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1 Introduction

Let G be a graph with q edges. A graceful labelling of G is an injection from the set of its vertices to

the set {0, 1, 2, . . . , q} such that the values of the edges are all integers from 1 to q, the value of an edge

being the absolute value of the difference between the integers attributed to its end vertices.
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Recently G. Sethuraman and P. Selvaraju [5] have introduced a new method of construction called

supersubdivision of a graph and showed that arbitrary supersubdivisions of paths are graceful. They

have posed two open problems:

Problem 1.1. Is there any graph different from paths whose arbitrary supersubdivisions are graceful?

Problem 1.2. Is it true that every connected graph has at least one supersubdivision which is graceful?

We work on these problems and find that supersubdivisions of ladders are graceful. The ladder graph

Ln is defined by Ln = Pn × K2 where Pn is a path with × denotes the cartesian product. Ln has 2n

vertices and 3n−2 edges. In the complete bipartite graph K2,m we call the part consisting of two vertices,

the 2-vertices part of K2,m and the part consisting of m vertices the m-vertices part of K2,m.

Let G be a graph with n vertices and t edges. A graph H is said to be a subdivision of G if H is

obtained by subdividing every edge of G exactly once. H is denoted by S(G). A graph H is said to be a

supersubdivision of G if H is obtained by replacing every edge ei of G by the complete bipartite graph

K2,m for some positive integer m in such a way that the ends of ei are merged with the two vertices part

of K2,m after removing the edge ei from G.

A supersubdivision H of a graph G is said to be an arbitrary supersubdivision of the graph G if every

edge of G is replaced by an arbitrary K2,m (m may vary for each edge arbitrarily). In this paper we

prove that supersubdivisions of ladders are graceful.

2 Main Results

Let Ln be a ladder. A supersubdivision of Ln is denoted by SS(Ln).

Theorem 2.1. SS(Ln) with each edge replaced by K2,m is graceful.

Proof. Let G = SS(Ln) where every edge of Ln is replaced by K2,m. G has 2n+m(3n− 2) vertices and

2m(3n−2) edges. Let u1, u2, . . . , un and v1, v2, . . . , vn be the vertices of Ln. Let uiui+1, i = 1, 2, . . . , n−1.

vivi+1, i = 1, 2, . . . , n− 1 and uivi, i = 1, 2, . . . , n be the edges of Ln.

Let u
(k)
i,i+1, k = 1, 2, . . . ,m be the vertices of the m vertices part of the bipartite graph K2,m merged

with the edge uiui+1, i = 1, 2, . . . , n− 1. Let v
(k)
i,i+1, k = 1, 2, . . . ,m be the vertices of the m vertices part

of the bipartite graph K2,m merged with the edge vivi+1, i = 1, 2, . . . , n− 1.

Let w
(k)
i , k = 1, 2, . . . ,m be the vertices of the m vertices part of K2,m merged with the edge uivi, i =

1, 2, . . . , n. Naming of the vertices is as shown in Figure 1.
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Figure 1: SS(Ln)

Define the following functions η : N → N by

η(i) =

 2i− 1 if i is even

2(i− 1) if i is odd

γ : N → N by

γ(i) =

 2(i− 1) if i is even

2i− 1 if i is odd

α : N → N by

α(k) =


6r if k = 3r + 1

6r + 1 if k = 3r + 2

6r + 2 if k = 3r + 3

Case (i) m ≡ 0(mod 3).

Let m = 3p, where p is a positive integer. Define f : V → {0, 1, 2, . . . , q} where q = 2m(3n − 2) as

follows.

f(ui) = η(i), i = 1, 2, . . . , n

f(vi) = γ(i), i = 1, 2, . . . , n.
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For k = 1, 2, . . . ,m and i = 1, 2, . . . , n− 1

define f(u
(k)
i,i+1) =



2m(3n− 2)− (i− 1)(18p− 2)

+α(k)− (12p− 4) if i is odd

2m(3n− 2)− (i− 2)(18p− 2)

−2(m− k)− (30p− 3) if i is even.

For k = 1, 2, . . . ,m and i = 1, 2, . . . , n− 2 define f(v
(k)
i,i+1) = f(u

(k)
i+1,i+2) + (18p− 2).

For k = 1, 2, . . . ,m define f(v
(k)
n−1,n) = f(u

(k)
n−2,n−1)− (18p− 2).

For k = 1, 2, . . . ,m and i = 1, 2, . . . , n− 1 define f(w
(k)
i ) = 2m(3n− 2)− (i− 1)(18p− 2)− 2(m− k).

For k = 1, 2, . . . ,m define f(w
(k)
n ) = 2(n+ k − 1).

Example 2.1. Graceful labelling of SS(L4) where each edge of L4 is replaced by K2,6.
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Figure 2

Case ii m ≡ 1(mod 3).
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Let m = 3p+1 where p is a nonnegative integer. Define f : V → {0, 1, 2, . . . , q} where q = 2m(3n−2)

as follows.

f(ui) = η(i), i = 1, 2, . . . , n

f(vi) = γ(i), i = 1, 2, . . . , n.

When i is even, define f(u
(k)
i,i+1) = 2m(3n − 2) − (i − 2)(18p + 4)

− 2(m− k)− (30p+ 7) for k = 1, 2, 3, . . . ,m. When i is odd, define

f(u
(k)
i,i+1) =



2m(3n− 2)− (i− 1)(18p+ 4)

+α(k)− 12p if k = 1, 2, . . . ,m− 1

2m(3n− 2)− (i− 1)(18p+ 4)

−6p if k = m

For i = 1, 2, . . . , n − 2, define f(v
(k)
i,i+1) = f(u

(k)
i+1,i+2) + (18p + 4) for

k = 1, 2, . . . ,m.

Define f(v
(k)
n−1,n) = f(u

(k)
n−2,n−1)− (18p+ 4) for k = 1, 2, . . . ,m.

For i = 1, 2, 3, . . . , n− 1, define

f(w
(k)
i ) =



2m(3n− 2)− (i− 1)(18p+ 4)

−(6p+ 1) if k = 1

2m(3n− 2)− (i− 1)(18p+ 4)

−2(m− k) if k = 2, 3, . . . ,m

For k = 1, 2, . . . ,m, define f(w
(k)
n ) = 2(n+ k − 1).

Example 2.2. Graceful labelling of SS(L5) where each edge of L5 is replaced by K2,4.
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Figure 3

Note. In the above, taking p = 0 we obtain subdivision of a ladder and we have a graceful labelling

of the subdivision of ladders, as a deduction from our labelling of vertices. This gives another graceful

labelling for subdivision of ladders established by KM. Kathiresan [3].

Example 2.3. Graceful labelling of S(L6).
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Figure 4

Case (iii) m ≡ 2(mod 3).

Let m = 3p+2 where p is a nonnegative integer. Define f : V → {0, 1, 2, . . . , q} where q = 2m(3n−2)

as follows.

f(ui) = η(i), i = 1, 2, 3, . . . , n

f(vi) = γ(i), i = 1, 2, 3, . . . , n.

When i is even, define f(u
(k)
i,i+1) = 2m(3n − 2) − (i − 2)(18p + 10) − 2(m − k) − (30p + 17) for

k = 1, 2, . . . ,m.

When i is odd, define f(u
(k)
i,i+1) =



2m(3n− 2)− (i− 1)(18p+ 10)

+α(k)− 4(3p+ 1) if k = 1, 2, . . . ,m− 2

2m(3n− 2)− (i− 1)(18p+ 10)

−2(3p+ 2) if k = m− 1

2m(3n− 2)− (i− 1)(18p+ 10)

−6p if k = m

For i = 1, 2, . . . , n− 2, define f(v
(k)
i,i+1) = f(u

(k)
i+1,i+2) + (18p+ 10).

For k = 1, 2, . . . ,m, define f(v
(k)
n−1,n) = f(u

(k)
n−2,n−1)− (18p+ 10).

For k = 1, 2, . . . ,m, define f(w
(k)
n ) = 2(n+ k − 1).

For k = 1, i = 1, 2, . . . , n− 1, define f(w
(k)
i ) = 2m(3n− 2)− (i− 1)(18p+ 10)− (6p+ 5).

For k = 2, i = 1, 2, . . . , n− 1, define f(w
(k)
i ) = 2m(3n− 2)− (i− 1)(18p+ 10)− (6p+ 1).

For k = 3, 4, . . . ,m and i = 1, 2, . . . , n−1, define f(w
(k)
i ) = 2m(3n− 2)− (i−1)(18p+ 10)− 2(m−k).

Example 2.4. Graceful labelling of SS(L5) where each edge of L5 is replaced by K2,5.
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Figure 5
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