocal property of Geometric Product Lorentz Transformation 

From the transformation equations of addition of velocities of Geometric 

product Lorentz Transformation [3] we have, 
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Dividing numerator and denominator of equation (39) by t we get 
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If we replace U


 by P


 where 1. PU


 then W


 will be change to W 


 where  
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So,  

1. WW


 (41) 

Consequently, the   Geometric product Lorentz Transformation does not 

satisfy the reciprocal property [13].  

2.5 Rciprocal property of Quaternion Lorentz Transformation 

From the transformation equations of addition of velocities of Quaternion 

Lorentz Transformation [3] we have 
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Dividing numerator and denominator of equation (42) by t we get 
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So,  1. WW


 (44) 

Consequently, the   Quaternion Lorentz Transformation does not satisfy the 

reciprocal property [13].                    

3 CONCLUSION 

The reciprocal property of different Lorentz transformations has been 

discussed and we have obtained that 

1.  Special and Mixed Number Lorentz Transformations satisfy the 

Reciprocal property. 

2.  Most General, Geometric product and Quaternion Lorentz 

Transformations do not satisfy the reciprocal property. 
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