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Abstract : The aim of this paper is to prove some common fixed point theorems for four mappings
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1 Introduction and Preliminaries

The existence and uniqueness of fixed points of operators has been a subject of great interest since

the work of Banach [1] in 1922. There exist vast literature concerning its various generalizations and
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extensions. Existence of fixed points in ordered metric spaces has been initiated in 2004 by Ran and

Reurings [2], and further studied by Nieto and Lopez [3]. Subsequently, several interesting and valuable

results have appeared in this direction see for examples [4]-[12].

The concept of a partial metric space was introduced by Matthews [13] in 1994. After that, fixed

point results in partial metric spaces have been studied, see for example [14]-[25]. First, we present some

necessary definitions and results which will be needed in the sequel.

Definition 1.1 ([13]). Let X be a nonempty set. A mapping p : X ×X → [0,∞) is said to be a partial

metric on X if for all x, y, z ∈ X the following conditions are satisfied:

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

The pair (X, p) is called a partial metric space.

If p(x, y) = 0, then (p1) and (p2) imply that x = y. But converse dose not hold always.

Example 1.2 ([13]). 1. The function p(x, y) = max{x, y} for all x, y ∈ R+ defines a partial metric p

on R+.

2. If X = {[a, b] : a, b ∈ R, a ≤ b} then p([a, b], [c, d]) = max{b, d} −min{a, c} defines a partial metric

p on X.

Each partial metric p on X generates a T0 topology τp on X which has as a base the family of open

p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and

ε > 0.

If p is a partial metric on X, then the function ps : X ×X → R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y),

is a metric on X.

Definition 1.3 ([13]). Let (X, p) be a partial metric space. Then,

(i) a sequence {xn} in a partial metric space (X, p) converges to a point x ∈ X if and only if p(x, x) =

lim
n→∞

p(x, xn),

(ii) a sequence {xn} in a partial metric space (X, p) is said to be a Cauchy sequence if lim
n,m→∞

p(xn, xm)

exists and is finite,
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(iii) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges, with respect to τp, to

a point x ∈ X such that p(x, x) = lim
n,m→∞

p(xn, xm).

Remark 1.4. A limit of a sequence in a partial metric space need not be unique. Moreover, the function

p(., .) need not be continuous in the sense that xn → x and yn → y implies p(xn, yn) → p(x, y). For

example, if X = [0,+∞) and p(x, y) = max{x, y} for x, y ∈ X, then for {xn} = {1}, p(xn, x) = x =

p(x, x) for each x ≥ 1 and so,for example, xn → 2 and xn → 3 when n→∞.

It is easy to see that every τp-closed subset of a complete partial metric space is complete.

Lemma 1.5 ([13]). Let (X, p) be a partial metric space. Then

(i) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space

(X, ps).

(ii) A partial metric space (X, p) is complete if and only if the metric space (X, ps) is complete. Fur-

thermore, lim
n→∞

ps(xn, x) = 0, if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

Definition 1.6 ([15]). Let (X, p) be a partial metric space, F : X → X be a given mapping. We say that

F is continuous at x0 ∈ X, if for every ε > 0, there exists η > 0 such that F (Bp(x0, η)) ⊆ Bp(F (x0, ε)).

Lemma 1.7 ([24]). Let {xn} and {yn} be two sequences in partial metric space (X, p) such that

lim
n→∞

p(xn, x) = lim
n→∞

p(xn, xn) = p(x, x),

and

lim
n→∞

p(yn, y) = lim
n→∞

p(yn, yn) = p(y, y),

then lim
n→∞

p(xn, yn) = p(x, y). In particular, lim
n→∞

p(xn, z) = p(x, z) for every z ∈ X.

Definition 1.8. Let X be a nonempty set. Then (X,�, p) is called an ordered partial metric space if

and only if:

(i) (X, p) is a partial metric space,

(ii) (X,�) is a partially ordered set.

Definition 1.9. Let (X,�) be a partially ordered set. x, y ∈ X are called comparable if x � y or y � x

holds.

Definition 1.10. Let (X,�) be a partially ordered set. A mapping f on X is said to be monotone

nondecreasing if for all x, y ∈ X, x � y implies fx � fy.
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Definition 1.11 ([4], [5]). Let (X,�) be a partially ordered set. A mapping f on X is said to be

(i) dominating if x � fx for all x ∈ X,

(ii) dominated if fx � x for all x ∈ X.

For examples illustrating the above definitions were given in [4].

Definition 1.12 ([26]). A function ψ : [0,∞)→ [0,∞) is called altering distance function if

(i) ψ is increasing and continuous,

(ii) ψ(t) = 0 if and only if t = 0.

Now, we recall the following definition of partial-compatibility.

Definition 1.13 ([23]). Let (X, p) be a partial metric space and T, g : X → X be given mappings. We

say that the pair (T, g) is partial-compatible if the following conditions hold:

(i) p(x, x) = 0 implies that p(gx, gx) = 0.

(ii) lim
n→∞

p(Tgxn, gTxn) = 0, whenever {xn} is a sequence in X such that Txn → t and gxn → t for

some t ∈ X.

Note that Definition 1.13 extends and generalizes the notion of compatibility introduced by Jungck

[27] in the setting of metric spaces.

Definition 1.14. Let (X, d) be a metric space. A mapping f : X → X is said to be weakly contraction if

d(fx, fy) ≤ d(x, y)− ϕ(d(x, y)).

for all x, y ∈ X, where ϕ : [0,∞) → [0,∞) is a continuous and non-decreasing function with ϕ(t) = 0 if

and only if t = 0.

In 1997, Alber and Guerre-Delabriere [28] proved that weakly contractive mapping defined on a

Hilbert space is a Picard operator. Afterwards, Rhoades [29] proved that the corresponding result is also

valid when Hilbert space is replaced by a complete metric space. Dutta et al. [30] generalized the weak

contractive condition and proved a fixed point theorem for a selfmap, which in turn generalizes Theorem

1 in [29] and the corresponding result in [28].

In [31] Dass and Gupta proved the following fixed point theorem.

Theorem 1.15 ([31]). Let (X, d) be a complete metric space and T : X → X be a mapping such that

there exist α, β ≥ 0 with α+ β < 1 satisfying

d(Tx, Ty) ≤ αd(y, Ty)[1 + d(x, Tx)]

[1 + d(x, y)]
+ βd(x, y), for allx, y ∈ X. (1.1)

Then T has a unique fixed point.
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In [7], Cabrera et al. proved the above theorem in the framwark of partially ordered metric spaces.

Recently, Karapinar et al. [20] obtained the following result in partial metric spaces.

Theorem 1.16. [20] Let (X, p) be a complete partial metric space and T : X → X be a mapping satisfying

ψ(p(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)), ∀x, y ∈ X,

where

M(x, y) = max

{
p(y, Ty)[1 + p(x, Tx)]

1 + p(x, y)
, p(x, y)

}
,

and ψ : [0,∞)→ [0,∞) is a continuous and monotone non-decreasing function with ψ(t) = 0 if and only

if t = 0 and ϕ : [0,∞) → [0,∞) is a lower semi-continuous function with ϕ(t) = 0 if and only if t = 0.

Then T has a unique fixed point.

The purpose of this paper is to prove some common fixed point theorems for four mappings f, g, S

and T satisfying a generalized contraction of rational type in ordered partial metric spaces, where the

mappings f, g are dominated and S, T are dominating maps. Two illustrative examples are given.

2 Main Results

In this section we prove some common fixed point theorems which give conditions for existence and

uniqueness of a common fixed point for a generalized contraction of rational type in ordered partial

metric spaces.

Let Φ denote the set of all functions ϕ : [0,∞)→ [0,∞) such that

(i) ϕ is a lower semi-continuous function,

(ii) ϕ(t) = 0 if and only if t = 0.

Theorem 2.1. Let (X,�, p) be an ordered complete partial metric space. Let f, g, S, T : X → X be four

mappings such that f(X) ⊆ T (X), g(X) ⊆ S(X), f, g are dominated mappings and S, T are dominating

mappings. Suppose that for all comparable elements x, y ∈ X, we have

ψ(p(fx, gy)) ≤ ψ(M(x, y))− ϕ(M(x, y)), (2.1)

where

M(x, y) = max

{
p(Ty, gy)[1 + p(Sx, fx)]

1 + p(Sx, Ty)
, p(Sx, Ty)

}
,

and ψ is an altering distance function and ϕ ∈ Φ. If for a nonincreasing sequence {xn} in X with yn � xn
for all n and lim

n→∞
ps(yn, z) = 0, it follows z � xn for all n ∈ N, and either

(i) (f, S) is partial-compatible, f or S is continuous on (X, ps) or
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(ii) (g, T ) is partial-compatible, g or T is continuous on (X, ps),

then f, g, S and T have a common fixed point.

Proof. Let x0 be an arbitrary point in X. Since f(X) ⊆ T (X), g(X) ⊆ S(X), we can choose x1, x2 ∈ X

such that y0 = fx0 = Tx1, and y1 = gx1 = Sx2. Continuing this process, we define the sequences {xn}

and {yn} in X by

y2n = fx2n = Tx2n+1, y2n+1 = gx2n+1 = Sx2n+2, for all n ≥ 0.

By the given assumptions we obtain

x2n+2 � Sx2n+2 = gx2n+1 � x2n+1 � Tx2n+1 = fx2n � x2n.

Thus, for all n ∈ N we have xn+1 � xn. Suppose that p(y2n−1, y2n) > 0 for all n.

If not then p(y2n−1, y2n) = 0 for some n and so y2n−1 = y2n. Further, since x2n and x2n+1 are comparable,

so from (2.1), we get

ψ(p(y2n, y2n+1)) = ψ(p(fx2n, gx2n+1))

≤ ψ(M(x2n, x2n+1))− ϕ(M(x2n, x2n+1)),
(2.2)

where

M(x2n, x2n+1) = max

{
p(Tx2n+1, gx2n+1)[1 + p(Sx2n, fx2n)]

1 + p(Sx2n, Tx2n+1)
, p(Sx2n, Tx2n+1)

}
= max

{
p(y2n, y2n+1)[1 + p(y2n−1, y2n)]

1 + p(y2n−1, y2n)
, p(y2n−1, y2n)

}
= p(y2n, y2n+1).

Hence from (2.2) we get

ψ(p(y2n, y2n+1)) ≤ ψ(p(y2n, y2n+1))− ϕ(p(y2n, y2n+1)),

So ϕ(p(y2n, y2n+1)) = 0, and y2n = y2n+1. Similarly, we obtain y2n+1 = y2n+2 and so on. Therefore {yn}

becomes a constant sequence and y2n is the common fixed point of f, g, S and T.

Now, we suppose that p(y2n−1, y2n) > 0 for all n ∈ N. Since x2n and x2n+1 are comparable, from

(2.1) we have

ψ(p(y2n, y2n+1)) = ψ(p(fx2n, gx2n+1))

≤ ψ(M(x2n, x2n+1))− ϕ(M(x2n, x2n+1)),
(2.3)

where

M(x2n, x2n+1) = max

{
p(Tx2n+1, gx2n+1)[1 + p(Sx2n, fx2n)]

1 + p(Sx2n, Tx2n+1)
, p(Sx2n, Tx2n+1)

}
= max

{
p(y2n, y2n+1)[1 + p(y2n−1, y2n)]

1 + p(y2n−1, y2n)
, p(y2n−1, y2n)

}
= max{p(y2n, y2n+1), p(y2n−1, y2n)}.
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If M(x2n, x2n+1) = p(y2n, y2n+1), then from (2.3) we obtain

ψ(p(y2n, y2n+1)) ≤ ψ(p(y2n, y2n+1))− ϕ(p(y2n, y2n+1)),

Hence ϕ(p(y2n, y2n+1)) = 0, and so p(y2n, y2n+1) = 0, gives a contradiction. Thus M(x2n, x2n+1) =

p(y2n−1, y2n), and from (2.3) we obtain

ψ(p(y2n, y2n+1)) ≤ ψ(p(y2n−1, y2n))− ϕ(p(y2n−1, y2n)) ≤ ψ(p(y2n−1, y2n)).

Since ψ is increasing, we get

p(y2n, y2n+1) ≤ p(y2n−1, y2n) = M(x2n, x2n+1) ∀n ≥ 0. (2.4)

By similar arguments we can show that

p(y2n+1, y2n+2) ≤ p(y2n, y2n+1) = M(x2n+1, x2n+2) ∀n ≥ 0. (2.5)

Combining (2.4) and (2.5), we have

p(yn, yn+1) ≤ p(yn−1, yn) = M(xn−1, xn) ∀n ≥ 0.

Thus, the sequence {p(yn, yn+1)} is nonincreasing and so there exists δ ≥ 0 such that

lim
n→∞

p(yn, yn+1) = lim
n→∞

M(xn, xn+1) = δ.

Suppose that δ > 0. Then taking the upper limit as n→∞, in (2.3) and by the lower semi-continuity of

ϕ we get

lim sup
n→∞

ψ(p(y2n, y2n+1)) ≤ lim sup
n→∞

ψ(M(x2n, x2n+1))− lim inf
n→∞

ϕ(M(x2n, x2n+1)).

Using the properties of the functions ψ and ϕ, we have ψ(δ) ≤ ψ(δ) − ϕ(δ), so ϕ(δ) = 0, hence δ = 0,

which is a contradiction. We conclude that

lim
n→∞

p(y2n, y2n+1) = lim
n→∞

M(x2n, x2n+1) = 0. (2.6)

Now, we show that {yn} is a Cauchy sequence in the partial metric space (X, p). For this, it is sufficient to

prove that {y2n} is a Cauchy sequence in (X, p). Suppose that {y2n} is not a Cauchy sequence in (X, p).

Then, there is ε > 0 such that for an integer k there exist integers 2n(k), 2m(k) with 2m(k) > 2n(k) > k

such that

p(y2n(k), y2m(k)) ≥ ε, (2.7)

for every integer k, let m(k) be the least positive integer with 2m(k) > 2n(k), satisfying (2.7) and such

that

p(y2n(k), y2m(k)−2) < ε. (2.8)
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Now, using (2.7) and the triangular inequality one gets

ε ≤ p(y2n(k), y2m(k)) ≤ p(y2n(k), y2m(k)−2) + p(y2m(k)−2, y2m(k)−1) + p(y2m(k)−1, y2m(k))

− p(y2m(k)−2, y2m(k)−2)− p(y2m(k)−1, y2m(k)−1).

Letting k →∞, in the above inequality and from (2.6), (2.8) it follows that

lim
k→∞

p(y2n(k), y2m(k)) = ε. (2.9)

Also, by the triangular inequality, we have

p(y2n(k), y2m(k)−1) ≤ p(y2n(k), y2m(k)) + p(y2m(k), y2m(k)−1)− p(y2m(k), y2m(k)),

and

p(y2n(k), y2m(k)) ≤ p(y2n(k), y2m(k)−1) + p(y2m(k)−1, y2m(k))− p(y2m(k)−1, y2m(k)−1).

Letting k →∞, in the two above inequalities and using (2.6) and (2.9) we have

lim
k→∞

p(y2n(k), y2m(k)−1) = ε. (2.10)

Similarly,

p(y2n(k)−1, y2m(k)−2) ≤ p(y2n(k)−1, y2n(k)) + p(y2n(k), y2m(k)−1) + p(y2m(k)−1, y2m(k)−2)

− p(y2n(k), y2n(k))− p(y2m(k)−1, y2m(k)−1),

and

p(y2n(k), y2m(k)−1) ≤ p(y2n(k), y2n(k)−1) + p(y2n(k)−1, y2m(k)−2) + p(y2m(k)−2, y2m(k)−1)

− p(y2n(k)−1, y2n(k)−1)− p(y2m(k)−2, y2m(k)−2).

Letting k →∞, in the two above inequalities and using (2.6) and (2.10) we have

lim
k→∞

p(y2n(k)−1, y2m(k)−2) = ε. (2.11)

Since x2n(k), x2m(k)−1 are comparable, then from (2.1), we obtain

ψ(p(y2n(k), y2m(k)−1)) = ψ(p(fx2n(k), gx2m(k)−1))

≤ ψ(M(x2n(k), x2m(k)−1))− ϕ(M(x2n(k), x2m(k)−1)).
(2.12)

Where

M(x2n(k), x2m(k)−1) = max

{
p(Tx2m(k)−1, gx2m(k)−1)[1 + p(Sx2n(k), fx2n(k))]

1 + p(Sx2n(k), Tx2m(k)−1)
, p(Sx2n(k), Tx2m(k)−1)

}
= max

{
p(y2m(k)−2, y2m(k)−1)[1 + p(y2n(k)−1, y2n(k))]

1 + p(y2n(k)−1, y2m(k)−2)
, p(y2n(k)−1, y2m(k)−2)

}
.
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Letting k →∞ in (2.12) and from(2.6), (2.10),(2.11), we get

ψ(ε) ≤ ψ(max{0, ε})− ϕ(max{0, ε}) = ψ(ε)− ϕ(ε).

Hence ϕ(ε) = 0, i.e. ε = 0, which is a contradiction. Thus we proved that {yn} is a Cauchy sequence in

(X, p). Since (X, p) is complete then from Lemma 1.5 (X, ps) is a complete metric space. Therefore there

exists z ∈ X, such that lim
n→∞

ps(yn, z) = 0. Also, from Lemma 1.5 we obtain

p(z, z) = lim
n→∞

p(yn, z) = lim
m,n→∞

p(yn, ym). (2.13)

Moreover, since {yn} is a Cauchy sequence in the metric space (X, ps), then lim
m,n→∞

ps(yn, ym) = 0. On

the other hand, by (p2) and (2.6), we have p(yn, yn) ≤ p(yn, yn+1)→ 0, as n→∞ and hence we get

lim
n→∞

p(yn, yn) = 0. (2.14)

Therefore from the definition of ps and (2.14), we have lim
m,n→∞

p(yn, ym) = 0. Hence, from (2.13), we have

p(z, z) = lim
n→∞

p(yn, z) = lim
m,n→∞

p(yn, ym) = 0. (2.15)

Then we conclude that

lim
n→∞

p(y2n, z) = lim
n→∞

p(fx2n, z) = lim
n→∞

p(Tx2n+1, z) = 0,

lim
n→∞

p(y2n+1, z) = lim
n→∞

p(gx2n+1, z) = lim
n→∞

p(Sx2n+2, z) = 0.

Assume that S is continuous on (X, ps). Then

lim
n→∞

ps(SSx2n+2Sfx2n+2) = 0.

Also, since the (f, S) is partial-compatible, we have lim
n→∞

p(fSx2n+2, Sfx2n+2) = 0. Further, since

p(z, z) = 0, then again the partial-compatibility of the pair (f, S) gives that p(Sz, Sz) = 0.

We need to show that lim
n→∞

p(fSx2n+2, gx2n+1) = p(Sz, z), lim
n→∞

p(SSx2n+2, fSx2n+2) = 0 and

lim
n→∞

p(SSx2n+2, Tx2n+1) = p(Sz, z). So, since

ps(fSx2n+2, gx2n+1) ≤ ps(fSx2n+2, Sfx2n+2) + ps(Sfx2n+2, gx2n+1),

and

ps(Sfx2n+2, gx2n+1) ≤ ps(Sfx2n+2, fSx2n+2) + ps(fSx2n+2, gx2n+1).

Letting n→∞, in the two above inequalities and using the continuity of S and the partial-compatibility

of the pair (f, S) we have

lim
n→∞

ps(fSx2n+2, gx2n+1) = ps(Sz, z).
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On the other hand

ps(fSx2n+2, gx2n+1) = 2p(fSx2n+2, gx2n+1)− p(fSx2n+2, fSx2n+2)− p(gx2n+1, gx2n+1),

that is

2p(fSx2n+2, gx2n+1) = ps(fSx2n+2, gx2n+1) + p(fSx2n+2, fSx2n+2) + p(gx2n+1, gx2n+1).

Taking limit as n→∞ we conclude that

2 lim
n→∞

p(fSx2n+2, gx2n+1) = ps(Sz, z) = 2p(Sz, z).

Hence lim
n→∞

p(fSx2n+2, gx2n+1) = p(Sz, z).

Since S is continuous, and {yn} converges to z in (X, p), hence

lim
n→∞

p(SSx2n+2, Sz) = lim
n→∞

p(Sy2n+1, Sz) = p(Sz, Sz) = 0.

Thus,

lim
n→∞

p(Sfx2n+2, Sz) = lim
n→∞

p(Sy2n+2, Sz) = p(Sz, Sz) = 0.

Then by triangular inequality we obtain

p(SSx2n+2, fSx2n+2) ≤ p(SSx2n+2, Sz)+p(Sz, Sfx2n+2)+p(Sfx2n+2, fSx2n+2)−p(Sfx2n+2, Sfx2n+2).

This implies that

lim
n→∞

p(SSx2n+2, fSx2n+2) = 0.

From Lemma 1.7 we obtain

lim
n→∞

p(SSx2n+2, Tx2n+1) = p(Sz, z).

Now, since, Sx2n+2 = gx2n+1 � x2n+1, so from (2.1), we obtain

ψ(p(fSx2n+2, gx2n+1)) ≤ ψ(M(Sx2n+2, x2n+1))− ϕ(M(Sx2n+2, x2n+1)), (2.16)

where

M(Sx2n+2, x2n+1) = max

{
p(Tx2n+1, gx2n+1)[1 + p(SSx2n+2, fSx2n+2)]

1 + p(SSx2n+2, Tx2n+1)
, p(SSx2n+2, Tx2n+1)

}
.

From (2.16), taking the upper limit as n → ∞, we have ψ(p(Sz, z)) ≤ ψ(p(Sz, z))− ϕ(p(Sz, z)), and so

ϕ(p(Sz, z)) = 0. Hence Sz = z.

On other hand, since x2n+1 � Tx2n+1 and lim
n→∞

Tx2n+1 = z, it follows that z � x2n+1. Thus from (2.1),

we obtain

ψ(p(fz, gx2n+1)) ≤ ψ(M(z, x2n+1))− ϕ(M(z, x2n+1)), (2.17)
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where

M(z, x2n+1) = max

{
p(Tx2n+1, gx2n+1)[1 + p(Sz, fz)]

1 + p(Sz, Tx2n+1)
, p(Sz, Tx2n+1)

}
= max

{
p(y2n, y2n+1)[1 + p(z, fz)]

1 + p(z, y2n)
, p(z, y2n)

}
.

On taking the upper limit in (2.17) as n→∞, we get ψ(p(fz, z)) ≤ ψ(p(z, z))−ϕ(p(z, z))), so ψ(p(fz, z)) ≤

0, and fz = z = Sz.

Since f(X) ⊆ T (X), there exists a point w ∈ X such that fz = Tw. Suppose that gw 6= Tw. Since

w � Tw = fz � z implies w � z. From (2.1), we obtain

ψ(p(Tw, gw)) = ψ(p(fz, gw)) ≤ ψ(M(z, w))− ϕ(M(z, w)), (2.18)

where

M(z, w) = max

{
p(Tw, gw)[1 + p(Sz, fz)]

1 + p(Sz, Tw)
, p(Sz, Tw)

}
= max {p(Tw, gw), 0} = p(Tw, gw).

Hence from (2.18), we get ψ(p(Tw, gw)) ≤ ψ(p(Tw, gw)) − ϕ(p(Tw, gw)), a contradiction. Therefore,

Tw = gw. Since g is dominated map and T is dominating map,

w � Tw = z and z = gw � w ⇒ w = z.

Hence Sz = fz = Tz = gz = z. Thus f, g, S and T have a common fixed point. The proof is similar

when f is continuous. Similarly, the result follows when (ii) holds.

Corollary 2.2. Let (X,�, p) be an ordered complete partial metric space. Let f, g, S, T : X → X be four

mappings such that f(X) ⊆ T (X), g(X) ⊆ S(X), f, g are dominated mappings and S, T are dominating

mappings. Suppose that for all comparable elements x, y ∈ X, we have

p(fx, gy) ≤M(x, y)− ϕ(M(x, y)),

where

M(x, y) = max

{
p(Ty, gy)[1 + p(Sx, fx)]

1 + p(Sx, Ty)
, p(Sx, Ty)

}
,

and ϕ ∈ Φ. If for a nonincreasing sequence {xn} in X with yn � xn for all n and lim
n→∞

ps(yn, z) = 0, it

follows z � xn for all n ∈ N, and either

(i) (f, S) is partial-compatible, f or S is continuous on (X, ps) or

(ii) (g, T ) is partial-compatible, g or T is continuous on (X, ps),

then f, g, S and T have a common fixed point.
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Proof. In Theorem 2.1, taking ψ(t) = t for all t ∈ [0,∞).

Corollary 2.3. Let (X,�, p) be an ordered complete partial metric space. Let f, g, S, T : X → X be four

mappings such that f(X) ⊆ T (X), g(X) ⊆ S(X), f, g are dominated mappings and S, T are dominating

mappings. Suppose that for all comparable elements x, y ∈ X, we have

p(fx, gy) ≤ kmax

{
p(Ty, gy)[1 + p(Sx, fx)]

1 + p(Sx, Ty)
, p(Sx, Ty)

}
,

where k ∈ (0, 1). If for a nonincreasing sequence {xn} in X with yn � xn for all n and lim
n→∞

ps(yn, z) = 0,

it follows z � xn for all n ∈ N, and either

(i) (f, S) is partial-compatible, f or S is continuous on (X, pS) or

(ii) (g, T ) is partial-compatible, g or T is continuous on (X, pS),

then f, g, S and T have a common fixed point.

Proof. In Theorem 2.1, taking ψ(t) = t and ϕ(t) = (1− k)t, for all t ∈ [0,∞).

Corollary 2.4. Let (X,�, p) be an ordered complete partial metric space. Let f, g, S, T : X → X be four

mappings such that f(X) ⊆ T (X), g(X) ⊆ S(X), f, g are dominated mappings and S, T are dominating

mappings. Suppose that for all comparable elements x, y ∈ X, we have

p(fx, gy) ≤ αp(Ty, gy)[1 + p(Sx, fx)]

1 + p(Sx, Ty)
+ βp(Sx, Ty),

where α, β ≥ 0 with α + β < 1. If for a nonincreasing sequence {xn} in X with yn � xn for all n and

lim
n→∞

ps(yn, z) = 0, it follows z � xn for all n ∈ N, and either

(i) (f, S) is partial-compatible, f or S is continuous on (X, pS) or

(ii) (g, T ) is partial-compatible, g or T is continuous on (X, pS),

then f, g, S and T have a common fixed point.

Proof. In Corollary 2.3, taking k = α+ β, we get

α
p(Ty, gy)[1 + p(Sx, fx)]

1 + p(Sx, Ty)
+ βp(Sx, Ty) ≤ kmax

{
p(Ty, gy)[1 + p(Sx, fx)]

1 + p(Sx, Ty)
, p(Sx, Ty)

}
.

Hence we apply Corollary 2.3.

If we put f = g in Theorem 2.1 we have the following corollary.

Corollary 2.5. Let (X,�, p) be an ordered complete partial metric space. Let f, S, T : X → X be three

mappings such that f(X) ⊆ T (X), f(X) ⊆ S(X), f is dominated mapping and S, T are dominating

mappings. Suppose that for all comparable elements x, y ∈ X, we have

ψ(p(fx, fy)) ≤ ψ(M(x, y))− ϕ(M(x, y)),
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where

M(x, y) = max

{
p(Ty, fy)[1 + p(Sx, fx)]

1 + p(Sx, Ty)
, p(Sx, Ty)

}
,

and ψ is an altering distance function and ϕ ∈ Φ. If for a nonincreasing sequence {xn} in X with yn � xn
for all n and lim

n→∞
ps(yn, z) = 0, it follows z � xn for all n ∈ N, and either

(i) (f, S) is partial-compatible, f or S is continuous on (X, ps) or

(ii) (f, T ) is partial-compatible, g or T is continuous on (X, ps),

then f, S and T have a common fixed point.

If we put S = T in Theorem 2.1 we have the following corollary.

Corollary 2.6. Let (X,�, p) be an ordered complete partial metric space. Let f, g, T : X → X be

mappings such that f(X) ∪ g(X) ⊆ T (X), f, g are dominated mappings and T is dominating mapping.

Suppose that for all comparable elements x, y ∈ X, we have

ψ(p(fx, gy)) ≤ ψ(M(x, y))− ϕ(M(x, y)),

where

M(x, y) = max

{
p(Ty, gy)[1 + p(Tx, fx)]

1 + p(Tx, Ty)
, p(Tx, Ty)

}
,

and ψ is an altering distance function and ϕ ∈ Φ. If for a nonincreasing sequence {xn} in X with yn � xn
for all n and lim

n→∞
ps(yn, z) = 0, it follows z � xn for all n ∈ N, and either

(i) (f, T ) is partial-compatible, f or T is continuous on (X, ps) or

(ii) (g, T ) is partial-compatible, g or T is continuous on (X, ps),

then f, g and T have a common fixed point.

Further, if we put f = g and S = T in Theorem 2.1 we have the following corollary.

Corollary 2.7. Let (X,�, p) be an ordered complete partial metric space. Let f, T : X → X be mappings

such that f(X) ⊆ T (X), f is dominated mapping and T is dominating mapping. Suppose that for all

comparable elements x, y ∈ X, we have

ψ(p(fx, fy)) ≤ ψ(M(x, y))− ϕ(M(x, y)),

where

M(x, y) = max

{
p(Ty, fy)[1 + p(Tx, fx)]

1 + p(Tx, Ty)
, p(Tx, Ty)

}
,

and ψ is an altering distance function and ϕ ∈ Φ. If one of the following two conditions is satisfied

(i) (f, T ) is partial-compatible, f or T is continuous on (X, ps), or
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(ii) if for a nonincreasing sequence {xn} in X with yn � xn for all n and lim
n→∞

ps(yn, z) = 0, it follows

z � xn for all n ∈ N.

Then f and T have a common fixed point.

Putting T = S = I in Theorem 2.1 we have the following corollary.

Corollary 2.8. Let (X,�, p) be an ordered complete partial metric space. Let f, g : X → X be mappings

such that f, g are dominated mappings. Suppose that for all comparable elements x, y ∈ X, we have

ψ(p(fx, gy)) ≤ ψ(M(x, y))− ϕ(M(x, y)),

where

M(x, y) = max

{
p(y, gy)[1 + p(x, fx)]

1 + p(x, y)
, p(x, y)

}
,

and ψ is an altering distance function and ϕ ∈ Φ. If one of the following two conditions is satisfied:

(i) f or g is continuous on (X, ps), or

(ii) If for a nonincreasing sequence {xn} in X and lim
n→∞

ps(xn, z) = 0, implies that z � xn for all

n ∈ N.

Then f and g have a common fixed point.

If we take f = g and S = T = I in Theorem 2.1, we obtain the following corollary which improved

Theorem 2 in [7].

Corollary 2.9. Let (X,�, p) be an ordered complete partial metric space. Let f : X → X be mappings

such that f is dominated mapping. Suppose that for all comparable elements x, y ∈ X, we have

ψ(p(fx, fy)) ≤ ψ(M(x, y))− ϕ(M(x, y)),

where

M(x, y) = max

{
p(y, fy)[1 + p(x, fx)]

1 + p(x, y)
, p(x, y)

}
,

and ψ is an altering distance function and ϕ ∈ Φ. If one of the following two conditions is satisfied:

(i) f is continuous on (X, ps), or

(ii) if for a nonincreasing sequence {xn} in X such that lim
n→∞

ps(xn, z) = 0, implies that z � xn for all

n ∈ N.

Then f has a fixed point.

By removing the continuity and compatibility assumptions in Theorem 2.1, we prove the following

theorem.
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Theorem 2.10. Let (X,�, p) be an ordered complete partial metric space. Let f, g, S, T : X → X be four

mappings such that f(X) ⊆ T (X), g(X) ⊆ S(X), f, g are dominated mappings and S, T are dominating

mappings. Suppose that the condition (2.1) holds for all comparable elements x, y ∈ X, and ψ and ϕ are

the same as in Theorem 2.1. Let one of f(X), g(X), S(X) or T (X) be a closed subset of X If for a

nonincreasing sequence {xn} in X with yn � xn for all n and lim
n→∞

ps(yn, z) = 0, it follows z � xn for

all n ∈ N, then f, g, S and T have a common fixed point.

Proof. Proceeding exactly as in Theorem 2.1, we have that {yn} is a Cauchy sequence in (X, p). Also,

lim
n→∞

p(y2n+1, z) = lim
n→∞

p(gx2n+1, z) = lim
n→∞

p(Sx2n+2, z) = p(z, z) = 0.

Suppose that S(X) is a closed subset of X. Hence there exists u ∈ X such that Su = z. We show that

p(fu, z) = 0. since x2n+1 � Tx2n+1 and lim
n→∞

Tx2n+1 = z it follows that z � x2n+1, and u � Su = z.

Hence u � x2n+1, so from (2.1) we obtain

ψ(p(fu, gx2n+1)) ≤ ψ(M(u, x2n+1))− ϕ(M(u, x2n+1)), (2.19)

where

M(u, x2n+1) = max

{
p(Tx2n+1, gx2n+1)[1 + p(Su, fu)]

1 + p(Su, Tx2n+1)
, p(Su, Tx2n+1)

}
= max

{
p(y2n, y2n+1)[1 + p(z, fu)]

1 + p(z, y2n)
, p(z, y2n)

}
.

Letting n→∞ in (2.19) and by (2.15) we get ψ(p(fu, z)) = 0. Thus we conclude that fu = z = Su. As

f is dominated and S is dominating maps. then

u � Su = z and z = fu � u.

Hence z = u. Thus fz = Sz = z. From f(X) ⊆ T (X), there exists v ∈ X such that z = Tv. We show

that p(gv, z) = 0. From (2.1) we get

ψ(p(z, gv)) = ψ(p(fz, gv)) ≤ ψ(M(z, v))− ϕ(M(z, v)), (2.20)

where

M(z, v) = max

{
p(Tv, gv)[1 + p(Sz, fz)]

1 + p(Sz, Tv)
, p(Sz, Tv)

}
= p(z, gv).

Therefore from (2.20) we deduce that

ψ(p(z, gv)) ≤ ψ(p(z, gv))− ϕ(p(z, gv)).

Hence ϕ(p(z, gv)) = 0, so gv = z. Since g is dominated and T is dominating maps. then

v � Tv = z and z = gv � v.

Hence z = v. Thus fz = Sz = gz = Tz = z. That is z is a common fixed point of f, g, S and T.

The proof is similar when f(X), g(X) or T (X) is a closed subset of X.
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Now, we shall prove the uniqueness of the common fixed point as in the following theorem.

Theorem 2.11. In addition to the hypotheses of Theorem 2.1 (or Theorem 2.10) assume that for all

(x, y) ∈ X×X, there exists z ∈ X such that z � x and z � y. Then, f, g, S and T have a unique common

fixed point.

Proof. The set of common fixed points of f, g, S and T is not empty due to Theorem 2.1 (or Theorem

2.10). Suppose that u and v are two common fixed points of f, g, S and T, that is, fu = gu = Su = Tu = u

and fv = gv = Sv = Tv = v. Theorem 2.1 (or Theorem 2.10) gives us that p(u, u) = p(v, v) = 0. By

assumption, there exists z0 ∈ X such that

z0 � u and z0 � v. (2.21)

Now, proceeding similarly to the proof of Theorem 2.1 (or Theorem 2.10), we can define the sequences

{zn} and {wn} in X as follows

w2n = fz2n = Tz2n+1, w2n+1 = gz2n+1 = Sz2n+2, for all n ≥ 0.

Since f, g are dominated mappings and S, T are dominating mappings we have

z2n+2 � Sz2n+2 = gz2n+1 � z2n+1 � Tz2n+1 = fz2n � z2n for all n ≥ 0.

Thus, for all n ≥ 0 we have zn+1 � zn � z0 � u. Further, in similar way for the proof of Theorem 2.1 we

can get

lim
n→∞

p(wn, wn+1) = 0. (2.22)

As z2n � u, putting x = z2n and y = u in (2.1), we obtain

ψ(p(w2n, u)) = ψ(p(fz2n, gu)) ≤ ψ(M(z2n, u))− ϕ(M(z2n, u)),

where

M(z2n, u) = max

{
p(Tu, gu)[1 + p(Sz2n, fz2n)]

1 + p(Sz2n, Tu)
, p(Sz2n, Tu)

}
= p(w2n−1, u).

Thus

ψ(p(w2n, u)) ≤ ψ(p(w2n−1, u))− ϕ(p(w2n−1, u)) ≤ ψ(p(w2n−1, u)).

Since ψ is increasing, we have

p(w2n, u) ≤ p(w2n−1, u). (2.23)

Also, since z2n+1 � u, putting x = u and y = z2n+1 in (2.1), we have

ψ(p(u,w2n+1)) = ψ(p(fu, gz2n+1)) ≤ ψ(M(u, z2n+1))− ϕ(M(u, z2n+1)), (2.24)
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where

M(u, z2n+1) = max

{
p(Tz2n+1, gz2n+1)[1 + p(Su, fu)]

1 + p(Su, Tz2n+1)
, p(Su, Tz2n+1)

}
= max

{
p(w2n, w2n+1)

1 + p(u,w2n)
, p(u,w2n)

}
.

(I) If M(u, z2n+1) = p(w2n,w2n+1)
1+p(u,w2n)

, then from (2.22) we obtain lim
n→∞

M(u, z2n+1) = 0. Therefore from

(2.24) we have lim
n→∞

ψ(p(u,w2n+1)) = 0. Hence

lim
n→∞

p(u,w2n+1) = 0. (2.25)

(II) If M(u, z2n+1) = p(u,w2n), so from (2.24) we have

ψ(p(u,w2n+1)) ≤ ψ(p(u,w2n))− ϕ(p(u,w2n)) ≤ ψ(p(u,w2n)), (2.26)

Since ψ is increasing, we obtain

p(u,w2n+1) ≤ p(u,w2n). (2.27)

Combining (2.23) and (2.27) we conclude that

p(u,wn+1) ≤ p(u,wn) ∀n ≥ 0. (2.28)

So, the sequence {p(u,wn)} is non-increasing and bounded below, so there exists γ ≥ 0 such that

lim
n→∞

p(u,wn) = γ. (2.29)

Suppose that γ > 0. Then from (2.26) taking the upper limit as n→∞, and by the lower semi-

continuity of ϕ we get

lim sup
n→∞

ψ(p(u,w2n+1)) ≤ lim sup
n→∞

ψ(p(u,w2n))− lim inf
n→∞

ϕ(p(u,w2n)).

Using the properties of the functions ψ and ϕ, we have ψ(γ) ≤ ψ(γ) − ϕ(γ), so γ = 0, which is a

contradiction. We conclude that lim
n→∞

p(u,wn) = 0.

From (I) and (II) we conclude that

lim
n→∞

p(u,w2n) = 0. (2.30)

Similarly, using the same argument we can get

lim
n→∞

p(v, w2n) = 0. (2.31)

Since p(u, v) ≤ p(u,w2n) + p(w2n, v) − p(w2n, w2n), and from (2.22), (2.30), (2.31), we conclude that

p(u, v) ≤ 0. Therefore u = v.



46 Int. J. Math. And Its App. Vol.2 No.3 (2014)/ R. A. Rashwan and S. M. Saleh

To support our results, we give the following examples.

Example 2.12. Let X = [0, 1] endowed with usual order ≤ and (X, p) be a complete partial metric space,

where p : X × X → R+ is defined by p(x, y) = max{x, y} and let ψ,ϕ : [0,∞) → [0,∞) be defined by

ψ(t) = bt and ϕ(t) = (b− 1)t, where 1 ≤ b ≤ 2. Let f, g, S, T : X → X be defined by

fx =
x

2
, gx =

0 if x ∈ [0, 12 ]

1
4 if x ∈ ( 1

2 , 1]

,

Sx =

2x if x ∈ [0, 12 ]

x if x ∈ ( 1
2 , 1]

, Tx =


3
2x if x ∈ [0, 12 ]

1 if x ∈ ( 1
2 , 1]

.

Then f(X) ⊆ T (X) g(X) ⊆ S(X). The table shows that f, g are dominated and S, T are dominating

mappings.

for each x ∈ [0, 1] fx ≤ x gx ≤ x x ≤ Sx x ≤ Tx

x ∈ [0, 12 ] fx = x
2 ≤ x gx = 0 ≤ x x ≤ Sx = 2x x ≤ Tx = 3

2x

x ∈ ( 1
2 , 1] fx = x

2 ≤ x gx = 1
4 ≤ x x ≤ Sx = x x ≤ Tx = 1

(f, S) is partial-compatible maps and f is a continuous map. To show that f, g, S and T satisfy condition

(2.1) for all x, y ∈ X, we consider the following cases

(i) If x, y ∈ [0, 12 ], then

M(x, y) = max

{
p( 3

2y, 0)[1 + p(2x, x2 )]

1 + p(2x, 32y)
, p(2x,

3

2
y)

}
= max

{ 3
2y[1 + 2x]

1 + p(2x, 32y)
, p(2x,

3

2
y)

}
.

We have two cases:

(a) If p(2x, 32y) = 2x then M(x, y) = max
{

3
2y, 2x

}
= 2x. Hence

ψ(p(fx, gy)) = ψ(p(
x

2
, 0)) = ψ(

x

2
) =

bx

2
≤ 2x = M(x, y) = ψ(M(x, y))− φ(M(x, y)).

(b) If p(2x, 32y) = 3
2y then M(x, y) = max

{
3
2y[1+2x]

1+ 3
2y

, 32y
}
. Hence

ψ(p(fx, gy)) = ψ(
x

2
) =

bx

2
≤ 2x ≤ 3

2
y ≤M(x, y) = ψ(M(x, y))− φ(M(x, y)).

(ii) If x ∈ [0, 12 ], y ∈ ( 1
2 , 1], then

M(x, y) = max

{
p(1, 14 )[1 + p(2x, x2 )]

1 + p(2x, 1)
, p(2x, 1)

}
= max

{
1 + 2x

2
, 1

}
= 1.

Hence

ψ(p(fx, gy)) = ψ(p(
x

2
,

1

4
)) = ψ(

1

4
) =

b

4
≤M(x, y) = ψ(M(x, y))− φ(M(x, y)).
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(iii) if x ∈ ( 1
2 , 1], y ∈ [0, 12 ], then

M(x, y) = max

{
p( 3

2y, 0)[1 + p(x, x2 )]

1 + p(x, 32y)
, p(x,

3

2
y)

}
= max

{ 3
2y[1 + x]

1 + p(x, 32y)
, p(x,

3

2
y)

}
.

We have two cases:

(a) if p(x, 32y) = x then M(x, y) = max
{

3
2y, x

}
= x. Hence

ψ(p(fx, gy)) = ψ(p(
x

2
, 0)) = ψ(

x

2
) =

bx

2
≤ x = M(x, y)

= ψ(M(x, y))− φ(M(x, y)).

(b) If p(x, 32y) = 3
2y then M(x, y) = max

{
3
2y[1+x]

1+ 3
2y

, 32y
}
. Hence

ψ(p(fx, gy)) = ψ(
x

2
) =

bx

2
≤ x ≤ 3

2
y ≤M(x, y) = ψ(M(x, y))− φ(M(x, y)).

(iv) if x, y ∈ ( 1
2 , 1], then

M(x, y) = max

{
p(1, 14 )[1 + p(x, x2 )]

1 + p(x, 1)
, p(x, 1)

}
= max

{
1 + x

2
, 1

}
= 1.

Hence

ψ(p(fx, gy)) = ψ(p(
x

2
,

1

4
)) = ψ(

x

2
) =

bx

2
≤ x ≤M(x, y) = ψ(M(x, y))− φ(M(x, y)).

Thus, the mappings f, g, S and T satisfy the condition (2.1). Therefore all conditions given in Theorem

2.1 are satisfied. Moreover, 0 is the unique common fixed point of f, g, S and T .

Example 2.13. Let X = [0, 3] endowed with usual order ≤ and (X, p) be a complete partial metric space,

where p : X × X → R+ is defined by p(x, y) = max{x, y} and let ψ,ϕ : [0,∞) → [0,∞) be defined by

ψ(t) = 3t and ϕ(t) = 1
3 t. Let f, g, S, T : X → X be defined by

fx =


x2

2 if x ∈ [0, 1)

1
4 if x ∈ [1, 3]

, gx =

0 if x ∈ [0, 1)

1
2 if x ∈ [1, 3]

,

Sx =

3
√
x if x ∈ [0, 1)

x if x ∈ [1, 3]

, Tx =

2
√
x if x ∈ [0, 1)

3 if x ∈ [1, 3]

.

Then f(X) ⊆ T (X), g(X) ⊆ S(X) and S(X) is a closed subset of X. The table shows that f, g are

dominated and S, T are dominating mappings.

for each x ∈ [0, 3] fx ≤ x gx ≤ x x ≤ Sx x ≤ Tx

x ∈ [0, 1) fx = x2

2 ≤ x gx = 0 ≤ x x ≤ Sx = 3
√
x x ≤ Tx = 2

√
x

x ∈ [1, 3] fx = 1
4 ≤ x gx = 1

2 ≤ x x ≤ Sx = x x ≤ Tx = 3
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Now, we show that f, g, S and T satisfy condition (2.1) for all x, y ∈ X, we consider the following cases

(i) If x, y ∈ [0, 1), then

M(x, y) = max

{
p(2
√
y, 0)[1 + p(3

√
x, x

2

2 )]

1 + p(3
√
x, 2
√
y)

, p(3
√
x, 2
√
y)

}

= max

{
2
√
y[1 + 3

√
x]

1 + p(3
√
x, 2
√
y)
, p(3
√
x, 2
√
y)

}
.

We have two cases:

(a) If p(3
√
x, 2
√
y) = 3

√
x then M(x, y) = 3

√
x. Hence

ψ(p(fx, gy)) = ψ(
x2

2
) =

3x2

2
≤ 3
√
x ≤ 9

√
x−
√
x = ψ(M(x, y))− φ(M(x, y)).

(b) if p(3
√
x, 2
√
y) = 2

√
y then M(x, y) = max

{
2
√
y[1+3

√
x]

1+2
√
y , 2

√
y
}
. Hence

ψ(p(fx, gy)) = ψ(
x2

2
) =

3x2

2
≤ 3
√
x ≤ 2

√
y ≤M(x, y) ≤ ψ(M(x, y))− φ(M(x, y)).

(ii) If X ∈ [0, 1), y ∈ [1, 3], then

M(x, y) = max

{
p(3, 12 )[1 + p(3

√
x, x

2

2 )]

1 + p(3
√
x, 3)

, p(3
√
x, 3)

}
= 3.

Hence

ψ(p(fx, gy)) = ψ(p(
x2

2
,

1

2
)) = ψ(

1

2
) =

3

2
≤M(x, y) ≤ ψ(M(x, y))− φ(M(x, y)).

(iii) If X ∈ [1, 3], y ∈ [0, 1), then

M(x, y) = max

{
p(2
√
y, 0)[1 + p(x, 14 )]

1 + p(x, 2
√
y)

, p(x, 2
√
y)

}
= max

{
2
√
y[1 + x]

1 + p(x, 2
√
y)
, p(x, 2

√
y)

}
.

We have two cases:

(a) If p(x, 2
√
y) = x then M(x, y) = max

{
2
√
y, x
}

= x. Hence

ψ(p(fx, gy)) = ψ(p(
1

4
, 0)) = ψ(

1

4
) =

3

4
≤M(x, y) ≤ ψ(M(x, y))− φ(M(x, y)).

(b) if p(x, 2
√
y) = 2

√
y then M(x, y) = max

{
2
√
y[1+x]

1+2
√
y , 2
√
y
}
. Hence

ψ(p(fx, gy)) =
3

4
≤ x ≤ 2

√
y ≤M(x, y) ≤ ψ(M(x, y))− φ(M(x, y)).

(iv) if x, y ∈ [1, 3], then

M(x, y) = max

{
p(3, 12 )[1 + p(x, 14 )]

1 + p(x, 3)
, p(x, 3)

}
= max

{
3[1 + x]

4
, 3

}
= 3.

Hence

ψ(p(fx, gy)) = ψ(p(
1

4
,

1

2
)) = ψ(

1

2
) =

3

2
≤M(x, y) ≤ ψ(M(x, y))− φ(M(x, y)).

Thus, the mappings f, g, S and T satisfy the condition (2.1). Therefore all conditions given in Theorem

2.10 are satisfied. Moreover, 0 is the unique common fixed point of f, g, S and T .
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Fund. Math. 3 (1922), 133–181.

[2] A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some

applications to matrix equations, Proc Am Math Soc., 132 (2004), 1435–1443.

[3] J. J. Nieto and R. Rodrguez-Lopez, Contractive mapping theorems in partially ordered sets and

applications to ordinary differential equations, Order. 22 (2005), 223–239.
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