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ABSTRACT

Lorentz transformation is the basic tool for the study of
Relativistic mechanics. There are different types of Lorentz
transformations such as Special, Most general, Mixed number,
Geometric product, and Quaternion Lorentz transformations. In
this paper we have studied the reciprocal property of the above
Lorentz transformations where the velocity of a particle is very

close to the speed of light.
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1 INTRODUCTION
1.1 Special Lorentz transformation
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Figure 1: The frame S is at rest and the frame S’ is moving with respect to S

with uniform velocity V along x-axis.
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Consider two inertial frames of Refeence S and S’ where the frame S is at rest

and the frame S’ is moving along X-axis with velocity V with respect to S
frame. The space and time coordinates of Sand S’ are (x, y, z, t)yand (X', y', Z,
t') respectively.Then the relation between the coordinates of S and S’ is
called special Lorentz Transformation which can be written as [1]
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1.2 Most General Lorentz Tranformation
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Figure -2: The frame S is at rest and the frame S’ is moving with respect to S
with uniform velocity v along any arbitrary direction.

When the velocity V' of S’ with respect to the S is not along X-axis i.e. the
velocity V has three components V,, Vy and V.. Then the relation between the
coordinates of Sand S’ is called most general Lorentz Transformation which

can be written as [2]

(X V)

iy —)*“2 ot o

tr — (1__2)—1/2{t _ (Vz()}
C C

and

X=X V[{(XV',Z Na-Y )*“2—1}—t'(1—v—2)*“2]
c @

t:(l_v_z)—l/Z{t/_ (V z( )}
c c

Where V'=-V

1.3 Mixed Number Lorentz Transformation

Mixed number [3-7] ¢ is the sum of a scalar x and a vector A .
ie. a=x+A

The product of two mixed numbers is defined as [3-7]

off =(x+A)(y+B)=xy+A.B+xB+yA+iAxB 5
5

Takingx=y=0 , we get from equation (5)
A®B=A.B+iAxB (6)
This product is called mixed product [7] and the symbol & is chosen for it. We can

generate a type of most general Lorentz transformation using this mixed product.

Asian Business Consortium | IJRSTP Page 22



International Journal of Reciprocal Symmetry and Theoretical Physics, Volume 1, No 1 (2014)

Using ¢ =1and y =

in equations(1l) and (2), we can write

X"=y(X—vt)
t' =y (t—vx) (7)
X=y(x"+vt")
t=y(t"+vx’) (8)

Now from equation (7), we get

t'+ X' =y(t—vx+ Xx—vt)

or, t"+ X" =y[(t +Xx) —v(t + x)]

©)
Using (t' + x') = p' and (t + x) = p in equation (9), we can write
p'=r(p-pV)
(10)
Now from equation (8), we get
t+x=pt"+vx' +x +vt")
or, t+x=y[(t"+x")+v(t'+x)]
(11)

Using (t'+X')=p" and (t+X)= p in equation (11), we can write

p=y(p'+p'v) 12)

In the case of the most general Lorentz transformation, the velocity V of S

with respect to S is not along the X-axis; i.e., the velocity V has three
components, V,, Vy,and V.. Let in this case Z and Z' be the space parts in the S

and S' frames, respectively. In this case equation (10) can be written as
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P'=y(P-PV) )

Where, P'=(t'+Z') and P = (t+ Z) are two mixed numbers [5].
Therefore,

t'+Z)=y[(t+Z)-(t+Z\V]

or, t'+Z")=y[(t+Z)—(t+Z)O0+V)

(14)
Using equation (6), we can write
(t+Z)0+V)=ZV +tV +iZ xV
(15)
From (14) and (15) we get,
t'+Z)=y[(t+Z)—(ZN +tV +iZ.V)]
or, (t'+Z")=y(t—Z.V) + y(Z -tV —iZ xV)
(16)
Equating the scalar and vector part from the both sides of equation (16), we
can write
t'=y(t—-2.V)
Z'=y(Z -tV —iZ xV) (17)

Similarly, we can show that
t=y(t' +Z".V)
Z=y(Z'+tV +iZ'xV) (18)
Equations (17) and (18) are the mixed-number Lorentz transformation.
1.4 Geometric Product Lorentz Transformation
Bidyut Kumar Datta and his co-workers defined the geometric product of

vectors as [8, 9]
AB=AB+AAB
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where Aand B are two vectors. We use the symbol x instead of the symbol
A . Therefore, the geometric product of vectors can be written as
AB=A.B+AxB
(19)
We can also generate a type of most general Lorentz transformation using this

geometric product.
In this case the velocity V of S' with respect to S also has three components,

Vi Vy, and V., as the most general Lorentz transformation. Let in this case Z

and Z' be the space parts in the S and S' frames respectively. Equation (14) is
t'+Z) =yt +2Z) - (t+Z)(0+V)]

or, (t'+Z)=y[(t+2Z)-(tV)-2ZV]

(20)
From equation (19) the geometric product of two vectors is
AB=A.B+AxB
Therefore, we can write
(ZV)=ZN +ZxV
(21)
From (20) and (21) we get,
t'+Z)=y[(t+Z)—(ZN +tV + Z xV)]
or, t'+Z)=y(t—ZNV)+y(Z -tV —Z xV)
(22)

Equating the scalar and vector part from the both sides of equation (22), we can write
t'=y(t—Z2.V)
Z'=y(Z -tV - Z xV) (23)

Similarly, we can show that
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t=y(t'+Z"V)
Z=y(Z'+tN +7Z'xV) (24)

Equations (23) and (24) are the geometric product Lorentz transformation.
1.5 Quaternion Lorentz Transformation

The quaternion can also be written as the sum of a scalar and a vector [10]
ie, A=a+A

The multiplication of any two quaternions A=a+ A and B =a+B is

given by
[10-12]
- - _ I \ - (25)
AB=(a+ A)(b+B)=ab—-A.B+aB+bA+AxB
Taking a =b =0, we get from equation (25)
AB=-AB+AxB
(26)

This product is called quaternion product. We can also generate a type of

most general Lorentz transformation using this quarterion product.

In this case the velocity V of S' with respect to S has also three components,

V. Vy, and V, as the most general Lorentz transformation. Let in this case Z
and Z' be the space parts in the S and S' frames, respectively. In this case,
equation (14) is

' +Z)=yl(t+Z)-(t+Z)0+V)]

Here, (t'+Z') , (t+Z) and (0+V) are three quaternions [9]

According to the product of quaternions [10-12] we can write

(t+Z)O0+V)=-ZV +tV +ZxV
(27)
From (27) and (14) we get
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t"+Z)=y[(t+Z)—(-ZNV +tV + Z xV)]

or, t'+Z") =yt +ZN)+y(Z -tV —Z xV)

(28)
Equating the scalar and vector part from the both sides of equation (28), we
can write
t'=y(t+Z.V)
Z'=y(Z -tV —ZxV) (29)

Similarly, we can show that
t=y({t' —Z'.V)
Z=y(Z'+tV +Z'xV) (30)

Equations (29) and (30) are the quaternion Lorentz transformation.

2 RCIPROCAL PROPERTY OF DIFFERENT LORENTZ TRANSFORMATIONS
2.1 Rciprocal property of Special Lorentz Transformation

The velocity addition formula for the Special Lorentz transformation can be
written as

woX_ X =Vt (31)

t" VX
A
Dividing numerator and denominator of equation by t we get
u-v
W=——"7-
_Wv
1-W/, (32)
u-Vv

or, W =

1-uv
in unit of c.

If we replace U by P where U P =1 then W will be change to W’ where

w=PV
1-PV
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Reciprocal Property demands that if U P =1then
WW' = u-vy)ypP-V 1
1-UV \1-PV
Now,
WW' = Uu-v Yy P-V
1-UV \1-PV
_ UP-UV -VP+V?
1-PV -UV +UPV?

_1-UV -VP+V?
1-PV —UV +V?
So, WW'=1 (33)

Consequently, the Special Lorentz Tranformation satisfies the Reciprocal property.
2.2 Rciprocal property of Most General Lorentz Tranformation
From the transformation equations of addition of velocities of Most General

Lorentz Tranformation [2] we have

Dividing numerator and denominator by t we get

. o

W= H-V.0)

in unit of c.

_
2
1_V%2

If we replace U by P where U. P =1 then W will be change to W' where

Where y=
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ﬁ N[(ﬁ. \7%2 (1) y}
y(1-V.P)

Reciprocal Property demands that if U. P =1then

+V[ov*/ }M[ﬁv*/ ]

W )
Now,

R L ﬁ+v*[<ﬁ%(y—1)—y}
W= Ava) T V)

So, W.W' =1
Consequently, the Most General Lorentz Tranformation does not satisfy the

Reciprocal property [13].
2.3 Rciprocal property of Mixed Number Lorentz Transformation

From the transformation equations of addition of velocities of mixed number

Lorentz Tranformation [3] we have

W =

Z' y(Z-tV—-iZxV)
v y(t—2.V)
_ (Z-tV -iZxV)
 t-ZV)

in unit of c.

Dividing numerator and denominator of equation (36) by t we get
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(37)

If we replace U by P where U. P =1 then W will be change to W’ where
\/\7 " IS —\7; |ﬁ f\7
1-P -V
Reciprocal Property demands that if U. P =1 then

_lj—\7—iUx\7 P-V —iPxV B

W. W' " — =1
1-U .-V 1-P-V
Now
W_W,:U_v:i:xv.ﬁ_vjrfv
1-U -V 1-P-V
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1-U-V-V.P+v?-V.NV[U-P)-U(V.P)

So,
Wi, v =0 V)a-p V)
L-U-V)e-p-V) (38)
Similarly

If we replace V by Q where V. Q =1then W will be change to W' where

W.W'=1

Consequently, the  Mixed Number Lorentz Transformation satisfies the

reciprocal property [13].

2.4 Rciprocal property of Geometric Product Lorentz Transformation

From the transformation equations of addition of velocities of Geometric

product Lorentz Transformation [3] we have,

sz:y(Z—tV—ZxV)

t y(t-2.V)
_ (Z-tV-ZxV)
C (t-Z.V)

in unit of c. (39)

Dividing numerator and denominator of equation (39) by t we get

W:(Z%—t\%—(zxv)/)za_:*xv
(%_Z\%) 1-U - V

(40)

If we replace U by P where U. P =1 then W will be change to W' where
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P-V —PxV
1-P.V

W' =

Reciprocal Property demands that if U. P =1 then

U-V-UxV P-V_— P><V

W.W'= .

1-U -V 1-P-V
Now
W = U V U><V P V P><V

_(O)APV BV} 7). (P -V BV} (0xV). (5-V - PxV)
- L-U-V)i-P-V)
[SinceU. P =1 (lj \7)\7=0,(qx\7).F3=0 \7(I5><\7)=U(I5><\7)=0]
_1-U-V-V.P+V2+[UxV)(PxV)
B L-U-V)i-P-V)
[Since A (éxé)zé (Ax )]

cC (veli

1-U - V-V.P+V?+V. {UxV)xP}
B L-U-V)i-pP.V)
[Since (AxB)xC = B(A.C)- A(B.C)
_1-U V-V |3+th\7_ *ﬁﬁ P)_U(V |3)}
L-U-V)i-p.V)
_1-U - V-V, PV +vi—(:.\7)(\7.5)
L-U-V)e-p-V)
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So,

W. W’ =1 (41)
Consequently, the = Geometric product Lorentz Transformation does not
satisfy the reciprocal property [13].

2.5 Rciprocal property of Quaternion Lorentz Transformation
From the transformation equations of addition of velocities of Quaternion

Lorentz Transformation [3] we have

W =

Z' y(Z-tV-ZxV)
v y(t+Z.V)
_(Z-tV-ZxV)
O (t+Z.V)

in unit of c. (42)

Dividing numerator and denominator of equation (42) by t we get

I SRR

7V, 10V )
(+2Y)
If we replace U by P where U. P =1 then W will be change to W' where
V\—],: IS—V: #5\7
1+P -V

W29V UV PV =PV
1+U -V 1+P-V
Now,
1+U -V 1+P -V
UV -0xV).(P-V —BxV
@+U - Vv >
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Consequently, the

[SinceU. P =1,(UxV)V =0 ,{d=V).F=0V(FxV)=U(PxV)=0]

So, W.W'#1 (44)

Quaternion Lorentz Transformation does not satisfy the

reciprocal property [13].

3 CONCLUSION

The reciprocal property of different Lorentz transformations has been

discussed and we have obtained that

1.

Special and Mixed Number Lorentz Transformations

satisfy the

Reciprocal property.
Most  General, Geometric product and Quaternion Lorentz

Transformations do not satisfy the reciprocal property.
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