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Abstract : Given an undirected graph, finding a minimum 2-edge connected spanning sub-

graph is NP-hard. We solve the problem for silicate network, brother cell and sierpiński gasket

rhombus.
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1 Introduction

The study of connectivity in graph theory has important applications in the areas of

network reliability and network design. In fact, with the introduction of fiber optic technology
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in telecommunication, designing a minimum cost survivable network has become a major ob-

jective in telecommunication industry. Survivable networks have to satisfy some connectivity

requirements, this means that they are still functional after the failure of certain links [5]. As

pointed out in [5, 9], the topology that seems to be very efficient is the network that survives

after the loss of k − 1 or less edges, for some k ≥ 2, where k depends on the level of reliability

required in the network [9]. In this paper, we concentrate on the minimum 2-edge connected

spanning subgraph. A connected graph G = (V,E) is said to be 2-edge connected if |V | ≥ 2

and the deletion of any set of < 2 edges leaves a connected graph. The minimum 2-edge con-

nected spanning subgraph (2-ECSS) problem is defined as follows: Given a 2-edge connected

graph G, find efficiently a spanning subgraph S(G) which is also 2-edge connected and has a

minimum number of edges. We denote the number of edges in a graph G by ε(G) and the edges

of minimum 2-edge connected spanning subgraph of G by ε(S(G)).

Kuller and Raghavachari [12] presented the first algorithm which, for all k, achieves

a performance ratio smaller than a constant which is less than two. They proved an upper

bound of 1.85 for the performance ratio of their algorithm. Cristina G. Fernandes [7] improved

their analysis, proving that the performance ratio of algorithm [13] is smaller than 1.7 for

large enough k, and that it is at most 1.75 for all k. Cherian et.al [6] gave an approximation

algorithm for minimum size 2-ECSS problem where an ear decomposition is used to construct

a feasible 2-ECSS. The depth-first search algorithm was used to present a 3/2 approximation

algorithm for the minimum size 2-ECSS problem in which a notion called tree carving is used

[13]. An approximation for finding a smallest 2-edge connected subgraph containing a specified

spanning tree was studied by Hiroshi Nagamochi [8]. The sufficient conditions for a graph to

be perfectly 2-edge connected was given by Ali Ridha Mahjoub [2]. Woonghee [15] devised

an algorithm for r-regular, r-edge connected graphs. For cubic graphs, results of [11] imply a

new upper bound on the integrality gap of the linear programming formulation for the 2-edge

connectivity problem. Even though there are numerous results and discussions on minimum 2-

edge connected spanning subgraph problem, most of them deal only with approximation results.

According to the literature survey, the minimum 2-edge connected spanning subgraph problem

is not solved for an interconnection network. In this paper we derive an exact number of edges

of minimum 2-edge connected spanning subgraph of silicate network, brother cell and sierpiński

gasket rhombus.
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2 Silicate Network

Lemma 2.1. [1] If one end of every edge of a graph G is of degree 2 then no proper spanning

subgraph of G is 2-edge connected.

Consider a honeycomb network HC(r) of dimension r. Place silicon ions on all the vertices

of HC(r). Subdivide each edge of HC(r) once. Place oxygen ions on the new vertices. Introduce

6r new pendant edges one each at the 2-degree silicon ions of HC(r) and place oxygen ions at

the pendent vertices. See Figure 1(a). With every silicon ion associate the three adjacent oxygen

ions and form a tetrahedron as in Figure 1(b). The resulting network is a silicate network of

dimension r, denoted SL(r). The diameter of SL(r) is 4r. The graph in Figure 1(b) is a silicate

network of dimension two. The 3-degree oxygen nodes of silicates are called boundary nodes.

In Figure 1(b), c1, c2, · · ·, c12 are boundary nodes SL2.

Figure 1: Silicate Network SL(2)

When we delete all the silicon nodes from a silicate network we obtain a new network which we

shall call as an Oxide Network [14]. See Figure 2(a). An r-dimensional oxide network is denoted

by OX(r). By [14], there are r edge disjoint symmetric cycles in OX(r) which are also vertex

disjoint cycles. Let them be x1, x2, ..., xr. See Figure 2(b). The number of edges in xi, 1 ≤ i ≤ r

is 18i − 6.
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Figure 2: Oxide Network OX(2)

Theorem 2.2. Let OX(r), r ≥ 2 be an r-dimensional oxide network.Then ε(S(OX(r))) =

ε(x1) + ε(x2)− 1 + · · ·+ ε(xr)− 1 + 2(r − 1).

Proof. Let us prove the theorem by induction on r. When r = 2, there are r=2 edge disjoint

cycles x1 and x2 in OX(2). keeping x1 and x2, removing all the edges, we get a disconnected

oxide network with 2-edge disjoint cycles x1 and x2 in OX(2). See Figure 3(a).

Figure 3: ε(S(OX(r = 2))) = 12 + 29 + 2 = 43.

Adding 2 edges from a boundary vertex of x1 to two non boundary adjacent vertices of x2

and deleting the edge between those non boundary vertices of x2 [edge to be removed is shown

in dashed line], we get a minimum 2-edge connected spanning subgraph. See Figure 3(b).

This is minimum because by Lemma 2.1, deleting any single edge gives no 2-edge connected

spanning subgraph. The number of edges in x1 and x2 are 18(1) − 6 and 18(2) − 6. Hence

ε(S(OX(r = 2))) = 12 + 29 + 2 = ε(x1) + ε(x2)− 1 + 2(r− 1). Thus the result is true for r =

2.
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Figure 4: ε(S(OX(r = 3))) = 12 + 29 + 47 + 4 = 92.

We assume that the result is true for r = k. When r = k + 1, there are r = k + 1 edge disjoint

cycles x1, x2, · · ·, xk+1. Adding 2 edges from a boundary vertex of xi, 1 ≤ i ≤ k to two

non boundary adjacent vertices of xi+1, 1 ≤ i ≤ k and deleting the edges between those non

boundary vertices of x2, x3, · · ·, xk+1, we get a minimum 2-edge connected spanning subgraph.

Hence ε(S(OX(r = k + 1))) = 18(1)−6 − 1 + 18(2)−6 − 1 + · · · + 18((k+1)) − 6 − 1 + 2k

= ε(x1) + ε(x2)− 1 + · · ·+ ε(xk+1)− 1 + 2((k + 1)− 1).

3 Sierpinski Gasket Rhombus

Definition 3.1. [4] A sierpiński Gasket Rhombus of level r [denoted by SRr] is obtained by

identifying the edges in two Sierpinski Gasket Sr along one of their side. For the definition of

sierpiński Gasket, refer[10].

Figure 5:(a) S2 and SR2 and (b) S3 and SR3

The sierpiński Gasket graphs Sr has 3r edges [14]. From the Definition 3.1, sierpiński Gasket
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Rhombus SRr consists two copies of sierpiński Gasket graph Sr and identifying the edges of two

sierpiński Gasket graphs Sr along one of their side, 2r−1 edges are shared by both Sr. Therefore

the number of edges in SRr is 2×3r − 2r−1.

Theorem 3.2. [1] Let Sr, r ≥ 3 be the r dimensional Sierpiński gasket graph. Then ε(S(Sr)) =

2× 3r−1.

Figure 6: (a) ε(S(S2)) = 6 and (b) ε(S(S3)) = 18.

Theorem 3.3. Let SRr, r ≥ 2 be the r dimensional sierpiński Gasket Rhombus. Then ε(S(SRr)) =

2(2× 3r−1)− 2r−1.

Proof. We prove this theorem by induction on r. When r = 2, SR2 contains 2 copies of S2 and

has 2 × 32 − 22−1 edges. Now we construct minimum 2-edge connected spanning subgraph of

SR2 using 2 copies of minimum 2-edge connected spanning subgraph of S2. See Figure 7(a).

Figure 7:(a) ε(S(SR2) = 10 and (b) ε(S(SR3) = 32

By Lemma 2.1, no edge can be deleted from Figure 7(b). Thus S(SR2) = 2ε(S(S2)). Since 22−1

edges are shared by both S2, ε(S(SR2) = 2ε(S(S2))− 22−1 = 2(2× 32−1)− 22−1

We assume that the result is true for r = k (i.e.) ε(S(SRk)) = 2ε(S(Sk)) − 2k−1 = 2(2 ×

3k−1) − 2r−1. Consider r = k + 1. SRk+1 contains two copies of Sk. Construct a minimum

2-edge connected spanning subgraph of SRk+1 using two copies of minimum 2-edge connected
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spanning subgraph of Sk+1 where 2(k+1)−1 edges are shared by two Sk. Thus ε(S(Sk+1)) =

2ε(S(Sk+1))− 2(k+1)−1 = 2(2× 3(k+1)−1)− 2(k+1)−1.

4 Brother Cell

Definition 4.1. [14] Assume that k is an integer with k ≥ 2. The kth brother cell BC(k) is the

five tuple (Gk, wk, xk, yk, zk), where Gk = (V,E) is a bipartite graph with bipartition W (white)

and B(black) and contains four distinct nodes wk, xk, yk and zk. wk is the white terminal; xk

the white root; yk the black terminal and zk the black root. We can recursively define BC(k) as

follows:

(1) BC(2) is the 5-tuple (G2, w2, x2, y2, z2) where V (G2) = w2, x2, y2, z2, s, t, and

E(G2 = (w2, s), (s, x2), (x2, y2), (y2, t), (t, z2), (w2, z2)(s, t).

(2)The kth brother cell BC(k) with k ≥ 3 is composed of two disjoint copies of (k− 1)th brother

cells

BC1(k − 1) = (G1
k−1, w

1
k−1, x

1
k−1, y

1
k−1, z

1
k−1),

BC2(k − 1) = (G2
k−1, w

2
k−1, x

2
k−1, y

2
k−1, z

2
k−1),

a white root xk, and a black root zk. To be specific,

V (Gk) = V (G1
k−1) ∪ V (G2

k−1) ∪ {xk, zk},

E(Gk) = E(G1
k−1) ∪ E(G2

k−1)∪

{(zk, x1k−1), (zk, x2k−1), (xk, z1k−1), (xk, z2k−1), (y1k−1, w2
k−1)},

zk = w1
k−1, and yk = y2k−1.

Figure 8: (a) BC(2) and (b) BC(3)

From the definition, we construct BC(k) from two disjoint copies of (k − 1) and each time
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we add five more edges (zk, x
1
k−1), (zk, x

2
k−1), (xk, z

1
k−1), (xk, z

2
k−1), (y

1
k−1, w

2
k−1). And each time

constructing a BC(k), deleting the edge (y1k−1, w
2
k−1) does not affect 2-edge connectivity of

BC(k).

Theorem 4.2. Let BC(r), r ≥ 2 be a brother cell. Then ε(S(BC(r))) = 5× 2k−1 − 4

Proof. By the Definition 4.1, BC2 has 7 edges. Now label the vertices of BC(2) as shown in

the Figure 9(a). Deleting the edge(s, t), we get a cycle on 6 vertices which is a minimum 2-edge

connected spanning subgraph and ε(S(BC(2))) = 7− 1 = 5× 22−1 − 4 = 6.

Figure 9: (a)ε(S(BC(2))) = 6 and (b)ε(S(BC(3))) = 16

We prove this theorem by induction on r. When r = 3, BC(3) contains 2 disjoint copies of BC(2)

and five edges (z3, x
1
2), (z3, x

2
2), (x3, z

1
2), (x3, z

2
2), (y12, w

2
2) connecting theses two BC(2). Now we

construct minimum 2-edge connected spanning subgraph of BC(3) using 2 disjoint copies of min-

imum 2-edge connected spanning subgraph of BC2 and with four edges (z3, x
1
2), (z3, x

2
2), (x3, z

1
2),

(x3, z
2
2). See Figure 10(b). By Lemma 2.1, this is the minimum. Hence ε(S(BC(3))) =

2ε(S(BC(2))) + 4 = 2× (5× 22−1 − 4) + 4 = 16 = 5× 23−1 − 4.

Figure 10: ε(S(BC4)) = 36
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We assume that the result is true for r = k (i.e.) ε(S(BC(k))) = 2ε(S(BC(k−1)))+4 = 2×(5×

2k−1−4)+4. Consider r = k+1. BC(k+1) contains two copies of BC(k). Construct minimum

2-edge connected spanning subgraph of BC(k + 1) using 2 copies of minimum 2-edge connected

spanning subgraph of BC(k) and with four edges (zk, x
1
k−1), (zk, x

2
k−1), (xk, z

1
k−1), (xk, z

2
k−1).

Thus ε(S(BC(k + 1))) = 2ε(S(BC(k))) + 4 = 2× (5× 2k−1 − 4) + 4 = 5× 2(k+1)−1 − 4.
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12(2008), 513-522.

[11] P. Krysta and V.S. Anil Kumar, Approximation algorithms for minimum size 2-connectivity

problems, Lecture Notes in Computer Science, 2010(2001), 431-442.

[12] S. Kuller and B. Raghavachari, Improved approximation algorithms for uniform connectivity

problems, Journal of Algorithms 21(1996), 434-450.

[13] S. Kuller and U. Vishkin, Biconnectivity approximations and graph carvings, J. ACM

41(2)(1994), 214-235.

[14] Shin-Shin Kao and Lih-Hsing Hsu Brother trees: A family of optimal 1p-hamiltonian and

1-edge hamiltonian graphs, Information Proce. Letters 86(2003), 263-269.

[15] T.M. Woonghee, Finding 2-edge connected spanning subgrahs, Operation Research Letters,

32(2004), 212-216.

Int. J. Math. And Its App. Online @ http://ijmaa.in

http://ijmaa.in

	Introduction
	Silicate Network
	Sierpinski Gasket Rhombus
	Brother Cell

