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Abstract : When the observations are dependent, like in time series, Kunsch introduced the bootstrap

with blocks forming by a fix number of consecutive observations. Different versions of block bootstrap

has been formulated. In this paper we have proposed a bootstrap estimation with blocks formed from

recalculated values of a statistic. We call it bootstrap with re-blocks. We have shown that this bootstrap

works in time series strictly stationary α-mixing or m-dependent under some conditions. We have done

simulations to compare the bootstrap with re-blocks with other block bootstrap methods.
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1 Introduction

The bootstrap technique [6, 7] was introduced to provide nonparametric estimates of bias and standard

error. The bootstrap is biased on repeated analyses of pseudo-data created by resampling the actual
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data. However, the bootstrap requires independence, which is rarely to get in time series.

Adoptions of the basic bootstrap to time series data work by resampling sets of consecutive observa-

tions to capture the process autocorrelation structure. Kunsch [13] and Liu and Singh [19] independently

introduced the moving block bootstrap (MBB), which work by randomly overlapping blocks of fixed size

with replacement. Liu and Singh [19] established that MBB estimate of the sample mean is biased in

finite samples but asymptotically unbiased. They also showed the consistence of MBB estimate of the

variance of the sample mean.

Politis and Romano [21] proposed another scheme for stationary time series, the stationary bootstrap

(SB). In the SB, the data are resampled by concatenating blocks whose starting point is chosen at random

and whose length is geometrically distributed with some chosen mean. Politis and Romano established

that the SB estimate of the sample mean is unbiased and the SB estimate of the variance of the sample

mean is consistent.

Different versions of block bootstrap methods has been formulated by Carlstein [2], Carlstein et al.

[3], Kunsch and Carlstein [14], Hall [9], Politis and Romano [20], Ekonomi and Butka [8]. Properties

of block bootstrap methods have been investigated by Davison and Hall [4], Shao and Yu [24], Lahiri

[15, 16, 18] and others. The important problem of choosing optimal block length has been addressed by

Buhlman and Kunsch [1], Hall et al [12] and Lahiri [17].

Let us suppose that the unknown parameter µ is a parameter of the joint distribution of the strictly

stationary α-mixing or m-dependent time series Xt, t ∈ Z and
∧
θ is an estimator of µ based on the

observations X1, ..., XN from this time series.

In this paper we have proposed the bootstrap with re-blocks in time series strictly stationary α-mixing

or m-dependent for estimating the parameter µ. In Section 2 we have shown the idea of this bootstrap

estimation. At the beginning we have formed blocks compounded by s consecutive observations from

a given time series. Then we have calculated the statistic of interest
∧
θ for every block to estimate the

unknown parameter µ. We have considered these calculated values like the observations of a new time

series and with them we have formed blocks with length b. If we have r of them, we choose randomly k

blocks with the same probability 1
r . We concatenate these k blocks and we have construct the bootstrap

sample compounded by m = k× b observations. In Section 3 we have shown that this bootstrap method

works for time series strictly stationary α-mixing or m-dependent under some conditions. In Section

4 we have shown the simulation results in various ARMA models. From the results we see that the

bootstrap with re-blocks perform shorter confidence intervals than the other block bootstrap methods.

This bootstrap gives similar results with other bootstrap methods regarding coverage probability, bias

and root mean square error (RMSE).
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2 Bootstrap with re-blocks

In many time series problems the goal is to estimate a parameter of the joint distribution. Let suppose

that µ is a unknown parameter of the joint distribution of Xt, t ∈ Z. The objective is to obtain confidence

intervals for µ based on some observations from time series. We will focus on estimators of µ that are in

the form of an average of functions defined on the observations.

It is given the time series Xt, t ∈ Z. Suppose that we have the observations X1, X2, ..., XN from this

time series. We create blocks compounded by s consecutive observations in the form S1 = {X1, ..., Xs}, S2 =

{X2, ..., Xs+1}, ..., SN−s+1 = {XN−s+1, ..., XN}. If we denote n = N − s+ 1, we have formed the blocks

S1, S2, ..., Sn. These blocks are moving blocks.

Let suppose that
∧
θ is a statistic based on the observations X1, X2, ..., XN . We calculate Y1 =

∧
θ(S1), Y2 =

∧
θ(S2), ..., Yn =

∧
θ(Sn) and assume that Y1, Y2, ..., Yn are observations from a new time series

Yt, t ∈ Z. Their mean is Y n = 1
n

n∑
i=1

Yi. With these observations, in the same way, we can construct blocks

compounded by b consecutive observations in the form B1 = {Y1, ..., Yb}, B2 = {Y2, ..., Yb+1}, ..., Bn−b+1 =

{Yn−b+1, ..., Yn} and we denote r = n− b+ 1. These blocks we call re-blocks.

To construct the bootstrap sample we choose randomly k blocks with probability 1
r . We sign that

blocks B∗1 , B
∗
2 , ..., B

∗
k . If we concatenate these blocks consecutively, we have performed the observations

Y ∗1 , Y
∗
2 , ..., Y

∗
m, where m = b× k. This is the bootstrap sample. Their mean is

Y
∗
m =

1

m

m∑
i=1

Y ∗i (2.1)

If the parameter of interest µ is the mean of the time series Xt, t ∈ Z, then (2.1) will be the bootstrap

estimator with re-blocks (BRB) for µ. To show that this bootstrap method works we will prove that the

bootstrap distribution of
√
m(Y

∗
m − Y n) approximate the distribution of

√
n(Y n − µ).

3 The validity of the re-blocks bootstrap

Let we do the following assumptions:

A1) {Xt, t ∈ Z} is strictly stationary and α-mixing time series,

A2) E |Y1|2p+δ < c, where p is integer, p > 2, 0 < δ ≤ 2 and c > 0,

A3) EY1 = µ+ o( 1√
n

),where µ is a parameter of the joint distribution of Xt, t ∈ Z,

A4)
√
n(Y n − EY n)

d−→ N(0, σ2
∞), where 0 < σ2

∞ <∞.

A5) b = o(n) and if n −→∞, then m −→∞ reciprocally,

A6)
∞∑
k=1

kp−1(αX(k))
δ

2p+δ , for p integer, p > 2 and 0 < δ ≤ 2.

Assumption A3 shows that the asymptotic order of the bias of Y n is smaller than the asymptotic order

of its standard deviations. We note that the assumptions A3 and A4 allows us to consider confidence
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intervals for EY n as confidence intervals for µ asymptotically, since by Slutsky’s theorem, we have

√
n(Y n − µ)

d−→ N(0, σ2
∞).

This asymptotic normal distribution can be used to yield confidence intervals for µ. However, the

variance of σ2
∞ must be estimated, but in many cases it is not feasible. In addition, a different estimate

of the sampling distribution of
√
n(Y n − µ) might gives a better approximation, thus giving confidence

intervals that are more accurate. It is the role that the bootstrap is usually called to play.

In the following treatments all the limits are calculated when N →∞ and m→∞. In this case, form

the relevant relations, we will understand that n→∞ and r →∞ and conversely.

Now we see some lemma and theorems that will help us to prove the validity of the proposed bootstrap.

Lemma 3.1. If the conditions A1-A6 are true, then

1

r

r∑
i=1

Zi
p−→ EZ1,

1

r

r∑
i=1

|Zi|
p−→ E |Z1| ,

1

r

r∑
i=1

|Zi|3
p−→ E |Z1|3 ,

where Zi = 1√
b

i+b−1∑
j=i

Yj , i = 1, 2, ..., r.

Proof. Since the time series Xt, t ∈ Z is strictly stationary and α-mixing time series, also the time series

Yt, t ∈ Z is strictly stationary and α-mixing with αY (t) ≤ αX(t − s + 1). We have 1
r

r∑
i=1

Zi − EZ1 =

1
r

r∑
i=1

(Zi−EZi). Then, based on some moment inequalities for mixing sequences [22, 23, 25, 26], we have

var(
1

r

r∑
i=1

(Zi − EZi)) =

=
1

r
var(Z1 − EZ1) +

2

r2

r−1∑
i=1

(r − i)cov(Z1 − EZ1, Zi+1 − EZi+1) ≤

≤ 10

r
(E |Z1 − EZ1|p)

2
p (

1

2
)
p−2
p +

20

r2

r−1∑
i=1

(r − i)(E |Z1 − EZ1|p)
2
p (αY (i))

p−2
p ≤

≤ 10

r
(K(E |Y1|2p+δ)

2
2p+δ (

1

2
)
p−2
p +

20

r2

r−1∑
i=1

(r − i)(KE |Y1|2p+δ)
2

2p+δ (αY (i))
p−2
p =

= O(
1

r
+

20

r2

r−1∑
i=1

(r − i)(αY (i))
p−2
p )

From A6, the series
∞∑
k=1

kαX(k)
p−2
p and

∞∑
k=1

αX(k)
p−2
p are convergent.

Thus we have var( 1
r

r∑
i=1

(Zi − EZi))
p−→ 0. So, by the Chebyshev theorem we have 1

r

r∑
i=1

Zi
p−→

EZ1. Then, from the properties of the convergence in probability we have 1
r

r∑
i=1

|Zi|
p−→ E |Z1| and

1
r

r∑
i=1

|Zi|3
p−→ E |Z1|3 .
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Lemma 3.2. If the conditions A1-A6 are true, then 1
r

r∑
i=1

(Zi −
√
bY n)2

p−→ σ2
∞.

Proof. We have

1

r

r∑
i=1

(Zi −
√
bY n)2 =

1

r

r∑
i=1

(Zi − EZi −
√
b(Y n −

1√
b
EZi))

2 =

= An − 2Cn +Dn,

where

An =
1

r

r∑
i=1

(Zi − EZi)2,

Cn =
1

r

r∑
i=1

√
b(Zi − EZi)(Y n −

1√
b
EZi),

and

Dn =
1

r

r∑
i=1

b(Y n −
1√
b
EZi)

2.

Let we analyze these terms

1) In similar way with Lemma 3.1, we have

varAn ≤
10

r
(E |Z1 − EZ1|2p)

2
p (

1

2
)
p−2
p +

+
20

r2

r−1∑
i=1

(r − i)(E |Z1 − EZ1|2p)
2
p (αY (i))

p−2
p

or

varAn ≤
10

r
K(E |Y1|2p+δ)

4
2p+δ +

+
20

r2

r−1∑
i=1

(r − i)K(E |Y1|2p+δ)
4

2p+δ (αY (i))
p−2
p =

= O(
1

r
+

20

r2

r−1∑
i=1

(r − i)(αY (i))
p−2
p ).

We see that varAn
p−→ 0. Now, from the condition A3, we have

EAn = varZ1 = var(
1√
b

b∑
j=1

Yj) = var(
√
b(

1

b

b∑
j=1

Yj))
p−→ σ2

∞.

Based on the Chebyshev theorem we see that An
p−→ σ2

∞.

2) Let we consider the term Cn.

Cn =
√
b(Y n −

1√
b
EZ1)

1

r

r∑
i=1

√
b(Zi − EZ1),
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In Lemma 3.1 we have shown that var( 1
r

r∑
i=1

(Zi −EZi))
p−→ 0 and E( 1

r

r∑
i=1

(Zi −EZi))
p−→ 0. By the

conditions A2, A3 and A4 we have
√
b(Y n − 1√

b
EZ1) = op(1). Based on Chebyshev theorem we have

Cn
p−→ 0.

3) We have

Dn =
1

r

r∑
i=1

b(Y n −
1√
b
EZi)

2 =

=
1

r

r∑
i=1

b(Y n − µ)2 + b(µ− 1√
b
EZi)

2 + 2b(Y n − µ)(µ− 1√
b
EZi).

Let analyze separately the three terms:

a) From the conditions A2 and A3 we have

√
b(Y n − µ) =

√
b(Y n − EY n) +

√
bE(Y n − µ) =

=

√
b√
n

√
n(Y n − EY n) +

√
bo(n−

1
2 )

p−→ 0.

Then

b(Y n − µ)2 =
b

n
(
√
n(Y n − µ))2

p−→ 0.

b)

b(Y n − µ)(µ− 1√
b
EZi) = b(Y n − µ)(µ− EY1) = op(bn

−1)
p−→ 0.

c)

b(µ− 1√
b
EZi)

2 = o(bn−1)
p−→ 0.

Then DN
p−→ 0. Joining the convergence results of An, Cn, Dn we see the truth of lemma.

Theorem 3.1. If the conditions A1, A2 and A5 are fulfilled, then E∗Y
∗
m = Y n + op(1).

Proof. We have

E∗Y
∗
m = E∗

1

k

k∑
i=1

1

b

ib∑
j=(i−1)b+1

Y ∗j = E∗
1

k

k∑
i=1

1√
b
Z∗i = E∗

1√
b
Z∗1 ,

where Z∗i = 1√
b

ib∑
j=(i−1)b+1

Y ∗j .

From the other hand

E∗Z∗1 =
1

r

r∑
i=1

Zi =
1

r

r∑
i=1

1√
b

i+b−1∑
j=i

Yj =
1√
b
(bY n −

1

r

b−1∑
i=1

(b− i)(Yi + Yn−i+1)).

Now
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E∗Y
∗
m =

1

b
(bY n −

1

r

b−1∑
i=1

(b− i)(Yi + Yn−i+1).

From the condition A2 and the Chebychev theorem we see that Yi, i = 1, 2, ..., n are bounded in

probability. To finish the proof of the theorem we show that∣∣∣∣∣ 1

rb

b−1∑
i=1

i(Yi + Yn−i+1)

∣∣∣∣∣ ≤ 1

rb

b−1∑
i=1

(b− i)(|Yi|+ |Yn−i+1|) ≤
2c1(b− 1)

r
= op(1).

Theorem 3.2. If the conditions A1-A6 are true, then m · var∗(Y ∗m)
p−→ σ2

∞.

Proof. Z∗i for i = 1, 2, ..., k are independent. We see that

m · var∗(Y ∗m) = m · var∗( 1

m

m∑
i=1

Y ∗i ) = m · var∗(
k∑
i=1

1

k

ib∑
j=(i−1)b+1

Y ∗i ) =

= m · var∗( 1

k

k∑
i=1

1√
b
Z∗i ) = var∗(Z∗1 ).

But

var∗(Z∗1 ) =
1

r

r∑
i=1

(Zi − E∗Z∗i )2 =
1

r

r∑
i=1

(Zi −
√
bY n + op(1))2.

This expression has the same limit with the expression 1
r

r∑
i=1

(Zi−
√
bY n)2 that converges in probability

to σ2
∞ based on the result of Lemma 3.2. Now it is clear the truth of the theorem.

Theorem 3.3. If the conditions A1-A6 are fulfilled, then

sup
x

∣∣∣∣p∗{Y ∗
m−E

∗Y
∗
m√

var∗mY
∗ ≤ x} − Φ(x)

∣∣∣∣ p−→ 0.

Proof. We have

Y
∗
m =

1

k

k∑
i=1

1

b

ib∑
j=(i−1)b+1

Y ∗j =
1

k
√
b

k∑
i=1

Z∗i .

From this we have

E∗Y
∗
m =

1

k
√
b

k∑
i=1

E∗Z∗i

and √
var∗Y

∗
m =

1√
b

√√√√1

k

k∑
i=1

var∗Z∗i .

So

Y
∗
m − E∗Y

∗
m√

var∗Y
∗
m

=

1
k

k∑
i=1

Z∗i − 1
k

k∑
i=1

EZ∗i√
1
k

k∑
i=1

var∗Z∗i

.
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We can apply Berry-Esseen theorem and we have

sup
x

∣∣∣∣∣∣p∗{Y
∗
m − E∗Y

∗
m√

var∗Y
∗
m

≤ x} − Φ(x)

∣∣∣∣∣∣ = sup
x

∣∣∣∣∣∣∣∣∣∣
p∗{

1
k

k∑
i=1

Z∗i − 1
k

k∑
i=1

EZ∗i√
1
k

k∑
i=1

var∗Z∗i

≤ x} − Φ(x)

∣∣∣∣∣∣∣∣∣∣
≤

≤ E∗ |Z∗1 − EZ∗1 |
3√

var∗Z∗1
.

But

E∗ |Z∗1 − EZ∗1 |
3

=
1

r

r∑
i=1

∣∣∣∣∣∣Zi − 1

r

r∑
j=1

Zj

∣∣∣∣∣∣
3

.

We can apply the Minkowski inequality and we have

 r∑
i=1

∣∣∣∣∣∣Zi − 1

r

r∑
j=1

Zj

∣∣∣∣∣∣
3


1
3

≤

(
r∑
i=1

|Zi|3
) 1

3

+

 r∑
i=1

∣∣∣∣∣∣1r
r∑
j=1

Zj

∣∣∣∣∣∣
3


1
3

=

=

(
r∑
i=1

|Zi|3
) 1

3

+
1

r
2
3

∣∣∣∣∣∣
r∑
j=1

Zj

∣∣∣∣∣∣ .
Then

E∗ |Z∗1 − EZ∗1 |
3 ≤ 1

r

( r∑
i=1

|Zi|3
) 1

3

+
1

r
2
3

∣∣∣∣∣∣
r∑
j=1

Zj

∣∣∣∣∣∣
3

=

=

(1

r

r∑
i=1

|Zi|3
) 1

3

+

∣∣∣∣∣∣1r
r∑
j=1

Zj

∣∣∣∣∣∣
3

.

From Lemma 3.1 we take(1

r

r∑
i=1

|Zi|3
) 1

3

+

∣∣∣∣∣∣1r
r∑
j=1

Zj

∣∣∣∣∣∣
3

p−→
((

E |Z1|3
) 1

3

+ |EZ1|
)3

.

From this convergence we conclude that E∗ |Z∗1 − EZ∗1 |
3

is bounded in probability. It is clear enough

that the proof is complete.

Now we prove the main result that shows the validity of the proposed bootstrap. This result allows

us to justify the construction of confidence intervals for µ based on the distribution of the bootstrap with

re-blocks.
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Theorem 3.4. If the conditions A1-A6 are fulfilled, then

sup
x

∣∣∣∣∣∣p∗{Y
∗
m − E∗Y

∗
m√

var∗Y
∗
m

≤ x} − p{
√
n(Y n − µ) ≤ x}

∣∣∣∣∣∣ p−→ 0.

Proof. From assumptions A3 and A4 we have

sup
x

∣∣∣∣p{√n(Y n − µ) ≤ x} − Φ(
x

σ∞
)

∣∣∣∣ p−→ 0. (3.1)

From Theorem 3.1 we have

p∗{
√
m(Y

∗
m − Y n) ≤ x} = p∗{Y

∗
m − E∗Y

∗
m√

var∗Y
∗
m

≤ op(1) +
x√

m · var∗Y ∗m
},

and from Theorem 3.2 and 3.3 we have

sup
x

∣∣∣∣p∗{√m(Y
∗
m − Y n) ≤ x} − Φ(

x

σ∞
)

∣∣∣∣ p−→ 0. (3.2)

Now, from the inequality

sup
x

∣∣∣∣∣∣p∗{Y
∗
m − E∗Y

∗
m√

var∗Y
∗
m

≤ x} − p{
√
n(Y n − µ) ≤ x}

∣∣∣∣∣∣ ≤
≤ sup

x

∣∣∣∣p∗{√m(Y
∗
m − Y n) ≤ x} − Φ(

x

σ∞
)

∣∣∣∣+
+sup

x

∣∣∣∣p{√n(Y n − µ) ≤ x} − Φ(
x

σ∞
)

∣∣∣∣
and the relations (3.1) and (3.2) the truth of this theorem is evident.

We showed with above theorem that the proposed bootstrap estimation works in the case of time

series that are strictly stationary and α-mixing. Now let suppose that the time series Xt, t ∈ Z is strictly

stationary and m-dependent. In this case αX(k) = 0 for k > m. From this we take that the time series

Yt, t ∈ Z is m− s+ 1-dependent. If we analyze the assumption A6, we see that
∞∑
k=1

kp−1(αX(k))
δ

2p+δ is a

finite sum. So, the proposed above bootstrap estimator works in the case of time series strictly stationary

and m-dependent.

4 Simulation study

This section investigates the performance of the bootstrap with re-blocks for the confidence intervals

estimation, when the parameter of interest is the time series mean of an ARMA process. We consider

AR(1), AR(2), MA(1), MA(2) and ARMA(1, 1) processes. In order to get a comparison to other
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bootstrap methods were used a wide range of coefficient values for the AR(1) and MA(1) processes.

Coefficient values were chosen such that satisfy the stationarity and invertibility conditions.

For each model we generated time series of length n from 100 to 1000 with increments of 100. We

implemented the moving block bootstrap (MBB) [13], the non-overlapping block bootstrap (NBB) [2],

stationary bootstrap (SP) [21] and bootstrap with cycling blocks (BCB) [8] in order to estimate and to

construct confidence intervals for the mean of time series. We constructed the percentile bootstrap (PB)

and the bias corrected bootstrap (CB) intervals for the mean [5, 10]. The nominal level of the intervals

was chosen to be 0.95. We used Q = 1000 bootstrap replications [11]. The block length was chosen

at order O(n
1
3 ) for all methods [17]. We used 500 Monte Carlo replications for each simulation case to

calculate the bias and the RMSE for each bootstrap point estimator and the average interval length and

the empirical coverage probability in percentage for each type of intervals. R software was used. Some

of the simulation results are shown in following tables.

From Tables 1,2 and 3 we see that BRB give shorter confidence intervals for time series mean µ. The

other simulations results are similar between them.

Size (n) coeff. BCB MBB SB BRB

100

0.1

0.4

0.7

0.85

0.4159

0.5776

1.0587

1.8110

0.4098

0.5506

0.8991

1.3361

0.4067

0.5533

0.9425

1.4258

0.3397

0.4889

0.8215

1.2569

300

0.1

0.4

0.7

0.85

0.2453

0.3558

0.6864

1.2977

0.2488

0.3403

0.5664

0.8855

0.2406

0.3414

0.6128

1.0105

0.2159

0.3118

0.5497

0.8840

500

0.1

0.4

0.7

0.85

0.1924

0.2858

0.5497

1.0680

0.1911

0.2697

0.4592

0.7268

0.1885

0.2702

0.4856

0.8363

0.1725

0.2521

0.4503

0.7352

700

0.1

0.4

0.7

0.85

0.1633

0.2417

0.4734

0.9097

0.1914

0.2713

0.4019

0.7624

0.1617

0.2304

0.4227

0.7333

0.1486

0.2171

0.3937

0.6569

1000

0.1

0.4

0.7

0.85

0.1365

0.2042

0.4038

0.7824

0.1363

0.1954

0.3512

0.5812

0.1346

0.1946

0.3590

0.6354

0.1249

0.1850

0.3401

0.5711

Table 1. The confidence interval length for 95% PB intervals in AR(1) model for various values of coefficient ϕ.
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Size (n) coeff. BCB MBB SB BRB

100

0.1

0.4

0.7

0.85

0.4043

0.5033

0.6026

0.6554

0.4098

0.5098

0.6045

0.6597

0.4004

0.4973

0.5898

0.6406

0.3363

0.4265

0.5031

0.5592

300

0.1

0.4

0.7

0.85

0.2408

0.3052

0.3686

0.4074

0.2422

0.3021

0.3648

0.3957

0.2401

0.3003

0.3606

0.3945

0.2151

0.2717

0.3304

0.3579

500

0.1

0.4

0.7

0.85

0.1895

0.2417

0.2916

0.31.84

0.1881

0.2380

0.2852

0.3086

0.1869

0.2335

0.2852

0.3066

0.1697

0.2137

0.2636

0.2834

700

0.1

0.4

0.7

0.85

0.1600

0.2038

0.2465

0.2674

0.1601

0.2013

0.2427

0.2639

0.1588

0.1998

0.2420

0.2636

0.1470

0.1850

0.2244

0.2458

1000

0.1

0.4

0.7

0.85

0.1362

0.1733

0.2082

0.2253

0.1346

0.1954

0.2051

0.2227

0.1344

0.1676

0.2029

0.2218

0.1244

0.1575

0.1918

0.2080

Table 2. The interval length for 95% interval length in MA(1) model with various values of coefficient θ.

Size (n) ARMA model BCB MBB SB BRB

100

AR(2)

MA(2)

ARMA(1, 1)

0.8557

0.8176

1.1614

0.7903

0.7818

1.0566

0.7766

0.7615

1.0649

0.7013

0.6783

0.9361

300

AR(2)

MA(2)

ARMA(1, 1)

0.5419

0.4905

0.7613

0.4906

0.4783

0.6805

0.4915

0.4719

0.6954

0.4597

0.4365

0.6385

500

AR(2)

MA(2)

ARMA(1, 1)

0.4248

0.3881

0.6181

0.3921

0.3784

0.5406

0.3898

0.3781

0.5585

0.3646

0.3530

0.5148

700

AR(2)

MA(2)

ARMA(1, 1)

0.3599

0.3351

0.5277

0.3361

0.3220

0.4690

0.3357

0.3223

0.4785

0.3160

0.3029

0.4510

1000

AR(2)

MA(2)

ARMA(1, 1)

0.3062

0.2792

0.4461

0.2841

0.2711

0.4024

0.2840

0.2696

0.4069

0.2711

0.2565

0.3852
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Table 3. The average interval length for 95% PB intervals for the mean with MBCB. The case: AR(2) model

with ϕ1 = 0.7, ϕ2 = −0.1,MA(2) model with θ1 = 0.8, θ2 = 0.5, ARMA(1, 1) with ϕ = 0.65 and θ = 0.3.

5 Conclusions

From our theoretical studies and simulation results we show that bootstrap with re-blocks (BRB) is a

very good alternative for estimations in time series when the parameter of interests is a parameter of the

joint distribution of a strictly stationary α−mixing or m−dependent time series. We have shown that

the bootstrap distribution of BRB approximates the distribution of
√
n(Xn − µ).

So we can construct successfully confidence intervals for the unknown time series parameters estimated

by a statistic
∧
θ that satisfy some conditions. We have seen this fact from the simulation results. From the

simulation results we see that BRB perform shorter confidence intervals than MBB, NBB, SP and BCB.

The result for empirical coverage probability, bias and RMSE are similar with the other block bootstrap

methods.
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