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Plane wave propagation at solid-solid imperfect interface
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Abstract : In this paper, the reflection and transmission phenomenon at the imperfect interface between

viscoelastic solid half space and elastic solid half space is presented. P-wave or SV-wave is considered to be

incident on the interface through viscoelastic solid half space. The amplitude ratios of various reflected

and transmitted waves to that of incident wave are derived and deduced for normal force stiffness,

transverse force stiffness and for welded contact. After obtaining the amplitude ratios, they have been

computed numerically for a particular model and results thus obtained are depicted graphically with

angle of incidence of incident wave. It is found that these amplitude ratios depend on angle of incidence

of the incident wave and material properties of the medium and these are affected by the stiffness also.
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1 Introduction

The state of the deep interior of the earth cannot be explained by assuming the earth to be an elastic

solid. Keeping this fact in mind several problems of reflection and refraction in a linear viscoelastic solid
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have been discussed by many researchers like Cooper and Reiss [1], Cooper [2] etc.

Interface modeling has been the subject of numerous studies in material science, as applied to composite

structures. Imperfect interface considered in this problem means that the stress components are con-

tinuous and small displacement field is not. The small vector difference in the displacements assumed

to depend linearly on the traction vector. More precisely jumps in the displacement components are

assumed to be proportional (in terms of spring-factor-type interface parameters) to their respective in-

terface components. The infinite values of interface parameters imply vanishing of displacement jumps

and therefore correspond to perfect interface conditions. On the other hand, zero values of the inter-

face parameters imply vanishing of the corresponding interface tractions which corresponds to complete

debonding. The finite values of the interface parameters define an imperfect interface. The values of the

interface parameters depend on the material properties of the medium i.e. microstructure as well as the

bi-material properties. Recently many authors have used the imperfect conditions at an interface to solve

the various types of problems (Chen et.al. (2004), Kumar and Rupender [6] and Kumar and Chawala [7]

etc.).

Using the Borcherdt (1973) theory for linear viscoelastic solid, the reflection and transmission of longi-

tudinal wave (P-wave) or transverse wave (SV-wave) at an imperfect interface between linear isotropic

elastic solid half space and linear viscoelastic solid half space is investigated. Amplitudes ratios for var-

ious reflected and transmitted waves are computed for a particular model and depicted graphically and

discussed accordingly. The model considered is assumed to exist in the oceanic crust part of the earth

and the propagation of wave through such a model will be of great use in the fields related to earth

sciences.

2 Basic Equations

For M1 (linear viscoelastic solid medium)

Following Borcherdt (1973), the equation governing the small motions in a linear viscoelastic solid may

be written as (
K
′
+4M

′
/3
)
∇
(
∇.u

′
)
−M

′
∇×

(
∇×u

′
)

=ρlü
′

(2.1)

where symbols K
′

is the complex bulk modulus, M
′

is the shear modulus, ρl is the density of linear

viscoelastic solid and u
′

is the displacement vector. Superposed dots on right hand side of equation (2.1)

stand for second partial derivative with respect to time. The stresses in the linear viscoelastic solid are

given by

σ
′

kl=
(

K
′
−2M

′
/3
)
θδkl+2M

′
ekl (2.2)
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where

ekl=
1

2

(
∂uk

′

∂xl
+
∂ul

′

∂xk

)
, θ=∇.u

′
(2.3)

Using Helmholtz’s theorem

u
′
=∇φ

′
+∇×ψ

′
, ∇.ψ

′
= 0, (2.4)

We can show that φ
′

and ψ
′

satisfy

α2∇2φ
′
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′
and β2∇2ψ

′
=ψ̈

′
(2.5)

where
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′
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′

3

)
/ρl, β2 = M

′
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and
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u
′
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∂φ
′

∂x
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′

∂z
, w

′
=
∂φ
′

∂z
−∂ψ

′

∂x
. (2.8)

For M2 (Homogeneous isotropic elastic solid medium)

The equation governing the small motions in a homogeneous isotropic elastic are

µ∗∇2u∗+ (λ∗+µ∗) ∇ (∇.u∗) =ρ∗ü∗, (2.9)

where symbols λ∗, µ∗ are Lame’s constants, ρ∗ is the density and u∗ is the displacement vector. Su-

perposed dots on right hand side of equation (2.9) stand for second partial derivative with respect to

time.

The stress strain relation in the isotropic elastic medium is given by

σij
∗=λ∗ekk

∗ δij+2µ∗ eij
∗, (2.10)

where

eij
∗=

1

2

(
∂ui
∗

∂xj
+
∂uj
∗

∂xi

)
, (2.11)

are the components of the strain tensor, ekk
∗ is the dilatation and σij

∗ are the components of stress tensor

in the isotropic elastic medium. For the two dimensional problem, the displacement vector u
′

is taken as

u∗= (u∗, 0,w∗) , (2.12)

The displacement components u∗ and w∗ are related to potential functions φ∗ and ψ∗ as

u∗=
∂φ∗

∂x
+
∂ψ∗

∂z
, w∗=

∂φ∗

∂z
−∂ψ

∗

∂x
, (2.13)

Using equations (2.12) and (2.13) in equation (2.9), we obtain as

∇2φ∗=
1

v∗1
2

∂2?∗

∂t2
, (2.14)
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∇2ψ∗=
1

v∗2
2

∂2ψ∗

∂t2
, (2.15)

wherev∗1 =
√

λ∗+2µ∗

ρ∗ and v∗2=
√

µ∗

ρ∗ are the velocities of longitudinal wave (P-wave) and transverse wave

(SV-wave) in isotropic elastic medium respectively.

3 Formulation of the problem and its solution

Considering a two dimensional problem by taking the z-axis pointing into lower half-space and the

imperfect interface at z = 0 separating the linear viscoelastic solid half space M1 [z > 0] and elastic

solid half space M2 [z < 0] (see figure1). A longitudinal wave (P-wave) or transverse wave (SV-wave)

propagates through linear viscoelastic solid half space medium M1 and incident at the plane z = 0

and making an angle θ0 with normal to the surface. Corresponding to each incident wave (P-wave or

SV-wave), we get two reflected waves P-wave and SV-wave in the medium M1 and two transmitted waves

P-wave and SV-wave in medium M2.

Figure 1: Geometry of the Problem

In medium M1

The potential function satisfying the equation (2.8) can be taken as

φ
′
=A0 exp [ik1 (x sinθ0 − z cosθ0) +iω1t] +A1exp [ik1 (x sinθ1+z cosθ1) +iω1t] (3.1)

ψ
′
=B0 exp [ik2 (x sinθ0 − z cosθ0) +iω2t] +B1exp [ik2 (x sinθ2+z cosθ2) +iω2t] (3.2)

where A0 and B0 are amplitudes of the incident P-wave and SV-wave, respectively and A1, B1 are ampli-

tudes of the reflected P-wave and SV-wave respectively and to be determined from boundary conditions.

In medium M2
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The potential function satisfying the equation (2.14)–(2.15) can be taken as

φ∗=A1exp
[
ik1

(
x sinθ1−z cosθ1

)
+iω1t

]
, (3.3)

ψ∗=B1exp
{

ik2

(
x sinθ2−z cosθ2

)
+iω2t

}
, (3.4)

where k1 and k2 are wave numbers of transmitted P-wave and transmitted SV-wave, respectively. A1 and

B1 are amplitudes of transmitted P-wave and transmitted SV-wave and are unknown to be determined

from boundary conditions.

4 Boundary conditions

The appropriate boundary conditions at the interface z = 0 are the continuity of displacement and

stresses. Mathematically, these boundary conditions can be expressed as:

σzz
′
= σzz

∗, σzx
′
= σzx

∗, σzx
∗=Kt

(
u
′
−u∗

)
, σzz

∗=Kn

(
w
′
−w∗

)
. (4.1)

In order to satisfy the boundary conditions, the extension of the Snell’s law will be

sinθ0
V0

=
sinθ1
V1

=
sinθ2
V2

=
sinθ1

V1

=
sinθ2

V2

. (4.2)

Also

k1V1=k2V2=k1V1 = k2V2=ω, at z = 0. (4.3)

For P-wave,

V0=V1, θ0=θ1. (4.4)

For SV-wave,

V0=V2, θ0=θ2. (4.5)

For incident longitudinal wave at the interface z = 0, putting B0= 0 in equation (3.2) and for incident

transverse wave putting A0 = 0 in equation (3.1). Substituting the expressions of potentials given by

(3.1–3.4) in equations (2.2), (2.8), (2.10) and (2.13) and using equations (4.1–4.5), we get a system of

four non homogeneous which can be written as

4∑
j=0

aijZj=Yi, (i = 1, 2, 3, 4) (4.6)

where

Z1=
A1

A∗
, Z2=

A2

A∗
, Z3=

A1

A∗
, Z4=

B1

A∗
(4.7)



68 Int. J. Math. And Its App. Vol.2 No.3 (2014)/ Neelam Kumari

Also aij in non dimensional form can be written as

a11 = −K
′

M ′
− 2 sin2 θ0 +

4

3
, a12 = 2 sin θ2 cos θ2

k22
k21
,

a13 =
λ∗k̄1

2

M ′k21
, a14 =

µ∗k̄2
2

k21M
′ sin 2θ̄2,

a21 = −2 sin θ1 cos θ1, a22 = −k
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2
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)
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2
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ik2 cos θ2

k1
,

a33 = − ik̄1 sin θ̄1
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− µ∗k̄1
2

sin 2θ̄1
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ik̄2 cos θ̄2

k1
− µ∗k̄2

2
cos 2θ̄2
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,

a41 = i cos θ1, a42 = − ik2 sin θ2
k1

,

a43 =
ik1 cos θ̄1

k1
+
λ∗k̄1

2

Knk1
, a44 =

ik̄2 sin θ̄2
k1
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2
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(4.8)

For incident longitudinal wave:

A∗=A0,B0= 0,Y1=−a11,Y2=a21,Y3=−a31,Y4=a41, (4.9)

For incident transverse wave:

A∗=B0,A0= 0,Y1=a12,Y2=−a22,Y3=a32, Y4=−a42, (4.10)

5 Particular case

Case I: Normal force stiffness (Kn 6= 0,Kt →∞)

In this case, we obtain a system of four non homogeneous equations as those given by equation (4.6) with

the changed aij as

a33=− i k1

k1
sinθ1, a34=

i k2cosθ2
k1

, (5.1)

Case II: Transverse force stiffness (Kt 6= 0,Kn →∞)

In this case also, a system of four non homogeneous equations as those given by equation (4.6) is obtained

with the changed aij as given below

a43=
i k1cosθ1

k1
, a

44

=
i k2sinθ2

k1
, (5.2)

Case III: Welded contact (Kn →∞,Kt →∞)

Again in this case, a system of four non homogeneous equations is obtained as those given by equation

(4.6) with some aij changed as

a33=− i k1

k1
sinθ1, a34=

i k2cosθ2
k1

, a43=
i k1cosθ1

k1
, a

44

=
i k2sinθ2

k1
(5.3)
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6 Numerical results and discussion

The theoretical results obtained above indicate that the amplitude ratios Zi (i= 1, 2, 3) depend on the

angle of incidence of incident wave. In order to study in more detail the behaviour of various amplitude

ratios on the angle of incidence, we have computed them numerically by taking the following values

relevant elastic parameters.

In medium M1, Following Silva [4], the physical parameters representing the crust as a linear viscoelastic

solid are as follows

QP= 100, QS= 45, ρl= 2.6 gm/cm
3
, VP= 6.1 km/s, VS= 3.5 km/s (6.1)

In medium M2, the physical parameters for isotropic elastic solid are as follows

ρ
′
= 2.65

Mg

m3
, µ

′
= 2.238

MN

m2
, λ

′
= 2.238

MN

m2
(6.2)

Using MATLAB, a computer programme has been developed and modulus of amplitude ratios |Zi| , (i =

1, 2, 3, 4, ) for various reflected and transmitted waves have been computed. |Z1| and |Z2| represent the

modulus of amplitude ratios for reflected P and reflected SV-wave respectively. Also, |Z3| and |Z4| rep-

resent the modulus of amplitude ratios for transmitted P and transmitted SV-wave respectively. The

variations in all the figures are shown for the range 00 = θ = 900.

Figures (2)-(5) represent the variations of the amplitude ratios of reflected P-wave, reflected SV-

wave, transmitted P-wave and transmitted SV-wave with angle of incidence of incident P-wave whereas

figures Figures (6)-(9) show the variations of the amplitude ratios for reflected P-wave, reflected SV-wave,

transmitted P-wave and transmitted SV-wave with angle of incidence of the incident SV-wave. In all

the figures Figures (2)-(9), dashed line represent the general case (GEN) of imperfect boundary, whereas

dashed line represent the normal force stiffness case(NFS).Also, bold dashed line represent the transverse

force stiffness case(TFS) and solid line depicts the welded contact case(WD).

In figure (2), the values are same for NFS and WD cases. Also, for GEN and TFS cases the values

are same. In figure (3), the values are almost same in all the four cases. In figure (4), the values are

same for TFS and WD cases. Also, for GEN and NFS cases the values of amplitude ratio |Z1| are same.

In figure (5), it is clear that the values are same for TFS and GEN cases but are different for other two

cases. In figures (3), (5), the curves first attain their maximum values and then start to decrease and

reach to their minimum value i.e. zero.

In figure (6), the curves first attain their maximum values and then suddenly start to decrease and

reach to zero value. In figure (7), it is clear that the values are same for TFS and GEN cases but are

different for other two cases and in all cases the values of amplitude ratio approach to one. In figure

(8), the values are almost same in all the cases except for welded case .Also, all curves approach to zero
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value. The behaviour of all curves is almost same in figure (9). The curve for welded contact oscillates

and approaches to zero.

Figure 2-5: Variation of the amplitude ratios of reflected P-wave, reflected SV-wave, transmitted

P-wave and transmitted SV-wave with angle of incidence of P-wave.

Figure 6-9: Variation of the amplitude ratios of reflected P-wave, reflected SV-wave, transmitted

P-wave and transmitted SV-wave with angle of incidence of SV-wave.

7 Conclusion

Reflection and transmission phenomenon of incident elastic waves at an imperfect interface between linear

elastic solid half space and linear viscoelastic solid half space has been studied when P-wave or SV-wave

is incident. It is observed that the amplitudes ratios of various reflected and transmitted waves depend



Plane wave propagation at solid-solid imperfect interface 71

on the angle of incidence of the incident wave and material properties. Effect of stiffness is observed

on amplitude ratios. The research work is supposed to be useful in further studies; both theoretical

and observational of wave propagation in more realistic models of linear viscoelastic solid present in the

earth’s interior. The problems may be of use in engineering, seismology and geophysics etc.
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