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Abstract : In the present paper, we prove a coupled coincidence fixed point theorem in the setting of

two pairs of mappings in G-metric space. The main result is illustrated by an example.
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1 Introduction

The study of common fixed points of mappings satisfying certain contractive condition has been carried

out by many mathematician because of its wide application in mathematics and applied sciences. In

this series, coincidence point theory also plays a major role see [1, 2, 3, 4, 6, 7, 8, 10, 15, 16, 21]. In

2003, Mustafa and Sims [12] introduced a new notion of generalized metric space called G metric space.

A number of fixed point theorems have been studied on G metric spaces [11, 13, 14, 18, 19, 20]. V.

Laxmikantham et al.[5, 9] introduced the concept of coupled coincidence point of mapping F from X×X

into X and g from X into X, and developed fixed point results in partial metric spaces. In [22], W.
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Shantanawi proved a coupled coincidence theorem in G metric space. All coupled coincidence theorems

have been established in the setting of pair of maps F, g. The aim of the present paper is to prove a

coupled coincidence theorem for two pairs of such mappings {F, h} and {S, g} in G metric space.

2 Basic Concept

Definition 2.1 ([12]). Let X be a nonempty set and G : X × X × X → R+ a function satisfying the

following properties:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y), for all x, y ∈ X with x 6= y,

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ..., (symmetry)

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.

Then the function G is called a generalized metric or more specifically, a G-metric on X , and the pair

(X,G) is called a G-metric space.

Definition 2.2 ([12]). Let (X,G) be a G-metric space and (xn) a sequence of points of X. A point x ∈ X

is said to be the limit of the sequence (xn), if lim
n,m→+∞

G(x, xn, xm) = 0, and we say that the sequence

(xn) is G-convergent to x or that (xn) G-converges to x.

Thus, xn → x in a G-metric space (X,G) if for any ε > 0, there exists k ∈ N such that G(x, xn, xm) < ε

for all m,n ≥ k.

Proposition 2.3 ([12]). Let (X,G) be a G-metric space. Then the following are equivalent:

(1) (xn) is G-convergent to x.

(2) G(xn, xn, x)→ 0 as n→ +∞.

(3) G(xn, x, x)→ 0 as n→ +∞.

(4) G(xn, xm, x)→ 0 as n,m→ +∞.

Definition 2.4 ([10]). Let (X,G) be a G-metric space. A sequence (xn) is called G-Cauchy if for every

ε > 0, there is k ∈ N such that G(xn, xm, xl) < ε, for all n,m, l ≥ k; that is G(xn, xm, xl) → 0 as

n,m, l→ +∞.

Proposition 2.5 ([12]). Let (X,G) be a G-metric space. Then the following are equivalent:
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(1) The sequence (xn) is G-Cauchy.

(2) For every ε > 0, there is k ∈ N such that G(xn, xm, xm) < ε, for all n,m ≥ k.

Definition 2.6 ([12]). Let (X,G) and (X ′, G′) be G-metric spaces and f : (X,G) → (X ′, G′) a function.

Then f is said to be G-continuous at a point a ∈ X if and only if for every ε > 0, there is δ > 0 such that

x, y ∈ X and G(a, x, y) < δ implies G′(f(a), f(x), f(y)) < ε. A function f is G-continuous at X if and

only if it is G- continuous at all a ∈ X.

Proposition 2.7 ([12]). Let (X,G) be a G-metric space. Then the function G(x, y, z) is jointly continuous

in all three of its variables.

The followings are examples of G-metric spaces.

Example 2.8 ([12]). Let (R, d) be the usual metric space. Define Gs by Gs(x, y, z) = d(x, y) + d(y, z) +

d(x, z) for all x, y, z ∈ R. Then it is clear that (R,Gs) is a G-metric space.

Example 2.9 ([12]). Let X = {a, b}. Define G on X ×X ×X by G(a, a, a) = G(b, b, b) = 0, G(a, a, b) =

1, G(a, b, b) = 2 and extend G to X × X × X by using the symmetry in the variables. Then it is clear

that (X,G) is a G-metric space.

Definition 2.10 ([12]). A G-metric space (X,G) is called G-complete if every G-Cauchy sequence in (X,G)

is G-convergent in (X,G).

Definition 2.11 ([5]). An element (x, y) ∈ X×X is called a coupled fixed point of a mapping F : X×X →

X if F (x, y) = x and F (y, x) = y.

Definition 2.12 ([9]). An element (x, y) ∈ X ×X is called a coupled coincidence point of the mappings

F : X ×X → X and g : X → X if F (x, y) = gx and F (y, x) = gy.

Definition 2.13 ([9]). Let X be a nonempty set. Then we say that the mappings F : X ×X → X and

g : X → X are commutative if gF (x, y) = F (gx, gy).

In [22], W. Shantanawi proved the following theorem

“Let (X,G) be a G- metric space. Let F : X × X → X and g : X → X be mappings such that

G(F (x, y), F (u, v), F (z, w)) ≤ k(G(gx, gu, gz) +G(gy, gv, gw)), for all x, y, z, u, v, w ∈ X. Assume that F

and g satisfy the following conditions

(1) F (X ×X) ⊆ g(X),

(2) g(X) is complete,

(3) g is G- continuous and commutes with F.

If k ∈ (0, 12 ), then there is a unique x in X such that F (x, x) = g(x) = x”.



56 Int. J. Math. And Its App. Vol.2 No.3 (2014)/ Manish Kumar

3 Main Result

Lemma 3.1. Let (X,G) be a G-metric space. Let F, S : X × X → X and g, h : X → X be mappings

such that

G(F (x, y), S(u, v), S(z, w)) ≤ k(G(hx, gu, gz) +G(hy, gv, gw)) (3.1)

for all x, y, z, w, u, v ∈ X. Assume that (x, y) is a coupled coincidence point of the pairs of mappings

{F, h} and {S, g} and gx = hx and gy = hy. If k ∈ [0, 18 ), then S(x, y) = gx = gy = S(y, x) and

F (x, y) = hx = hy = F (y, x).

Proof. Since (x, y) is a coupled coincidence point of pairs of mappings {F, h} and {S, g}, we have hx =

F (x, y), hy = F (y, x) and gx = S(x, y), gy = S(y, x).

Assume gx 6= gy. Then by (3.1), we get

G(gx, gy, gy) = G(F (x, y), S(y, x), S(y, x))

≤ k(G(hx, gy, gy) +G(hy, gx, gx))

= k(G(gx, gy, gy) +G(gy, gx, gx)).

Also by (3.1), we have

G(gy, gx, gx) = G(F (y, x), S(x, y), S(x, y))

≤ k(G(hy, gx, gx) +G(hx, gy, gy))

= k(G(gy, gx, gx) +G(gx, gy, gy)).

Therefore G(gx, gy, gy) + G(gy, gx, gx) ≤ 2k(G(gx, gy, gy) + G(gy, gx, gx)). Since 2k < 1, we get

G(gx, gy, gy) + G(gy, gx, gx) < G(gx, gy, gy) + G(gy, gx, gx), which is a contradiction. So gx = gy,

and hence S(x, y) = gx = gy = S(y, x) and F (x, y) = hx = hy = F (y, x). Thus the lemma is proved

Theorem 3.2. Let (X,G) be a G- metric space. Let F, S : X ×X → X and g, h : X → X be mappings

such that Let (X,G) be a G- metric space. Let F, S : X ×X → X and g, h : X → X be mappings such

that

G(F (x, y), S(u, v), S(z, w)) ≤ k(G(hx, gu, gz) +G(hy, gv, gw)) (3.2)

for all x, y, z, w, u, v ∈ X. Assume that F, S and g, h satisfy the following conditions:

(1) F (X ×X) ⊆ g(X) and S(X ×X) ⊆ h(X)

(2) g(X) or h(X) is complete

(3) g and h are G- continuous and pairs {F, h} and {S, g} are of commuting mappings.

If k ∈ (0, 18 ), then there is a unique x in X such that F (x, x) = S(x, x) = g(x) = h(x) = x.
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Proof. Let x0, y0 ∈ X. Since F (X×X) ⊆ g(X), we can choose x1, y1 ∈ X such that u1 = gx1 = F (x0, y0)

and v1 = gy1 = F (y0, x0). Again since S(X × X) ⊆ h(X), we can choose x2, y2 in X such that

u2 = hx2 = S(x1, y1) and v2 = hy2 = S(y1, x1). Continuing this process, we can construct two sequences

{un} and {vn} in X such that u2n+1 = gx2n+1 = F (x2n, y2n), v2n = gy2n+1 = F (y2n+1, x2n+1) and

u2n+2 = hx2n+2 = S(x2n+1, y2n+1), v2n+2 = hy2n+2 = S(y2n+1, x2n+1) for all n ∈ N . From

G(u2n+1, u2n+2, u2n+2) = G(F (x2n, y2n), S(x2n+1, y2n+1), S(x2n+1, y2n+1))

≤ k{G(hx2n, gx2n+1, gx2n+1) +G(hy2n, gy2n+1, gy2n+1)}

= k{G(u2n, u2n+1, u2n+1) +G(v2n, v2n+1, v2n+1)}

(3.3)

and similarly

G(v2n+1, v2n+2, v2n+2) ≤ k{G(v2n, v2n+1, v2n+1) +G(u2n, u2n+1, u2n+1)} (3.4)

we have

G(u2n+1, u2n+2, u2n+2) +G(v2n+1, v2n+2, v2n+2)

≤ 2k{G(u2n, u2n+1, u2n+1) +G(v2n, v2n+1, v2n+1)}

≤ 8k{G(u2n, u2n+1, u2n+1) +G(v2n, v2n+1, v2n+1)}

(3.5)

holds for all n ∈ N . Again from

G(u2n, u2n+1, u2n+1) ≤ 2G(u2n+1, u2n, u2n)

= 2G(F (X2n, y2n), S(x2n−1, y2n−1), S(x2n−1, y2n−1))

≤ 2k{G(hx2n, gx2n−1, gx2n−1) +G(hy2n, gy2n−1, gy2n−1)}

= 2k{G(u2n, u2n−1, u2n−1) +G(v2n, v2n−1, v2n−1)}

≤ 4k{G(u2n−1, u2n, u2n) +G(v2n−1, v2n, v2n)}

(3.6)

and

G(v2n, v2n+1, v2n+1) ≤ 2G(v2n+1, v2n, v2n)

= 2G(F (y2n, x2n), S(y2n−1, x2n−1), S(y2n−1, x2n−1))

≤ 2k{G(hy2n, gy2n−1, gy2n−1) +G(hx2n, gx2n−1, gx2n−1)}

= 2k{G(v2n, v2n−1, v2n−1) +G(u2n, u2n−1, u2n−1)}

≤ 4k{G(u2n−1, u2n, u2n) +G(v2n−1, v2n, v2n)},

(3.7)

we have

G(u2n, u2n+1, u2n+1) +G(v2n, v2n+1, v2n+1) ≤ 8k{G(u2n−1, u2n, u2n) +G(v2n−1, v2n, v2n)} (3.8)



58 Int. J. Math. And Its App. Vol.2 No.3 (2014)/ Manish Kumar

holds for all n ∈ N . Thus, using (3.5) and (3.8) in (3.3), we get

G(u2n+1, u2n+2, u2n+2) ≤ k8k{G(u2n−1, u2n, u2n) +G(v2n−1, v2n, v2n)}

≤ k(8k)2{G(u2n−2, u2n−1, u2n−1) +G(v2n−2, v2n−1, v2n−1)}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≤ k(8k)2n{G(u0, u1, u1) +G(v0, v1, v1)}

≤ (8k)2n+1{G(u0, u1, u1) +G(v0, v1, v1)}

and also, using (3.5) and (3.8) in (3.6),

G(u2n, u2n+1, u2n+1) ≤ 4k(8k){G(u2n−2, u2n−1, u2n−1) +G(v2n−2, v2n−1, v2n−1)}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≤ (8k)2n{G(u0, u1, u1) +G(v0, v1, v1)}.

Thus for each n ∈ N we have

G(un, un+1, un+1) ≤ (8k)n{G(u0, u1, u1) +G(v0, v1, v1)}. (3.9)

Let m,n ∈ N with m > n. By Axiom G5 of the definition of G–metric space, we have

G(un, um, um) ≤ G(un, un+1, un+1) +G(un+1, un+2, un+2) + ...+G(um−1, um, um).

Since 8k < 1, by (3.9) we get that

G(un, um, um) ≤
m−1∑
i=n

(8k)
i {G(u0, u1, u1) +G(v0, v1, v1)}

≤ (8k)
n

(1− 8k)
{G(u0, u1, u1) +G(v0, v1, v1)}.

Letting m,n→ +∞ , we have lim
m,n→+∞

G(un, um, um) = 0.

Thus {un},and any subsequence thereof, is a G- Cauchy sequence in X. Similarly we may show that

{vn},and any subsequence thereof, is G-Cauchy in X. suppose g(X) is complete then subsequence {u2n+1}

= {gx2n+1} and {v2n+1} ={gy2n+1} are G- convergent to some x ∈ X and y ∈ X respectively. We know

that every subsequence and the sequence itself of a G-Cauchy sequence are convergent to the same point.

Consequently the sub sequences {u2n} = {hx2n} and {v2n} = {hy2n} are also convergent to x and y

respectively. Since g and h are G- continuous, we have

{ggx2n+1} → gx, {hgx2n+1} → hx, {ghx2n} → gx, {hhx2n} → hx

and

{ggy2n+1} → gy, {hgy2n+1} → hy, {ghy2n} → gy, {hhy2n} → hy.
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Since pairs {F, h} and {S, g} are of commutative mappings, we have

hgx2n+1 = hf(x2n, y2n) = F (hx2n, hy2n) and ghx2n = gS(x2n−1, y2n−1) = S(gx2n−1, gx2n−1).

Thus

G(hgx2n+1, ghx2n, ghx2n) = G(F (hx2n, hy2n), S(gx2n−1, gy2n−1), S(gx2n−1, gy2n−1))

≤ k{G(hhx2n, ggx2n−1, ggx2n−1) +G(hhy2n, ggy2n−1, ggy2n−1)}.

Letting n → +∞, we have G(hx, gx, gx) = k{G(hx, gx, gx) + G(hy, gy, gy)}. In the same way, we may

show that G(hy, gy, gy) = k{G(hy, gy, gy) +G(hx, gx, gx)}. Thus

G(hx, gx, gx) +G(hy, gy, gy) = 2k{G(hx, gx, gx) +G(hy, gy, gy)}.

Since 2k < 8k < 1, the last inequality happens only if G(hx, gx, gx) = G(hy, gy, gy) = 0. Hence hx = gx

and hy = gy. Again

G(hgx2n+1, S(x, y), S(x, y)) = G(F (hx2n, hy2n), S(x, y), S(x, y))

≤ k{G(hhx2n, gx, gx) +G(hhy2n, gy, gy)}.

Letting n→ +∞, we have

G(hx, S(x, y), S(x, y)) ≤ k{G(hx, gx, gx) +G(hy, gy, gy)} = 0.

Thus we get G(hx, S(x, y), S(x, y)) = 0 which immediately yields S(x, y) = hx. Similarly we may show

that S(y, x) = hy. In the same manner

G(F (x, y), ghx2n, ghx2n) = G(F (x, y), S(gx2n−1, gy2n−1), S(gx2n−1, gy2n−1))

≤ k{G(hx, ggx2n−1, ggx2n−1) +G(hy, ggy2n−1, ggy2n−1)}

Letting n→ +∞, we have

G(F (x, y), gx, gx) = k{G(hx, gx, gx) +G(hy, gy, gy)} = 0.

Thus we get G(F (x, y), gx, gx) = 0 which implies that F (x, y) = gx. Similarly we may show that

F (y, x) = gy. Therefore we obtain gx = hx, gy = hy and F (x, y) = gx, F (y, x) = gy, S(x, y) = hx,

S(y, x) = hy which, by an application of Lemma 3.1, yields

F (x, y) = gx = gy = F (y, x) = S(x, y) = hx = hy = S(y, x).

Now

G(gx2n+1, gx, gx) = G(F (x2n, y2n), S(x, y), S(x, y))

≤ k{G(hx2n, gx, gx) +G(hy2n, gy, gy)}.
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Letting n → +∞, we have G(x, gx, gx) = k{G(x, gx, gx) + G(y, gy, gy)}. Similarly, we may show that

G(y, gy, gy) = k{G(y, gy, gy) + G(x, gx, gx)}. Thus G(x, gx, gx) + G(y, gy, gy) = 2k{G(x, gx, gx) +

G(y, gy, gy)}. Since 2k < 8k < 1, the last inequality happens only if G(x, gx, gx) = 0 and G(y, gy, gy) = 0.

Hence gx = x and gy = y. Thus we get F (x, x) = S(x, x) = gx = hx = x. To prove the uniqueness , let

z ∈ X with z 6= x such that F (z, z) = S(z, z) = gz = hz = z. Then

G(x, z, z) = G(F (x, x), S(z, z), S(z, z))

≤ k{G(hx, gz, gz) +G(hx, gz, gz)}

= k{G(x, z, z) +G(x, z, z)}

= 2kG(x, z, z).

Since 2k < 8k < 1, we get G(x, z, z) < G(x, z, z), which is a contradiction. Thus F, S, g, h have a unique

common fixed point

Corollary 3.3. Let (X,G) be a G- metric space. Let F, S : X ×X → X and g, h : X → X be mappings

such that

G(F (x, y), S(u, v), S(u, v)) = k(G(hx, gu, gu) +G(hy, gv, gv))

for all x, y, u, v ∈ X. Assume that F, S and g, h satisfy the following conditions:

(1) F (X ×X) ⊆ g(X) and S(X ×X) ⊆ h(X)

(2) g(X) or h(X) is complete

(3) g and h are G- continuous and pairs {F, h} and {S, g} are of commuting mappings.

If k ∈ (0, 18 ), then there is a unique xinX such that F (x, x) = S(x, x) = g(x) = h(x) = x.

Example 3.4. Let x = [0, 1]. Define G : X ×X ×X → R+ by G(x, y, z) = |x− y|+ |y − z|+ |z − x| for

all x, y, z ∈ X. Define mappings F, S : X ×X → X and g, h : X → X by

F (x, y) =
1

36
xy, S(x, y) =

1

144
xy and gx =

1

4
x, hx =

1

2
x.

Since |xy − uv| = |x− u|+ |y − v| holds for all x, y, u, v ∈ X, we have

G(F (x, y), S(u, v), S(z, w)) = | 1

36
xy − 1

144
uv|+ | 1

144
uv − 1

144
zw|+ | 1

144
zw − 1

36
xy|

≤ 1

9
{|1

2
x− 1

4
u|+ |1

4
u− 1

4
z|+ |1

4
z − 1

2
x|

+ |1
2
y − 1

4
v|+ |1

4
v − 1

4
w|+ |1

4
w − 1

2
y|}

=
1

9
{G(hx, gu, gz) +G(hy, gv, gw)}

holds for all x, y, z, u, v, w ∈ X. it is easy to see that F, S, g, h satisfiy all hypothesis of Theorem 3.2.

Thus F, S, g, h have a unique common fixed point. Here F (0, 0) = S(0, 0) = g0 = h0 = 0.
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