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Abstract : The aim of this paper is to prove some common fixed point theorems for four mappings
satisfying (v, p)-weak contractions involving rational expressions in ordered partial metric spaces. Our
results extend, generalize and improve some well-known results in the literature. Also, we give two

examples to illustrate our results.
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1 Introduction and Preliminaries

The existence and uniqueness of fixed points of operators has been a subject of great interest since

the work of Banach [I] in 1922. There exist vast literature concerning its various generalizations and
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extensions. Existence of fixed points in ordered metric spaces has been initiated in 2004 by Ran and
Reurings [2], and further studied by Nieto and Lopez [3]. Subsequently, several interesting and valuable
results have appeared in this direction see for examples [4]-[12].

The concept of a partial metric space was introduced by Matthews [13] in 1994. After that, fixed
point results in partial metric spaces have been studied, see for example [14]-[25]. First, we present some

necessary definitions and results which will be needed in the sequel.

Definition 1.1 ([I3]). Let X be a nonempty set. A mapping p: X x X — [0,00) is said to be a partial

metric on X if for all x,y,z € X the following conditions are satisfied:
(1) =y p(x,x)=plz,y) =py:y),
(p2) p(z,z) < plz,y),
(ps) p(x,y) = p(y, @),
(pa) p(x,y) < p(z,2) +p(2,9) — p(2,2).
The pair (X, p) is called a partial metric space.
If p(z,y) = 0, then (p;) and (p2) imply that = y. But converse dose not hold always.

Example 1.2 ([13]). 1. The function p(z,y) = max{z,y} for all x,y € RT defines a partial metric p

on RT.

2. If X ={[a,b] : a,b € R, a < b} then p([a,b],[c,d]) = max{b,d} — min{a, c} defines a partial metric
pon X.

Each partial metric p on X generates a Ty topology 7, on X which has as a base the family of open
p-balls {B,(z,¢) : x € X,e > 0}, where By(z,¢) = {y € X : p(z,y) < p(x,x) + ¢} for all x € X and
e>0.

If p is a partial metric on X, then the function p® : X x X — RT given by

p*(z,y) = 2p(z,y) — p(z,2) — p(y,v),
is a metric on X.
Definition 1.3 ([13]). Let (X,p) be a partial metric space. Then,

(i) a sequence {x,} in a partial metric space (X, p) converges to a point x € X if and only if p(xz,x) =
Jim p(z, 2,),
(ii) a sequence {x,} in a partial metric space (X, p) is said to be a Cauchy sequence if lim  p(xy,, zm)

n,m—oo

exists and is finite,
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(111) (X,p) is said to be complete if every Cauchy sequence {x,} in X converges, with respect to 7,, to

a point x € X such that p(x,z) = Um p(x,, Tm)-
n,Mm—00

Remark 1.4. A limit of a sequence in a partial metric space need not be unique. Moreover, the function
p(.,.) need not be continuous in the sense that x, — = and y, — y implies p(xn,yn) — p(x,y). For
example, if X = [0,400) and p(x,y) = max{z,y} for z,y € X, then for {x,} = {1}, p(zn,z) = = =

p(z,x) for each x > 1 and so,for example, x,, — 2 and x,, — 3 when n — 0.
It is easy to see that every 7,-closed subset of a complete partial metric space is complete.
Lemma 1.5 ([I3]). Let (X,p) be a partial metric space. Then

(i) {xn} is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the metric space

(X,p°).

(ii) A partial metric space (X, p) is complete if and only if the metric space (X, p®) is complete. Fur-

thermore, lim p®(x,,x) =0, if and only if
n—oo

p(x,x) = nlgrgop(wm x) = Mlqggoop(xm T).

Definition 1.6 ([15]). Let (X, p) be a partial metric space, F : X — X be a given mapping. We say that
F is continuous at xo € X, if for every e > 0, there exists n > 0 such that F(By(zo,n)) C By(F (z0,¢)).

Lemma 1.7 ([24]). Let {z,} and {y.} be two sequences in partial metric space (X,p) such that

nlgr;op(xmm) = nliﬁngop(xmxn) = p(x,x),

and

lim p(yn,y) = nli_{rolop(ymyn) =p(y,y),

n—oo

then lim p(xy,,yn) = p(x,y). In particular, lim p(x,,z) = p(zx, z) for every z € X.
n— 00 n— o0

Definition 1.8. Let X be a nonempty set. Then (X, =,p) is called an ordered partial metric space if
and only if:

(i) (X,p) is a partial metric space,
(i1) (X, =) is a partially ordered set.

Definition 1.9. Let (X, <) be a partially ordered set. z,y € X are called comparable if t <y ory < x
holds.

Definition 1.10. Let (X, =) be a partially ordered set. A mapping f on X is said to be monotone

nondecreasing if for all x,y € X, x Xy implies fx = fy.
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Definition 1.11 ([], [B]). Let (X, =) be a partially ordered set. A mapping f on X is said to be
(i) dominating if x < fx for allx € X,
(i) dominated if fx < x for allx € X.
For examples illustrating the above definitions were given in [4].
Definition 1.12 ([26]). A function 1 : [0,00) — [0,00) is called altering distance function if
(i) ¥ is increasing and continuous,
(i) ¥(t) = 0 if and only if t = 0.
Now, we recall the following definition of partial-compatibility.

Definition 1.13 ([23]). Let (X,p) be a partial metric space and T,g : X — X be given mappings. We
say that the pair (T, g) is partial-compatible if the following conditions hold:

(i) p(x,z) = 0 implies that p(gz, gz) = 0.

(ii) nler;op(Tgxn,ngn) = 0, whenever {x,} is a sequence in X such that Tz, — t and gx,, — t for

somet € X.

Note that Definition [1.13] extends and generalizes the notion of compatibility introduced by Jungck

[27] in the setting of metric spaces.

Definition 1.14. Let (X, d) be a metric space. A mapping f: X — X is said to be weakly contraction if

d(fz, fy) < d(z,y) — p(d(z,y))-

for all x,y € X, where ¢ : [0,00) — [0,00) is a continuous and non-decreasing function with o(t) = 0 if

and only if t = 0.

In 1997, Alber and Guerre-Delabriere [28] proved that weakly contractive mapping defined on a
Hilbert space is a Picard operator. Afterwards, Rhoades [29] proved that the corresponding result is also
valid when Hilbert space is replaced by a complete metric space. Dutta et al. [30] generalized the weak
contractive condition and proved a fixed point theorem for a selfmap, which in turn generalizes Theorem
1 in [29] and the corresponding result in [28].

In [3I] Dass and Gupta proved the following fixed point theorem.

Theorem 1.15 ([31]). Let (X,d) be a complete metric space and T : X — X be a mapping such that
there exist a, B > 0 with o + 5 < 1 satisfying

d(y, Ty)[1 + d(z, T'x)]

d(Tz,Ty) <« 1+ d(x,y)]

+ Bd(z,y), for allr,y € X. (1.1)

Then T has a unique fized point.
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In [7], Cabrera et al. proved the above theorem in the framwark of partially ordered metric spaces.

Recently, Karapinar et al. [20] obtained the following result in partial metric spaces.

Theorem 1.16. [20] Let (X, p) be a complete partial metric space and T : X — X be a mapping satisfying

where

M(z, ) = max {p(y, Ty +plTo)] o y)} ,

1+ p(z,y)

and ¥ : [0,00) = [0,00) is a continuous and monotone non-decreasing function with ¥ (t) = 0 if and only
ift =0 and ¢ : [0,00) — [0,00) is a lower semi-continuous function with ©(t) = 0 if and only if t = 0.

Then T has a unique fized point.

The purpose of this paper is to prove some common fixed point theorems for four mappings f, g, S
and T satisfying a generalized contraction of rational type in ordered partial metric spaces, where the

mappings f, g are dominated and S, T are dominating maps. Two illustrative examples are given.

2 Main Results

In this section we prove some common fixed point theorems which give conditions for existence and
uniqueness of a common fixed point for a generalized contraction of rational type in ordered partial
metric spaces.

Let ® denote the set of all functions ¢ : [0,00) — [0, 00) such that
(i) ¢ is a lower semi-continuous function,
(ii) ¢(t) =0 if and only if t = 0.

Theorem 2.1. Let (X, =<,p) be an ordered complete partial metric space. Let f,g,5,T : X — X be four
mappings such that f(X) CT(X), g(X) C S(X), f, g are dominated mappings and S, T are dominating

mappings. Suppose that for all comparable elements x,y € X, we have

P(p(fz,9y)) < P(M(z,y)) — o(M(z,y)), (2.1)

where

p(Ty, gy)[1 + p(Sz, fz)]
1+ p(Sz,Ty)

and 1) is an altering distance function and @ € ®. If for a nonincreasing sequence {x,} in X with y, < x,

M(z,y) = max{ ,p(St, Ty)} :

for all n and lim p®(y,,z) =0, it follows z < x,, for alln € N, and either
n—oo

(i) (f,S) is partial-compatible, f or S is continuous on (X,p*) or
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(i) (g,T) is partial-compatible, g or T is continuous on (X, p®),
then f, g, S and T have a common fized point.
Proof. Let x¢ be an arbitrary point in X. Since f(X) C T(X), g(X) € S(X), we can choose z1,z2 € X
such that yo = fzg = T2y, and y; = gz = Szo. Continuing this process, we define the sequences {z,}
and {y,} in X by
Yon = fTon = TToni1, Yonil = 9Tony1 = STonie, for all n > 0.
By the given assumptions we obtain
Tonte = STont2 = gTan+1 X Tant1 = Toni1 = fr2n = Top.

Thus, for all n € N we have z, 1 =< x,. Suppose that p(ya,—_1,¥y2,) > 0 for all n.

If not then p(y2n,—1, y2,,) = 0 for some n and 80 y2,,—1 = Y2, Further, since x,, and za,41 are comparable,
so from ([2.1]), we get
V(p(y2n, yon+1)) = Y (P(fT2n, gT2n+1))

< Y(M(x2p, Tony1)) — @(M(x2n, Tant1)),

(2.2)

where
(T2on+1, 9Z2n+1)[1 + P(STon, fTon)]
1+ p(Sz2pn, TTon+1)
ns n 1 n—1» n
:max{p(yz Yan+1)[1 + P(Y2n—1, yon)]
L+ p(y2n—1,¥2n)

M (29, Tont1) = max {p ,p(Szan, szn-s-l)}

7P(y2n—1, an)}

= p(yzm y2n+1)-

Hence from (2.2) we get

Y(P(Wan, Y2nt1)) < V(@Y2n, Yont1)) — (0(Y2n, Yoni1)),

So ©(p(Y2n; Y2nt1)) = 0, and Y2, = Yo 1. Similarly, we obtain Y2, 41 = Y2n42 and so on. Therefore {y, }
becomes a constant sequence and ¥, is the common fixed point of f, g, S and T.

Now, we suppose that p(yan—1,¥2,) > 0 for all n € N. Since g, and zg,4; are comparable, from
(2.1) we have
Y(PY2n, Yont1)) = V(P(fr2n, 9Toni1))
S T/J(M(iﬂzm xQn—O—l)) - (P(M(xQna x2n+1))7

(2.3)

where
P(Tx2n11, 9Tont1)[1 + p(STon, fr2,)]
1+ p(SxQn, Tx2n+1)

mnH n 1 n—1» n
:max{p(yz Yant1)[1 + P(Y2n—1,Yon)]
1+ p(yY2n—1,Y2n)

M(x2pn, Tony1) = max{ , D(STan, T902n+1)}

7p(y2n717 y2n)}

= max{p(¥an, Y2n+1)> P(Y2n—1,Y2n) }-
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If M(z2n,Zon+1) = P(Y2n, Y2n+1), then from (2.3) we obtain

Y(P(Wan, Yant1)) < V(PY2n, Y2nt1)) — ©(P(Y2n, Yont1)),

Hence ©(p(yan,Y2n+1)) = 0, and so p(y2n,Yon+1) = 0, gives a contradiction. Thus M (zap, Tont1) =
p(Y2n—1,Y2n), and from ([2.3) we obtain

V(P(Yan, Yont1)) < VPW2n—1,Y2n)) — 2(P(Y2n-1,Y2n)) < V(PY2n—1,Y2n))-

Since 1 is increasing, we get

P(Y2ns Yont+1) < P(Yoan—1, Yon) = M (T2n, Tan+1) Vn > 0. (2.4)

By similar arguments we can show that
P(Y2n+1,Y2n+2) < P(Y2ns Yoant1) = M(T2n41, T2nt2)  Vn 2> 0. (2.5)
Combining (2.4) and (2.5), we have

p(ym yn+1) < p(yn—hyn) = M(xn—la -Tn) VYn > 0.

Thus, the sequence {p(yn,yn+1)} is nonincreasing and so there exists 6 > 0 such that

Jim p(yn, Ynt1) = T M(2n, 2ng1) = 0.

Suppose that § > 0. Then taking the upper limit as n — oo, in (2.3]) and by the lower semi-continuity of
© we get

lim sup ¥ (p(Y2n, Yon+1)) < Hmsup (M (2on, T2pr1)) — liminf p(M (22, Zan11)).

n—00 n—00 n—00

Using the properties of the functions ¥ and ¢, we have 1(5) < ¥(d) — ¢(9), so p(d) = 0, hence 6 = 0,

which is a contradiction. We conclude that

nliffgop(yzn, Yontl) = nlgr;o M(2on, Tont1) = 0. (2.6)

Now, we show that {y, } is a Cauchy sequence in the partial metric space (X, p). For this, it is sufficient to
prove that {ys,} is a Cauchy sequence in (X, p). Suppose that {y2,} is not a Cauchy sequence in (X, p).
Then, there is € > 0 such that for an integer k there exist integers 2n(k), 2m(k) with 2m(k) > 2n(k) > k
such that

P(Yon (k) Yom(k)) = €, (2.7)
for every integer k, let m(k) be the least positive integer with 2m(k) > 2n(k), satisfying and such
that

P(Yan(k)s Y2m(k)—2) < €. (2.8)
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Now, using (2.7)) and the triangular inequality one gets

€ < P(Yan(k)> Yam(k)) < P(Y2n(k) Y2mk)—2) + P(Y2mk)—25 Y2mk)—1) + P(Y2m (k)15 Y2m(k))
- p(yzm(k)—m y2m(k)—2) - p(y2m(k)—17 y2m(k)—1)~

Letting k — oo, in the above inequality and from ([2.6)), (2.8)) it follows that

k—o0

Also, by the triangular inequality, we have

p(an(k)a y2m(k)—1) < p(an(k)a y2m(k)) + p(me(k)a y2m(k)—1) - p(me(k)a y2m(k))7

and
P(Y2n(k)> Yom)) < PWan(k)> Yomk)—1) + P(Y2mk)—15 Y2mk)) — P(Y2m(k) =15 Y2m(k)—1)-

Letting k — oo, in the two above inequalities and using (2.6) and (2.9) we have
kli_{gop(y%(k), Yom(k)—1) = E- (2.10)
Similarly,
P(Y2n(k)—1> Yam(k)—2) < P(Y2n(k)—15 Y2n(k)) T PY2nk)s Y2mk)—1) + P(Y2mk) -1, Y2m(k)—2)
- p(an(k)v y2n(k)) - p(me(k)—la y2m(k)—1)a
and
P(Y2n(k)> Yomk)—1) < P(Y2n(k)s Yonk)—1) + P(Y2n(k) =1, Y2mk)—2) T P(Y2m(k)—2> Y2m(k)—1)
- p(yzn(k)—h yzn(k)—l) - p(me(k)—27 y2m(k)—2)'
Letting & — oo, in the two above inequalities and using (2.6) and (2.10) we have
li _ _o) =e. 2.11
kggop(yznw) 1 Yom(k)—2) = € (2.11)
Since oy (k) Tam(k)—1 are comparable, then from ({2.1), we obtain

Y(PW2n k), Yomk)—1)) = YO Tank)s 9T2mk)—1)) (2.12)

<YM (Zon(k)s Tamk)—1)) — C(M (L2 (k)s Tam(k)—1))-
Where
P(TT2m k)~ 15 9T2m(k)—1)[1 + P(STan (ks fTonm))]
L+ p(Sonk)s TT2m(k)—1)

{p(me(k:)27 Yam(k)—1) 1+ P(Y2nk)—1, Yan(k))]
— max
1+ p(Yan(k)—1> Yom(k)—2)

M (22nk)s Tam(k)—1) = maX{ , P(SZon (1), Tl‘zm(k)ﬁ}

7P(2/2n(1c)71, y2m(k)2)} .
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Letting £ — oo in and from (2.6]), ,7 we get
¥(e) < Y(max{0,e}) — p(max{0,e}) = ¢(e) — p(e).

Hence ¢(e) =0, i.e. € = 0, which is a contradiction. Thus we proved that {y,} is a Cauchy sequence in
(X,p). Since (X, p) is complete then from Lemma [L.5] (X, p*) is a complete metric space. Therefore there
exists z € X, such thatnlin;o 2°(yn, z) = 0. Also, from Lemma we obtain

p(z,2) = lim p(yn,2) = lm  p(yn,Ym)- (2.13)

n— o0 m,n— o0

Moreover, since {y,} is a Cauchy sequence in the metric space (X, p®), then lim p*(yn,¥ym) = 0. On
m,n—00

the other hand, by (p2) and (2.6), we have p(yn, ¥n) < P(Yn, Yn+1) — 0, as n — oo and hence we get
nh_{glop(yn,yn) =0. (2.14)

Therefore from the definition of p® and 1) we have lm p(yn,ym) = 0. Hence, from lj we have

m,n— 0o

p(z,2) = lim p(yn,2) = lm p(yn,ym)=0. (2.15)

n—oo m,n—o0

Then we conclude that
nh_{I;op(yQ'n?Z) = nlingop<fx2n’ Z) = nh_{r;op(TxQ'n+laz) = 0)

nli_?gop(an+1a z) = nli_{lgop(gxznﬂ, z) = nli)ﬁ;op(5$2n+27 z) = 0.

Assume that S is continuous on (X, p*). Then

lim pS(SSZ‘2n+QSf$2n+2) =0.

n—oo
Also, since the (f,S) is partial-compatible, we have li_>m p(fSzanto, Sfranta) = 0. Further, since
p(z,z) = 0, then again the partial-compatibility of the pair (f,S) gives that p(Sz,Sz) = 0.
We need to show that ILm p(fSTanta, gxont1) = p(Sz, 2), ILm p(SSTonto, fSTante) =0 and

lim p(SSzonta,Txont1) = p(Sz,z). So, since
n—oo

P°(fSTont2, gTant1) < P°(fSTont2, S front2) + 0°(Sfront2, gTan+1),

and

P (Sfr2n+42, 9Tant1) < P*(Sf22nt2, fSTon12) + P (fST2n+42, gT2n41)-
Letting n — oo, in the two above inequalities and using the continuity of S and the partial-compatibility
of the pair (f,S) we have

lim p°(fSxoni2, 9T2n41) = p°(Sz, 2).

n— oo
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On the other hand

P°(fS%ant2, gTont1) = 20(fSTant2, 9Tont1) — D(fSTont2, fSTant2) — P(9%2n41, 9T2n+1)s

that is

2p(fSxant2, gTont1) = P*(fSTant2, 9Tont1) + P(fSTant2, fSTont2) + P(9T2n+1, 9T2n+1)-

Taking limit as n — oo we conclude that
2 Tim p(fS@ansa, grans1) = p°(Sz, ) = 2p(Sz, 2).
n— oo

Hence 1L>m p(fsx2n+2agx2n+l) = p(SZ, Z)

Since S is continuous, and {y,} converges to z in (X, p), hence

lim p(SSxopto,Sz) = li_>m p(Syon+1,52) = p(Sz,Sz) =0.

n—oo

Thus,

lim p(SfonJrQaSZ) = h_>m p(SQQnJrQaSZ) :P(SZ7SZ) =0.
n—o00 n—00

Then by triangular inequality we obtain

P(SSTont2, fSTont2) < p(SSxoni2, S2)+p(Sz, S fronie)+p(Sfranta, fSTont2)—p(Sfrant2, Sfroni2).

This implies that
Jim_ p(SSwant2, fSTant2) = 0.

From Lemma [[.7] we obtain

lim p(SSxanyo, T2ons1) = p(Sz, 2).

n—oo

Now, since, Sonto = gTant+1 = Tant1, S0 from (2.1), we obtain

Y(p(fST2ant2, 9T2n11)) < Y(M(S22nt2, T2nt1)) — (M (ST2n42, Tant1)), (2.16)

where

(Tx2n 11, 9T2n11)[1 + p(SST2n 12, fSTon12)]
1+ p(SSxont2, TTon41)

M(S$2n+2,.’£2n+1) = rnax{p ,p(SSx2n+2,Tx2n+1)} .

From ({2.16)), taking the upper limit as n — oo, we have 1(p(Sz, 2)) < ¥(p(Sz,z)) — ¢(p(Sz, 2)), and so

¢(p(Sz,2)) = 0. Hence Sz = 2.

On other hand, since x2,,41 X Txo,41 and lim Txg,41 = 2, it follows that z < x9,,41. Thus from |D
n—oo

we obtain

b(p(f2: grant1)) < YM(z, 29n11)) — (M (2, 22n41)), (2.17)



some common fixed point theorems for four (1, p)-weakly contractive mappings ... 39

where

P(Txon 11, 9T2n11)[1 +p(Sz, f2)]
= T
) = max { 14+ p(Sz, Txoni1) P57 Toann)

= max {p(y%’ ??:;22 ytf)(z’ fZ)} »p(Z, y2n)} .

On taking the upper limit in asn — oo, we get Y (p(fz,2)) < Y(p(z, 2)—p(p(z,2))),s0(p(fz,2)) <
0,and fz=2=S5z.

Since f(X) C T(X), there exists a point w € X such that fz = Tw. Suppose that gw # Tw. Since
w=Tw = fz = z implies w <X z. From , we obtain

Y(p(Tw, gw)) = ¥(p(fz,gw)) < (M (z,w)) — ¢(M(z,w)), (2.18)
where

p(Tw, gw)[L + p(Sz, fz)]
14 p(Sz,Tw)

M(z,w) = max{ ,p(Sz, Tw)}

max {p(Tw, guw), 0} = p(Tw, guw).

Hence from (2.18)), we get ¥ (p(Tw, gw)) < ¢ (p(Tw, gw)) — (p(Tw, gw)), a contradiction. Therefore,

Tw = gw. Since g is dominated map and T is dominating map,
w=xTw=2z and z=gw=<w = w=2.

Hence Sz = fz =Tz = gz = z. Thus f, g, S and T have a common fixed point. The proof is similar

when f is continuous. Similarly, the result follows when (ii) holds. O

Corollary 2.2. Let (X, =<,p) be an ordered complete partial metric space. Let f,g,5,T : X — X be four
mappings such that f(X) C T(X), g(X) C S(X), f, g are dominated mappings and S, T are dominating

mappings. Suppose that for all comparable elements x,y € X, we have

p(fr,gy) < M(z,y) — o(M(z,y)),

where

p(Ty, gy)[1 + p(Sz, fr)]
1+ p(Sx,Ty)

and ¢ € ®. If for a nonincreasing sequence {x,} in X with y, = x, for alln and lim p*(yn,z) =0, it
n—oo

M(z,y) = max{ ,p(Sz, Ty)} ;

follows z X x,, for alln € N, and either
(i) (f,S) is partial-compatible, f or S is continuous on (X,p*) or
(ii) (g,T) is partial-compatible, g or T is continuous on (X, p®),

then f, g, S and T have a common fized point.
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Proof. In Theorem taking ¢ (t) = ¢ for all t € [0, 00). O

Corollary 2.3. Let (X, =<,p) be an ordered complete partial metric space. Let f,g,5,T : X — X be four
mappings such that f(X) CT(X), g(X) C S(X), f, g are dominated mappings and S, T are dominating

mappings. Suppose that for all comparable elements x,y € X, we have

p(Ty, gy)[1 + p(Sz, f)]
1+ p(Sz, Ty)

p(fr,gy) < kmaX{ ,p(Sx,Ty)},

where k € (0,1). If for a nonincreasing sequence {x,,} in X with y, < x, for alln and lim p*(y,,z) =0,
n—oo

it follows z < x,, for alln € N, and either
(i) (f,S) is partial-compatible, f or S is continuous on (X,p°) or
(ii) (g,T) is partial-compatible, g or T is continuous on (X,p®),
then f, g, S and T have a common fized point.

Proof. In Theorem [2.1] taking #(t) = ¢ and ¢(t) = (1 — k)t, for all ¢ € [0, 00). O

Corollary 2.4. Let (X, =<,p) be an ordered complete partial metric space. Let f,9,5,T : X — X be four
mappings such that f(X) CT(X), g(X) C S(X), f, g are dominated mappings and S, T are dominating

mappings. Suppose that for all comparable elements x,y € X, we have

p(Ty, gy)[1 + p(Sz, fr)]
1+ p(Sz,Ty)

where a, B > 0 with o+ B < 1. If for a nonincreasing sequence {x,} in X with y, < z, for all n and

p(fz,9y) < a + Bp(Sx, Ty),

nli_)néops(yn, z) =0, it follows z < x,, for alln € N, and either
(i) (f,S) is partial-compatible, f or S is continuous on (X,p°) or
(ii) (g,T) is partial-compatible, g or T is continuous on (X,p°),
then f, g, S and T have a common fized point.

Proof. In Corollary 2.3] taking k = a + 3, we get

p(Ty, gy)[1 + p(Sx, f)] p(Ty, gy)[1 + p(Sx, f)]
< .
a 1+ p(Sz. Ty) + Bp(Sz, Ty) < kmax 1+ p(Sz.T3) ,p(Sx, Ty)
Hence we apply Corollary 2:3] O

If we put f = g in Theorem [2.I] we have the following corollary.

Corollary 2.5. Let (X, <,p) be an ordered complete partial metric space. Let f,5,T : X — X be three
mappings such that f(X) C T(X), f(X) C S(X), f is dominated mapping and S, T are dominating

mappings. Suppose that for all comparable elements x,y € X, we have
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where
(Ty, fy)[1 + p(Sz, fz)]
JOL e psa ).

and 1) is an altering distance function and @ € ®. If for a nonincreasing sequence {x, } in X with y, = x,

M(z,y) = max {p

for all n and nh_)rr;o P*(Yn, z) = 0, it follows z < x,, for alln € N, and either
(i) (f,S) is partial-compatible, f or S is continuous on (X,p®) or
(ii) (f,T) is partial-compatible, g or T is continuous on (X, p®),
then f, S and T have a common fized point.
If we put S =T in Theorem we have the following corollary.

Corollary 2.6. Let (X,=X,p) be an ordered complete partial metric space. Let f,g, T : X — X be
mappings such that f(X)Ug(X) C T(X), f, g are dominated mappings and T is dominating mapping.

Suppose that for all comparable elements x,y € X, we have

P(p(fr,9y)) < P(M(x,y)) — (M (z,y)),

where

p(Ty, gy)[1 +p(T'z, fx)]
1+p(Tz,Ty)

and 1 is an altering distance function and ¢ € ®. If for a nonincreasing sequence {x,} in X with y, < x,

M(z,y) —maX{ 7p(Tx,Ty)},

for all n and nlLIréops(yn, 2) =0, it follows z < x,, for alln € N, and either
(i) (f,T) is partial-compatible, f or T is continuous on (X, p®) or
(i) (g,T) is partial-compatible, g or T is continuous on (X, p®),
then f, g and T have a common fixed point.
Further, if we put f = g and S = T in Theorem we have the following corollary.

Corollary 2.7. Let (X, =,p) be an ordered complete partial metric space. Let f,T : X — X be mappings
such that f(X) C T(X), f is dominated mapping and T is dominating mapping. Suppose that for all

comparable elements x,y € X, we have

(p(f, fy)) < p(M(z,y)) — o(M(z,y)),

where

Ty, fy)[1 + p(Tz, f)]
1+ p(Tz, Ty)

and 1 is an altering distance function and ¢ € ®. If one of the following two conditions is satisfied

M(z,y) = max {p( (T, Ty)} :

(i) (f,T) is partial-compatible, f or T is continuous on (X, p®), or
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(i) if for a nonincreasing sequence {x} in X with y, =< x, for alln and Um p*(y,,z) =0, it follows
n—oo

z Rz, for alln € N.
Then f and T have a common fized point.
Putting T = S = I in Theorem we have the following corollary.

Corollary 2.8. Let (X, <,p) be an ordered complete partial metric space. Let f,g: X — X be mappings

such that f, g are dominated mappings. Suppose that for all comparable elements x,y € X, we have

Y(p(fr,gy)) < Y(M(z,y)) — (M (z,y)),

where

M(z.y) = max {p(y, gyl +p( fo)] o y)} 7

L+ p(z,y)

and v is an altering distance function and ¢ € ®. If one of the following two conditions is satisfied:
(i) f or g is continuous on (X,p®), or

(i) If for a nonincreasing sequence {x,} in X and lim p*(z,,z) = 0, implies that z < x,, for all
n— o0

n € N.
Then f and g have a common fixed point.

If we take f = g and S = T = I in Theorem [2.I] we obtain the following corollary which improved

Theorem 2 in [7].

Corollary 2.9. Let (X, =,p) be an ordered complete partial metric space. Let f : X — X be mappings

such that f is dominated mapping. Suppose that for all comparable elements x,y € X, we have

Y(p(fz, fy) < P(M(z,y)) — (M(z,y)),

where

B Py, fY)[l + p(z, fo)]
M(.’E,y) —max{ 1+p(x,y) ,p(l’,y)},

and v is an altering distance function and ¢ € ®. If one of the following two conditions is satisfied:
(i) [ is continuous on (X,p®), or

(i) if for a nonincreasing sequence {x,} in X such that lim p*(z,,z) = 0, implies that z <X x,, for all
n—oo

n € N.
Then f has a fixed point.

By removing the continuity and compatibility assumptions in Theorem we prove the following

theorem.
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Theorem 2.10. Let (X, =<,p) be an ordered complete partial metric space. Let f,g,S,T : X — X be four
mappings such that f(X) C T(X), g(X) C S(X), f, g are dominated mappings and S, T are dominating
mappings. Suppose that the condition holds for all comparable elements x,y € X, and ¥ and @ are
the same as in Theorem [2.1] Let one of f(X), g(X), S(X) or T(X) be a closed subset of X If for a
nonincreasing sequence {x,} in X with y, < ©, for all n and nli_)rrgops(yn,z) =0, it follows z < x,, for

alln € N, then f, g, S and T have a common fized point.
Proof. Proceeding exactly as in Theorem [2.1} we have that {y,} is a Cauchy sequence in (X, p). Also,
im p(yon+1,2) = lim p(goonyr,2) = lim p(Swanio,2) = p(2,2) = 0.

Suppose that S(X) is a closed subset of X. Hence there exists u € X such that Su = z. We show that
p(fu,z) = 0. since xop+1 = Txopt+1 and lim Tao,4q1 = 2z it follows that z < z9,41, and u < Su = z.
n—oo

Hence v < xo,11, so from (2.1) we obtain

Y(p(fu, grant1)) < (M (u, 22ny1)) — (M (u, Zant1)), (2.19)

where

T 1
M(u,on41) = max{p( T2n+1, 9Tan+1)[1 + p(Su, fu)]

S T n
1+ p(Su, Txo,11) ,p(Su, Txo +1)}

max {p(yzm yf:l:;zi ;;f)(z’ fU)] 7P(Z, y2n)} .

Letting n — oo in (2.19)) and by (2.15)) we get ¥(p(fu, z)) = 0. Thus we conclude that fu =z = Su. As

f is dominated and S is dominating maps. then

u=Su=2 and z=fu=xu.
Hence z = w. Thus fz = Sz = z. From f(X) C T(X), there exists v € X such that z = Tv. We show
that p(gv, z) = 0. From we get
P(p(z,9v)) = b(p(f2,9v)) <YM (2,0)) = p(M(z,0)), (2.20)
where

Tv, gv)[1 + p(Sz, f2)]
1+ p(Sz,Tv)

M(z,v) = max {p( ,p(Sz, Tv)} = p(z, gv).

Therefore from we deduce that
¥(p(z,9v)) < ¥(p(z, 9v)) — @(p(z, gv)).
Hence ¢(p(z,gv)) =0, so gv = z. Since g is dominated and T is dominating maps. then
vxTv=2z and z=gv 0.

Hence z = v. Thus fz = Sz = gz =Tz = 2. That is z is a common fixed point of f, g, S and T.
The proof is similar when f(X), g(X) or T(X) is a closed subset of X. O
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Now, we shall prove the uniqueness of the common fixed point as in the following theorem.

Theorem 2.11. In addition to the hypotheses of Theorem (or Theorem assume that for all
(z,y) € X x X, there exists z € X such that z < x and z <y. Then, f, g, S and T have a unique common

fixed point.

Proof. The set of common fixed points of f, g, S and T is not empty due to Theorem [2.1| (or Theorem
2.10]). Suppose that u and v are two common fixed points of f, g, S and T, that is, fu = gu = Su=Tu=u
and fv = gv = Sv = Tv = v. Theorem (or Theorem [2.10]) gives us that p(u,u) = p(v,v) = 0. By

assumption, there exists zg € X such that
zo <=u and zg <. (2.21)

Now, proceeding similarly to the proof of Theorem (or Theorem [2.10]), we can define the sequences
{zn} and {w,} in X as follows

Wop = f2on = TZn41, Wong1 = G2ant+1 = Szant2, foralln > 0.
Since f, g are dominated mappings and S, T" are dominating mappings we have
Zony2 X SZany2 = 92on4+1 = Zong1 =X Tzont1 = fron =X 22, for allm > 0.

Thus, for all n > 0 we have z,11 < z, < zg = u. Further, in similar way for the proof of Theorem 2.1 we
can get

lim p(wp, wp41) = 0. (2.22)

n—oo

As 29, < u, putting x = 29, and y = u in (2.1]), we obtain

P (p(wan, w)) = Y(p(f22n, gu)) < (M (220, 1)) = p(M (220, u)),

where
T’U/, gu)[l + p(SZ2n7 fZ2n)]
1+ p(SZQn, Tu)

M (200, u) = max {p ( ,p(Szon, Tu)} = p(wan_1, ).

Thus

Y(p(w2n, u)) < Y(p(wan—1,u)) — p(p(wan-1,u)) < P(p(wan—1,u)).

Since 1) is increasing, we have

p(w2n, u) < p(wan—1,u). (2.23)

Also, since zo,41 = u, putting £ = u and y = 295,41 in (2.1)), we have

Y(p(uw, want1)) = Y(p(fu, gzon+1)) < P(M(u, 22n4+1)) — (M (u, 22141)), (2.24)
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where

(D)

From

p(TZQn-‘rla gzZn-‘rl)[l + p(Sua fu)]
1+ p(Su, T22n+1)

p(w2m w2n+1)
=max§ —————, p(u, Way ) ¢ -
{1+p(u,w2n) p( 2 )}

M(“v Z2n+1) = max { 7p(Su7 T22n+1)}

If M(u,z2n11) = %, then from (2.22) we obtain nl;ngo M (u, zon4+1) = 0. Therefore from

1) we have nlgrgo Y(p(u, wan41)) = 0. Hence

lim p(u, wan4+1) = 0. (2.25)

n—oo

If M(u,zan+1) = p(u, way,), so from ([2.24]) we have

(P, want1)) < P (p(u, won)) — (P, wan)) < Y (p(u, wn)), (2.26)

Since % is increasing, we obtain

p(u, want1) < pu, wap). (2.27)
Combining and we conclude that
p(u, wpt1) < pu, wy,) Vn > 0. (2.28)
So, the sequence {p(u,w,)} is non-increasing and bounded below, so there exists v > 0 such that

lim p(u,w,) =17. (2.29)

n— oo

Suppose that v > 0. Then from ([2.26) taking the upper limit as n — oo, and by the lower semi-
continuity of ¢ we get

lim sup ¥ (p(u, wan+1)) < limsup ¥ (p(u, way,)) — liminf p(p(u, way,)).

n—00 n—00 n—0o0

Using the properties of the functions ¢ and ¢, we have ¥(v) < ¥(y) — ¢(v), so v = 0, which is a

contradiction. We conclude that lim p(u,w,) = 0.
n—roo

(I) and (IT) we conclude that
lim p(u,ws,) = 0. (2.30)

n—oo

Similarly, using the same argument we can get

Since

lim p(v,ws,) = 0. (2.31)

n—oo

p(u,v) < plu,way) + pwan,v) — p(wan, way,), and from (2.22), (2.30), (2.31), we conclude that

p(u,v) < 0. Therefore u = v. O



46 Int. J. Math. And Its App. Vol.2 No.3 (2014)/ R. A. Rashwan and S. M. Saleh
To support our results, we give the following examples.

Example 2.12. Let X = [0, 1] endowed with usual order < and (X, p) be a complete partial metric space,
where p : X x X — RT is defined by p(z,y) = max{z,y} and let 1, ¢ : [0,00) — [0,00) be defined by
() =bt and p(t) = (b—1)t, where 1 < b < 2. Let f,g,5,T : X — X be defined by

T 0 ifzel0,3]
f$:§7 gTr = ;
1 ifze(},1]
2z ifz €0, 3] 3¢ ifzel0,i]
, Tx= .
ifz € (3,1] 1 ifze(3,1]
Then f(X) C T(X) g(X S(X). The table shows that f, g are dominated and S, T are dominating
mappings.
for each x € [0,1] fz <=z gr <=z z < Sz r<Tzx
z€[0,1] fr=%2<z|gr=0<z |2s<Sx=2 |zs<Tx=3x
xe(%,l] fr=5<ux ga::igx r<Sr==x r<Tz=

(f,S) is partial-compatible maps and f is a continuous map. To show that f, g, S and T satisfy condition

for all x,y € X, we consider the following cases
(i) If x,y € [0, 3], then

3 T, L 3 T
M(z.y) :max{p(gy,O)[l +p(2 ,2)]’p(2x’;y)} :max{liyz[)l(;;?giyp(mZw}.

We have two cases:

(a) If p(2z, 3y) = 2x then M(x,y) = max {3y,2z} = 2z. Hence

bx

b(p(fz, 9y)) = V(5 5

5200) = u(

|8

3 x
(b) If p(2x, 3y) = 3y then M(x,y) = max{ zqﬁgi ],%y} . Hence

Vol g) = U(3) = 5 <20 <

N W

(ii) If x € [0, %], y € (3, 1], then

M(z,y) = max {p(17%)—|[—1p_:2i(,21£§’ 5] p(2z, 1)} — max { 1 J;Qx, 1} —1.

Hence
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(iti) if x € (3,1], y € [0, 3], then

_ P(3y,0)[1 +p(z, 5)] 3.1 syl + 7] 3
M(x7y)—max{ 1—|—p(1‘, %y) ,p(x,y)} _max{l-l—p:l/)7p(m7 Zy)}

We have two cases:
(a) if p(z, 3y) = x then M(z,y) = max {3y,z} = 2. Hence

bp(fr.g9) = v(p(5.0) = ¥(3) = 5 <@ =M(e,y)

(b) If p(z, 2y) = 3y then M(z,y) = Inax{ 13y ,%y} Hence

Ve, g) = w(5) = 2 <w < 2y < Me,y) = $(M(2,9) ~ 6(M(,9)).

() if z,y € (3,1], then

M(z,y) = max{p(17%)_£1p_é—x]’)(la;’ 2)] ,p(m,l)} _ max{l_;x, 1} _

Hence

r 1 T bx
b(p(fz, 9y)) = v(p(5, 1) =¥(5) = 5 <2 < M(z,y) = v(M(z,y)) - o(M(z,y)).
Thus, the mappings f,qg,S and T satisfy the condition . Therefore all conditions given in Theorem
are satisfied. Moreover, 0 is the unique common fized point of f,g,S and T.

Example 2.13. Let X = [0, 3] endowed with usual order < and (X, p) be a complete partial metric space,
where p : X x X — R*Y is defined by p(x,y) = maz{x,y} and let 1, ¢ : [0,00) — [0,00) be defined by

Y(t) =3t and ¢(t) = %t. Let f,9,5,T : X — X be defined by

o 2 ifzelo) oo 0 ifzel01)
1 ifre(1,3) 3 ifrell,3
3vz ifxe€l0,1) 2z ifx €10,1)
St = , Tr = .
x if x € [1,3] 3 if x € [1,3]

Then f(X) C T(X), g(X) C S(X) and S(X) is a closed subset of X. The table shows that f, g are

dominated and S, T are dominating mappings.

for each x € [0, 3] fr <z gr <x r < Sz x<Tzx
x €[0,1) fx:%zgm gr=0<z | 2<Sr=3yz | e <Tz=2yx
z € (1,3 fr=31<z |gr=3<z| z2<Sz=u2 x<Tzx=
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Now, we show that f, g, S and T satisfy condition for all z,y € X, we consider the following cases

(i) If x,y € [0,1), then

M(z,y) = ma {”{f;%jfffy” p<3ﬁ,2ﬂ>}
_ 231 + 3Va]
= w0 DN 20

We have two cases:

(a) If p(3v/x,2,/y) = 3\/x then M(x,y) = 3/x. Hence

.582

Voo gn)) = 0() = 2 < 3VF < 05 — VB = (M (1) — 6(M(z.9)).

(b) if p(3v/x,2,/y) = 2\/y then M(z,y) = max { 2\/155_12-1:?@@ , 2\/§} . Hence

vl om) = 0(5) = 2 <85 <25 < Mla,y) < 6(M(z.9)) - oM (x,1).

(i) If X €10,1), y € [1,3], then
M(s,y) = max {p<3 DL PBVEF) g ﬁjg)} _

1+ p(3vx,3)
Hence
Vofe,9) = w5 5)) = 6(5) = 3 < M(x,y) < V(M (x,9)) ~ 6(M(z, ).

(iii) If X € [1,3], y € [0,1), then

B p(2y/5,0)[1 + p(z, })]
M(m,y)—max{ L+ p(z.243)

= max 72\/5[1—&—95] x
o2y = max { 2T w25 |

We have two cases:

(a) If p(x,2./y) = = then M (z,y) = max {2,/y,x} = x. Hence

Yo f2,99) = $p(,0) =6(}) = 5 < M(zy) < $(M(2,9)) ~ 9(M(x.9))

4 4
(b) if p(x,2\/y) = 2\/y then M(z,y) = max {21_’_21\;; ,2\[} Hence
Upfr,09)) = § <7 <25 < M(z,y) < 9(M(z,9)) ~ 6(M(z,9).

(iv) if x,y € [1,3], then
1 r. 1 .
Mz, y) :max{p(& )1 +p(), 4)}7]9(%3)} _ max{3[1+ ]’3} .,

1+ p(x,3 4
Hence
11 1 3
p(f2,99)) = 005 5) = (5) = 5 < Ma,y) < H(M(@,5)) - 6(M(,9)).

Thus, the mappings f,q,S and T satisfy the condition . Therefore all conditions given in Theorem
are satisfied. Moreover, 0 is the unique common fized point of f,g,S and T.
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