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ABSTRACT 

Money launderers hide traces of their transactions with the involvement of 

entities that participate in sophisticated schemes. Money laundering detection 

requires unraveling concealed connections among multiple but seemingly 

unrelated human money laundering networks, ties among actors of those 

schemes, and amounts of funds transferred among those entities. The link 

among small networks, either financial or social, is the primary factor that 

facilitates money laundering. Hence, the analysis of relations among money 

laundering networks is required to present the full structure of complex 

schemes. We propose a framework that uses sequence matching, case-based 

analysis, social network analysis, and complex event processing to detect 

money laundering. Our framework captures an ongoing single scheme as an 

event, and associations among such ongoing sequence of events to capture 

complex relationships among evolving money laundering schemes. The 

framework can detect associated multiple money laundering networks even in 

the absence of some evidence. We validated the accuracy of detecting evolving 

money laundering schemes using a multi-phases test methodology. Our test 

used data generated from real-life cases, and extrapolated to generate more data 

from real-life schemes generator that we implemented. 

Keywords: Anti Money Laundering, Social Network Analysis, Complex 

Event Processing 

1. INTRODUCTION 

Current Anti Money Laundering (AML) systems are designed to function 

based on the requirements of adopting organization. They vary from the multi-

component and complex systems such as FINCEN (FAIS) to the specialized 

single-purpose systems used by banks to report Due Diligence and Suspicious 
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Activity Reports (SAR). To capture increasingly complex money laundering 

schemes (MLS) call for integrating new techniques such as Social Network 

Analysis (SNA) (Wasserman et al., 1994), in addition to the already used rule 

based analysis and risk modeling. An efficient AML system must have many 

components, where some components are being purely deterministic and others 

being purely probabilistic. An example of a probabilistic component is the risk 

analysis, and SNA is an example of a deterministic component. Generally, 

deterministic models consider social aspects and statistical models consider 

financial aspects (Wasserman et al., 1994). 

The FINCEN AI System (FAIS) (Senator et al., 1995, 1996, 1998) designed 

for internal use analyzes SARs filed by banks. The system combines offline 

SAR data analyzed by human experts to identify possible hidden linkage 

among transactions using link analysis techniques. However, FAIS (Senator et 

al., 1995, 1996, 1998) only links and evaluates the database (DB) of the 

reported suspicious transactions offline. KDPrevent (Jacobs et al., 2003; Kuns 

et al., 2004) by KDLabs, a commercial product/service utilized by banks in 

Switzerland collect customer, account and transaction information for offline 

analysis, combining data-mining techniques with expert legal knowledge of 

legal experts.  

Two models of sequence matching and link analysis (Liu et al., 2008; Schwartz 

et al., 2008) are relevant to our research in detecting evolving patterns of 

sequence. Liu et al. (2008) proposes a sequence matching algorithm to discover 

suspicious transaction sequences, using transaction histories of an individual’s 

accounts and transaction information histories from a peer group. Liu et al. 

(2008) focus only on the bank transactions, without covering other financial 

transactions such as stock market. Schwartz et al. (2008) proposes a model to 

find criminal networks using social network analysis, building upon Borgatti’s 

SNA-based key player approach (Schwartz et al., 2008). One drawback of 

Borgatti's model is the failure to assign weights to actors and actor-actor 

relationships. Gunestas et al.’s (2008, 2010) framework is similar to ours, but 

with a narrower focuses on detecting Ponzi schemes.  

The rest of the paper is organized as follows: Section 2 explains the Money 

Laundering Evolution Detection Framework (MLEDF) and Section 3 describe 

proposes a new ML detection algorithm. Section 4 evaluates the performance 

results of MLEDF using real-life cases. Section 5 describes related work and 

Section 6 concludes the paper. 

2. MONEY LAUNDERING EVOLUTION DETECTION FRAMEWORK 

(MLEDF) 

The framework is composed of four different phases. Each phase will 

communicate with the next phase, and the output generated from each phase is 

sent into the next phase. The phases and their function are explained below. 
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Transaction Data Collection: The transaction agents or data input collectors 

from Automated Clearing House such as (EPN, FEDWIRE, and CHIPS) will 

send in their data format. The different types of transaction data are: Banking, 

Stock market, Derivative market, Web Services, Trading, Electronic Money, 

and Money Brokering. Once the industry-specific transaction data is gathered, 

relevant information is extracted for analysis. For example, there are more than 

20 fields in stock order forms and we use only time, sender, receiver, price, 

quantity, symbol, market, sellerOrderID, buyerOrderID, tradeID, and country. 

Also, we use transaction-independent data used in the analysis, such as the 

economic status of the country, sales trends of the stock, and the stock value 

during the day.  

1. Data Processing: The data collected from different systems are used to 

create patterns of the well-known MLS (Mehmet et al., 2010). The MLS-

related data that is extracted from the streaming events is filtered before 

submitting them into the detection algorithms. The extracted data associated 

with each MLS pattern assigned to a specific MLS type using the following 

components:  

a) Business Rules: MLS business rules and red flags associated with 

each pattern, the rules associated with specific sector are used by the 

MLS detection algorithms to identify the MLS patterns.  

b) MLS Template: Well-known MLS templates will be used during this 

phase. Currently, the templates have seven major pattern types with 

their different subtype combinations. This acts as a repository of 

known MLS. If a new form of MLS is discovered, then it will be 

added to this DB.   

c) ML Economic Models: Three ML economic models (Mehmet et al., 

2013) will be used to validate and increase the accuracy of the 

detection algorithms for well-known ML patterns. Those economic 

models determine if the evolution of MLS is within the accepted 

trend of the models.  
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Figure 1 The MLEDF framework 

2. MLS Algorithms and MLS Network Detection: There are six major 

heterogeneous algorithm modules (Smurfing, Trade, Stock, Derivative, 

EMoney, DirtyEFT). Each algorithm uses a different method to capture the 

network associated with the specific type of MLS. In real-time, the 

algorithms output, the discovered networks associated with the specific MLS 

patterns, each into a different database. Then, the discovered networks are 

reformatted and saved in a single database referred to as the “Network” 

Database. This process facilitates faster and efficient analysis of the links 

among MLS networks.  

3. Evolution Detection Analysis and Generating the Fraud Trail and 

Suspicious Trail: Four separate algorithms are run to find the “Full-Trail”, 

“Missing-Trail”, and “Suspicious-Trail” (Mehmet et al., 2013) of MLS 

networks, and saved in separate databases. Full-Trail is a long series of 

MLS’s that span over many countries and involves many cycles of MLS. In 

essence, it is a concatenated sequence of related schemes (MLS) act in itself 

to transfer money from one MLS to the other until it reaches the final MLS, 

where we refer to the orchestrator (i.e., the money launderer) as the 

“EndBoss” in the final MLS. Any MLS or trail will have the originator 

“StartBoss” and the terminator “EndBoss”, in addition to the associates that 

maintain the MLS or trail. The “Associates” are the list of the people 

involved in the sequence of detected fraud. The “StartBoss” is the entity 

whom starts the MLS or trail. Missing-Trail is a short Full-Trail that does 

not exceed the depths of three related MLSs. We assume that the Missing-

Trail is a premature Full-Trail with broken parts and missing links or 

evidence. A Suspicious-Trail is a combination of discovered Full-Trails 

and/or Missing-Trails, it will be constructed using algorithms that 
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incorporate SNA and numerical analysis techniques. The module “Detection 

Analysis” (Mehmet et al., 2013) determines the evolution of the “Full-

Trail”s such as the change to the number of involved associates, the changes 

to the cost of laundering, and changes to the laundering locations. 

2.1 MLS Pattern Detection Modules in MLEDF 

MLEDF process is fed by data from many types of transaction data, where 

each feed is from a particular market or a finance industry. The main detection 

module is divided into sub-modules, where each sub-module detects money 

laundering patterns relevant to that specific market. This is because the data set 

of each market and industry is different than others and the money laundering 

techniques differ between them. MLEDF uses a core set of business rules to 

detect the evolution of MLS reported annually by FATF, with six detection 

patterns for each finance sector that we chose to include in our experiment.   

2.2 Gathering Transaction Data and Generation of the Transaction 

Evidence Data    

A “Message” sent between two parties in the framework consists of the 

following components: (1) Common Mandatory Fields: Sender, Receiver, 

Time, Transaction ID, and a field that reflects the amount of funds transferred 

or price of the transaction; (2) Pattern Specific Mandatory Fields: A set of 

attributes pertinent to the transaction type. For example, the Smurfing 

transaction will have only the "EFT" field that reflects whether the banking 

transaction is an EFT or not. The stock transaction has more fields as in 

"Quantity, Symbol, Market, TradeID, Country, etc."; and (3) Auxiliary Third 

Party Fields: The framework retrieves critical data from third party sources, 

used in conjunction with the transaction data. The auxiliary data includes 

information such as recent market stock and derivative data, current product 

market price, and country economic status. This data is used to compare the 

transaction price and product price with the nominal price.  

The “Comprehensive Output” is the MLS pattern-specific output generated by 

the MLS detection algorithm. As seen in Figure 2, the output produces 

comprehensive evidence for each detected pattern, and it is different from other 

patterns. The output is saved in a separate database. For example, the field 

“Associates” exists in most of the outputs, it is a list of the people involved in 

the sequence of detected fraud. The size of the list varies because the list will 

expand as the money transfers from one entity to the next entity, until it 

reaches the final destination or terminates with a fund withdrawal.  

The number of the transactions (which can be modeled as steps in an event) 

required to create a MLS vary based on the MLS type. We link the set of 

transactions that constitute the comprehensive-output for a specific MLS. Any 

previously examined transaction that is related to the current transaction under 
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examination is linked to the output of the current transaction, if the transactions 

share common fields and involve a fund transfer. For example, all the 

associates who are involved in a Smurfing fraud will be placed in the list of 

“Associates”, and the manipulator is represented in the field “Boss”.  

All the data gathered from pattern detection are reduced to the minimum set 

that represents what we define as the “Network”, which constitutes the entities 

created the MLS and information about MLS. These entities are “EndBoss”, 

“StartBoss”, and “Associates”. The “Network” DB contains fields of 

participants and vital information of a detected MLS.  Each network will be 

assigned a unique ID. The nine fields in the “Network” are: NetworkID, 

EndBoss, StartBoss, AmountLaundered, Associates, Type, DetectionTime, 

StartTime, EndTime. A network can be associated only with one type of MLS; 

therefore, the field “Types” represents the various well-known types of MLS 

(Mehmet et al., 2010).  

The evolution-output “Detection-Schema” is generated by the “Detection-

Analysis” module. The DB “Detection-Schema” contains information about 

the evolution of the ML trail, such as information of average cost and average 

number of associates used in each of the sequence of MLSs in the Full-Trail.  

 
Figure 2 The “Comprehensive Output” (DB content) of the Output of Six MLS 

Detection Algorithms 

3. SOCIAL NETWORK ANALYSIS MODULE TO CREATE A 

“SUSPICIOUS-TRAIL” 

There are many cases in which money launderers intentionally obfuscate the 

money laundering trail, either by hiding it (for instance by increasing the 
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transaction quantity and reducing the transaction amount), or performing it in a 

none-reported method as in Hawala. It becomes the task of an AML to detect 

these concealed relations and transactions. As a solution, we offer an additional 

module for social network analysis among transactions to unravel the hidden 

relations among MLS networks. MLEDF is designed from bottom-up with the 

concept of detecting and linking MLS trails (networks) even with missing 

evidence.  

The major task of this module is to detect components of an actual “Full-Trail” 

even if there is a missing piece of evidence. The module will investigate the 

available trails (Full-Trail and Missing-Trail) by using our SNA DB that 

contains the weights of relationships among MLS participants. This is in order 

to determine if two trails are related by considering some attributes such as the 

amount of funds involved, location, affinity of participants, time, and methods 

used for laundering. 

The SNA module is more resource consuming when compared to other 

modules, due to the extensive use of SNA, and link and weight calculations. 

The “Suspicious-Trail” module uses the “SNA” module to produce a new trail. 

This new trail contains two or more trails that are related based on SNA, even 

if we do not have captured a transaction joining them or any other evidence. 

The new trail is created after making a scientific calculation based on (SNA) 

results of a possible relationship between two or more “Full-Trails” and 

“Missing-Trails”.  

The generated evolution patterns and strategies are collected into the 

“Suspicious-Trail” Database. This module contains the “SNA” sub-module that 

calculates and assesses the social network connections of individuals, peer-

groups, and money laundering trails. The sub-module “SNA” is used to derive 

the associated suspicious trails based on the techniques of SNA. The table 

“Weight” that is used within the module is completely constructed with data 

output from running the “SNA” module.  

3.1 Using Complex Event Processing in the Social Network Analysis 

Module 

Any MLS has the originator “StartBoss” and the terminator “EndBoss”, in 

addition to the associates that maintains the MLS. The output of MLS detection 

algorithms contains information about the participants, in addition to 

information such as amount laundered, final amount of funds, type of MLS, 

duration and start and end time. The critical question that ML experts contend 

to answer is “How fast and how well can we relate the different events in this 

universe of detected MLS?” Using the introduction of Complex Event 

Processing (CEP) systems like StreamBase, we developed an algorithm to 

create the full and accurate chains of related MLSs, such relations are used to 

transfer a fund to the next MLS until it reaches the final destination. That is, 
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the flow of the dirty money never stops until it reached the ultimate account. 

This cycle continues until it reached the final destination where the money 

launderer withdraws the money. Current AML systems have scalability issues 

in associating the multitude of different events of various MLS. We model 

each detected MLS as an event, and have various patterns of events categorized 

under six different types of MLS. For example, Full-Trail algorithm outputs a 

trail by using the functionality of CEP of perceiving the MLSs as a set of 

events. Without the CEP the MLS should dissolve into the constituent 

transactions to be analyzed and linked with the other transactions from another 

MLS (Time consuming and resource consuming). The CEP can link MLSs, 

perceived as events, using various criterions without the need to add more 

complex sub-algorithms for each criterion. That is, the Full-Trail connects the 

dots that exist, but it is harder and slower to connect them without CEP 

capabilities. Full-Trail captures the trail in cases where all evidence is 

available, whereas the Suspicious-Trail attempts to construct the path where 

some edges along the path is missing. 

3.2 Integrating the “SNA” Module into MLEDF 

The major objective of the “SNA” module is to detect components of a 

undiscovered Full-Trails by performing analysis on the four databases 

“Network”, “Detection-Schema”, “Full-Trail”, and “Missing-Trail”. During the 

relationship analysis stage, the SNA module investigate the available trails, by 

using SNA Database that contains the weight of relations to determine if two 

trails are related considering attributes, such as amount of funds involved, 

geography, affinity of participants, time, method for laundering, relation. 

The module “SNA” analyzes the end and start points (“EndBoss” and 

“StartBoss”) of discovered transaction sequence (trail) to discover any broken 

parts of such none-discovered trail. This analysis includes assessing the social 

relationships between the endpoints (“EndBoss” and “StartBoss”) of trails with 

each other, using the DB created that includes different level of relationships. 

The participants and bosses of money laundering trails may change, but the key 

players stay the same and they swap roles (Mehmet et al., 2013).  
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Figure 3 The Process of Generating Evidence Data in the MLEDF 

3.3 Input from Algorithmic Modules and their Databases into 

the “SNA” Module 

This section describes modules called inside the MLEDF and feed their output 

(DB) as an input to the “SNA” module.  

1. “Full-Trail” module: We create the long trail “Full-Trail” of complex MLS 

series that span over many countries. A “Full-Trail” is a concatenated 

sequence of related ML schemes acts as a whole to transfer money from one 

MLS to another. A “StartBoss” of a “Full-Trail” is the “StartBoss” of the 

first MLS in the series of MLS that constitute the “Full-Trail”. Whereas the 

“EndBoss” of a “Full-Trail” is the “EndBoss” of the last MLS in the MLS 

series that constitute the “Full-Trail”. We detect the “StartBoss” and the 

“EndBoss” of the Full-Trail, along with intermediary bosses of linked 

schemes. The “StartBoss” is the earliest known launderer (that we have 

proven evidence for) that initiates the sequence of ML transactions. The 

“EndBoss” is the final launderer that withdraws the funds or transfers them 

using remittance (Hawala) systems that do not keep any financial records. 

We start with the “EndBoss” and compute the laundering path towards its 

beginning. Then we follow all possible paths that originate at the detected 

launderer “StartBoss” and link to another launderer.  During concatenation 

of the schemes we consider the amount of funds involved, geography, 

affinity of participants, time, relation, and method for laundering.  
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Table 1 Sample Output of the Full-Trail (Up to maximum of 30 related MLS networks) 

Networks 
TrailI

D 
Duration Withdraw Amount 

Start

Boss 
End 

Boss 

24, 51, 67,  92, …. 1932 56 Days Yes 988,000 Boss 

756 
Boss  

17 

2, 15, 98, 126, ….. 72468 99 Days No 1,213,234 Boss 

29 
Boss 

592 

415, 783, 999, ….. 97246 92 Days Yes 1,050,230 Boss 

324 
Boss 

 75 

 

2. “Missing-Trail” module: We create short trails that do not exceed the depth 

of three consecutive MLSs, or three levels depth of MLSs. We assume that 

Missing-Trail is a premature Full-Trail with broken parts and missing 

evidence. Therefore we capture such shorter trails for “Suspicious-Trail” 

analysis by saving them in the “Missing-Trail” DB. 

Table 2 Sample Output of the Missing-Trail (Do not exceed 3 related MLS networks) 

Networks TrailID Duration Withdraw Amount 
Start 

Boss 

End 

Boss 

14, 219,921 1232 16 Days No 23,234 Boss 

56 

Boss 

151 

2452, 315 1208 29 Days No 90,165 Boss  

170 

Boss 

882 

405, 7831 97246 19 Days No 200,230 Boss 

 884 

Boss 

975 

 

3. Evolution-Detection module: We analyze the input feed from “Full-Trail” 

and “Missing-Trail” algorithms, and generate DB “ML-Networks” and DB 

“Detection-Schema”. The DB “ML-Network” contains three DBs of “Boss-

Boss”, “Boss-Associate” and “Associate-Associate”. The three DBs reflect 

the all discovered pair relationships among bosses and associates of MLSs 

and trails. An associate is a participant of the MLS who facilitates the 

success of MLS, such as the deposit makers in smurfing or the stock broker 

in stock based MLS. The DB “Detection-Schema” contains statistical 

information about the evolution of the ML trail, such as information of 

average cost and average number of associates used in each MLs of the 

sequence of MLSs in the Full-Trail. Table 3 shows the shortened output of 

the detected schema of the real-life case.  
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Table 3 Sample Shortened Output of Detection-Schema 

Detection 

Time 
Type SubType 

Networ

kID 
Location StartBoss EndBoss 

20120915114 HiLo Hi 2213 USA Boss756 Boss 17 

20120819139 Stock LowSale 9786 Germany Boss 324 Boss 75 

Associates Cost Amount Withdrawal Time Start Time End Time 

A, B, G, U 25,000 1,825,000 20120915114 20120830 20120915 

N, O, W, Y 14,700 1970,000 20120819124 20120725 20120819 

 

The “SNA” module will use the content of the DBs produced by the three 

evidence generation algorithms as an input. The contents of the output 

generated from the three modules listed in above tables will be saved into three 

DB named “Detection-Schema” DB, “Full-Trail” DB, and “Missing-Trail” DB. 

Every algorithm will create a DB with the same name of the algorithm name. 

Additionally, the DB “Network” associated with each MLS type will also feed 

into the SNA module.  

3.4 The Components and Output of the “SNA” Module 

The SNA module will generate the two Databases as outputs. The 

“SuspectWeight” Database contains the weight of all different relations 

detected in the MLEDF. The “Relations” Database contains the record of 

business and family relations among pairs based on the assumption that we 

have access to such records. The method to calculate the calculation is 

explained in the next section. The “SNA” module continuously updates the 

“SuspectWeight” with the value (score) of existing relations among the entities 

existing in all the DBs created in the MLEDF. 
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Table 4 Components of the Two DB Output of SNA  

RelationshipDB (    hash string,    #"time" timestamp,    type string,    person1 

string,    person2 string) PRIMARY KEY (hash, #"time", type) USING 

BTREE; 

SuspectWeightDB (hash string,    UniqueTrailBosses long, 

UniqueTrailAssociates long, UniqueMissingTrailAssociates long, 

SchemaBosses  long,  SchemaAssociateBoss long,  SchemaAssociate long, 

family long, business long, weight  long)  PRIMARY KEY (hash) 

USING BTREE; 

 

Figure 4 Sections of the Social Network Analysis Module 

The SNA module contains nine sections to continuously update the two 

Databases. Section 1 through 6 creates hashes of various relations. The sections 

7 through 9 update, query, and calculate SNA weight of family, business, and 

various ML relations derived in earlier stages. The hash of binary relations, 

that involves pair of entities, is used as the basis to calculate the accumulative 

relations of every type. The sections list is as follows: 

a. Section 1: Creates Hashes for all “StartBoss” and “EndBoss” relations, 

we refer to it as “Hash SchemaBosses”. The “StartBoss” and 

“EndBoss” are  unique to a MLS. 
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b. Section 2: Creates Hashes for all detected “Boss-Associate” relations 

we call “HashBossesAssociate”. 

c. Section 3: Creates Hashes for all detected “Associate-Associate” 

relationships. This hash represents the combinations of relationships 

among the associates of the same MLS, even if they do not 

interact/transact with each other directly.  

d. Section 4: Creates Hashes for “StartBoss”-“EndBoss” pairs of Full-

Trails, we call “HashFullTrailBosses”.  

e. Section 5: Creates Hashes for “Relationships” among socially or 

business-wise related pairs.  

f. Section 6: Creates Hashes for the associated (related) Full-Trail’s and 

Missing-Trail’s, we call “AggregateOfAssociatedTrails”. This hash 

contains a pair of TrailIDs, which are unique IDs assigned to each 

detected trail. The hash is used to relate trails by their TrailIDs. 

g. Section 7: Inserts all the outputs (hashes) of Sections 1, 2, 3, 4, 5, and 

6 into “SuspectWeight” DB, using “FirstInsert”.  

h. Section 8: Queries the “SuspectWeight” for the continuously updated 

outputs (hashes of Sections 1-6), then, feed the updated hashes values 

into last section. 

i. Section 9: Calculate the accumulative weight of relations using the 

“UpdatedWeight”, updating the “Relationship” table, and then 

updating the “SuspectWeight” with updated result combined from the 

new calculated weight and with “SuspectWeight”. The formula 

(method) used in this stage to sum up the accumulative weight, by 

adding the hash relations from Sections 1 through 6, is explained 

below in the next section, This final and updated weight will be used in 

the “Suspicious-Trail” module to link trails among each other. 

3.5 Social Network Analysis Algorithm 

The “Social Network Analysis” algorithm computes the weight for different 

relationships involving the bosses and associates of MLS and trails. The values 

of the weights are chosen based on the importance of relation in a scheme, that 

is to say a relation of certain type is not treated equally as a relation with less 

importance. Also the margin of weights chosen allowing an iteration of certain 

relation to be equal in weight value to another relation with a higher weight, for 

example two “Boss-Associate” relations is value wise equal to one  “Boss-

Boss” relation. 

A relationship weight is defined for each possible associate couple. The larger 

the weight, the more likely the relationship between two entities to occur. 

Weight is calculated by adding parameters for each of the corresponding 

events; therefore, the result is considered as the relationship weight. 



Journal of Digital Forensics, Security and Law, Vol. 8(3) 

54 

a. For each detected schema, 10 will be added to start/end boss couple, 5 

for each boss/associate combination, and 1 for each associate/associate 

non-repeating combination. 

b. For each missing trail, 15 will be added to each associate non-repeating 

combination. 

c. The full trails will add 20 to each associate combination and 25 to the 

start and end boss. 

d. Other strong relationships are also counted, family ties will add 250 to 

the couple, and each business relationship will add 250 to the couple. 

1 

 

 

2 

 

3 

 

 

 

4 

5 

 

 

6 

 

 

7 

 

 

8 

 

 

SET BUSINESS as 250; FAMILY as 250; FULL_BOSS as 25;  

FULL_ASSOCIATE as 20; MISSING_ASSOCIATE as 15; 

SCHEMA_BOSS as 10;  

SCHEMA_ASSOACIATEBOSS as  5; SCHEMA_ASSOCIATE as 1; 

FUNCTION String HASH (String person1, String person2) 

                               {return concatenate(sort(person1,person2))};  

STREAM DetectionInputStream DetectionSchema detectedMLS; 

STREAM RelationshipInput RelationshipSchema relationship; 

STREAM MissingTrailInputStream MissingTrailSchema missingTrail; 

STREAM FullTrailInputStream FullTrailSchema fullTrail; 

STORE hashRelations IN hashAndRelationsNumberMemoryDB; 

UPDATE hashAndRelationsNumberMemoryDB as H 

   SET suspectSchemaBoss++ 

     WHERE H.hash == HASH(detectedMLS.startBoss, 

detectedMLS.endBoss); 

UPDATE hashAndRelationsNumberMemoryDB as H  

    SET suspectSchemaAssociateBoss++ 

      WHERE H.hash == HASH(detectedMLS.associate, 

detectedMLS.endBoss); 

UPDATE hashAndRelationsNumberMemoryDB as H  

    SET suspectSchemaAssociateBoss++ 

       WHERE H.hash == HASH(detectedMLS.associate, 

detectedMLS.startBoss); 
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9 

 

 

 

 

10 

 

 

11 

 

 

 

 

12 

 

 

 

13 

 

 

 

14 

FOR EACH detectedMLS.associates as assoc1 

   FOR EACH detectedMLS.associates as assoc2 

      UPDATE hashAndRelationsNumberMemoryDB as H  

        SET suspectSchemaAssociate++ 

          WHERE H.hash == HASH(assoc1, assoc2); 

FOR EACH fullTrail.associates as assoc1 

   FOR EACH fullTrail.associates as assoc2 

      UPDATE hashAndRelationsNumberMemoryDB as H  

         SET suspectFullAssociate = suspectFullAssociate++ 

            WHERE H.hash == HASH(assoc1, assoc2); 

UPDATE hashAndRelationsNumberMemoryDB as H  

    SET suspectFullBoss = suspectFullBoss++ 

       WHERE H.hash == HASH(fullTrail.startBoss, fullTrail.endBoss); 

FOR EACH missingTrail.associates as assoc1 

   FOR EACH missingTrail.associates as assoc2 

      UPDATE hashAndRelationsNumberMemoryDB as H  

        SET suspectSchemaBoss = suspectMissingAssociate++ 

          WHERE H.hash == HASH(assoc1, assoc2); 

UPDATE hashAndRelationsNumberemoryDB as H  

    SET suspectBusiness = suspectBusiness + 1 

       WHERE H.hash == HASH(relationship.person1, relationship.person2)  

          AND relationship.type == "BUSINESS"; 

UPDATE hashAndRelationsNumberMemoryDB as H  

      SET suspectFamily = suspectFamily + 1 

         WHERE H.hash == HASH(relationship.person1, relationship.person2)  

            AND relationship.type == "FAMILY"; 

SELECT H.hash,  

     (FULL_ASSOCIATE*H.suspectFullAssociate + 

      FULL_BOSS*H.suspectFullBoss +  



Journal of Digital Forensics, Security and Law, Vol. 8(3) 

56 

      MISSING_ASSOCIATE*H.suspectMissingAssociate + 

      SCHEMA_ASSOCIATE*H.suspectSchemaAssociate + 

      SCHEMA_ASSOCIATEBOSS*H.suspectSchemaAssociateBoss + 

      SCHEMA_BOSS*H.suspectSchemaBoss +  

      BUSINESS*H.suspectBusiness +FAMILY*H.suspectFamily)  as 

WeightOutputStream  

      FROM hashAndRelationsNumberMemoryDB as H; 

Query 1 The Social Network Analysis Algorithm 

In steps 1 and 2, we define the constants associated with the different weights 

and the hash functions. In steps 3 and 4, we create the input feeds and local 

(temporary) MemoryDB. In steps 5 through 8, we create the hashes of “Boss-

Boss”, “Boss-Associate”, and “Associate-Associate” of MLSs. In steps 9 

through 11, we create the same hashes of Full-Trails. In steps 12 and 13, we 

create the hash for family and business “Relations”. In step 14, we calculate the 

WeightOutput of a hash H. 

3.6 The “Suspicious-Trail” Analysis Module 

Using the “SNA” module, the “Suspicious-Trail” module produces a new trail 

that contains the full path of an evolution, after making a scientific assumption 

of a possible relation between two or more “Full-Trail” and “Missing-Trail” 

lists. This module continuously calls the “SNA” module to fetch the social 

network connections of individuals, peer-groups, and money laundering trails. 

The sub-module “SNA” is used to derive the associated suspicious trails based 

on SNA techniques to calculate the link weight (ML relations found in all 

MLEDF DBs) and attribute (business and family relations) weight among trail 

actors. The table “Weight” that is used within the “Suspicious-Trail” module is 

completely constructed with data output from running the “SNA” module. The 

generated evolution patterns and strategies are collected into the “Suspicious-

Trail” Database. 

3.7 Suspicious-Trail Algorithm 

The “Suspicious-Trail” algorithm searches for missing and hidden links among 

ML trails. The analysis starts with any new “Full-Trail” with no more than 30 

networks (step 5). Then, the current “Full-Trail” is matched with each trail that 

complies with (step 6): 

a. Having ±10% of the current “Full-Trail” amount. 

b. A time window of 90 days between both trails’ timestamps. 

c. Location of first network of current “Full-Trail” is the same as the 

location of the last network of possible “Full-Trail” match. 
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d. Weight between current “Full-Trail” first boss and possible match 

last boss is larger than 1000. 

e. All matches are then treated separately as study cases and related to 

the current “Full-Trail” forming a “Suspicious-Trail” (steps 7 and 

8). 

1 

 

2 

3 

4 

5 

 

6 

 

 

 

 

7 

 

 

8 

 

SET NetworkLimit as 30; Similar_FundPercentage as 0.1;  

SET DayWindow   as 90; SET WeightRelation as 1000 

STREAM FullTrailInputStream FullTrailSchema Trails; 

STREAM SNAOutputStream WeightSchema weight; 

STORE Trails IN TrailsMemoryDB 

SELECT Trails FROM Trails WHERE 

 (Trails.lenght <= NetworkLimit); 

SELECT Trails, db as matchTrails FROM Trails as m, TrailsMemoryDB 

as db WHERE 

 ((m.finalAmount * Similar_FundPercentage < 

current.finalAmount) AND  

 (m.finalAmount > db.finalAmount* Similar_FundPercentage) 

AND 

 ((m.detectionTime-db.detectionTime) <= days(DayWindow)) 

AND  

 (lastelement(db.networks).location == 

firstelement(m.networks).location)); 

SELECT CONCATENATE(t,m) as SuspectedTrailOutputStream 

      FROM Trails as m, matchTrails as t, weight as w WHERE 

      w.hash == sort(t.startBoss,m.endBoss) AND w.weight >= 

WeightRelation; 

SELECT CONCATENATE(m,t) as SuspectedTrailOutputStream 

      FROM Trails as m, matchTrails as t, weight as w WHERE 

      w.hash == sort(m.startBoss,t.endBoss) AND w.weight >= 

WeightRelation; 

Query 2 The Suspicious-Trail Analysis Algorithm  

In step 1, we define the constants associated with limits set to relate and 

compare trails. In steps 2 through 4, we create the input feeds including the 

SNA-generated Weight DB, and local (temporary) DB TrailsMemoryDB. In 
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step 5, we filter the analyzed trails that do not exceed 30 levels. In step 6, we 

compare and link trails that match based on criteria listed above. In steps 7 and 

8, we concatenate the matching trail with another trail, either trail or matching 

trail leading the generated outcome.  

4. EXPERIMENTAL EVALUATION 

It hard to obtain real-life data in the domain of ML, where one can find some 

samples used to explain complex real-life cases. Therefore we approached 

several organizations to collect sanitized real-life cases that validate the testing 

of MLEDF, meeting the requirements imposed by the organization that 

provided the sanitized cases. Our case studies are based on data provided from 

the organization we refer as Trusted Third Party (TTP), which is legally 

allowed to collect information and track records of financial exchange. The 

identity of the TTP cannot be disclosed due to a Non-Disclosure Agreement. 

The sanitized cases were provided on the basis of having the MLEDF also 

tested in the infrastructure of TTP.  

4.1 Experimental Setup 

Using the real-life dataset, we generate a larger dataset that contains different 

levels of random transaction using a module we implemented using Java.  We 

used a template from real-life cases to generate the synthetic data that is similar 

to those cases by selecting a subset of t real-life cases to create more samples 

and develop new patterns, based on criteria such as preserving duration 

flexibility, geography variation, multitude of fund transferred, crowded trails, 

trails with low funds, complex instruments such as derivative products, 

continuous transition from one financial sector to the other, splitting a 

transaction with large fund into many connected small funded MLSs, etc.  

Once we generate artificial data sets we unite all the databases to create a large 

dataset to be inserted into the MLEDF for validation and testing. All the 

“endBoss” and “startBoss” of trails and generated MLS series are compared 

against the detected ones of MLEDF.  The same test was repeated with inserted 

random patterns of small trails and MLSs in some interval to confuse the 

MLEDF and test the false positive rate (FPR) and false negative rate (FNR). 

By adding a combination of randomly generated MLS series we imitate the 

daily production environment of stock brokerage and a retail bank. The real 

validation test for MLEDF is accomplished by assessing its ability to detecting 

patterns with accuracy in a noisy environment, similar to the real life 

transactions that are filled with noise.   
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4.2 Using Real-Life Cases in the Validation Test of the MLEDF 

 

Figure 5 Real-Life Case of Evolved and Sophisticated MLS 

Our test case spans over 5 countries involving 11 companies, 10 associates, 

and 8 innocent entities. As shown in Figure 5 and Table 5, the scheme has 3 

different full trail cycles. The laundered amount is lower than the amount 

transferred by the “StartBoss” of the cycle. The amounts in the case only 

reflect the amount laundered, either by gaining and losing, or by means of 

transferring the value. The amount does not represent the full amount of the 

transaction, which is higher than the amount laundered. The masterminds of 

the scheme are Company1 and “EndBoss”, based on the information provided 

to us by TTP. The sub-cycles of the case occur independently of each other and 

each has different rounds. Each round in each sub-cycle is in tandem with other 

rounds of the same sub-cycle. The information of individuals and companies, 

locations, and dates are all sanitized. 
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Table 5 The Subcycles and Rounds of the Full-Trail of the Real-life Case 

Cycle 

StartBoss 

Cycle  

EndBoss 

Participants Rounds Laundered 

Amount 

Company1 
Money 

Launderer 
15 5 

$260,000 

Company1 
Money 

Launderer 
4 3 

$185,000 

Company3 
Money 

Launderer 
5 3 

$185,000 

4.3 Experimental Evaluation 

We introduced a three phase testing prototype to examine MLEDF and 

detection algorithms. All of the three phases focused on testing and validating 

the components of MLS, Full-Trails, and Suspicious-Trails. The first phase 

focus on testing all components and the other tests focus on Full-Trail and 

Suspicious-Trail components.  

Table 6 Used Testing and Validation Methodology  

Test-Validation Type  Patterns Used  Pattern Generation Method 

Test (I)Without Noise  Single MLS,  

Missing-Trail,  

Full-Trail 

StreamBase-Generated single MLS 

StreamBase-Feed Pair of MLS  

Feed Full-Trail's from Real-life Cases 

Test (II)Subtle Noise Entities, 

Transactions, 

Single MLS  

Inject same entities into Full-Trail 

Inject subtle transactions into Full-Trail 

Inject similar MLS into same Full-Trail  

Test (III)Controlled 

Data 

30LDeep Full-Trail 

20LDeep Full-Trail 

10LDeep Full-Trail 

Create 30 levels vertically deep trails 

Create 20 levels vertically deep trails 

Create 10 levels vertically deep trails 
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Table 7 Defining False Negative Rate for Each Test Phase 

Test  Patterns Used  FNR 

Test I Single MLS,  

Pair MLS,  

 

Full-Trail 

Detected MLS list is less than the input list  

Detected MLS pairs is less than the input list, or MLS pair is 

detected as single MLS 

Detected Full-Trail list is less than the input list, or Full-Trail is 

detected as Missing-Trail’s (shorter trails) and single MLSs 

Test II Entities, 

Transactions, 

Single MLS  

Missed detection of  MLS, because similar participants injected 

Missed detection of  MLS,  because identical transactions injected 

Missed detection of trail, because similar MLS injected 

Test III 30L-Deep 

 

 

20L-Deep  

 

 

10L-Deep  

30L-Deep is missed in detection, and it will cause to be detected as 

(FPR) other level deep combination of Full-Trail (less than 30L), 

Missing Trails and MLS 

Missed detection, and causing generation of FPR of Full-Trail (less 

than 20L), Missing Trails and MLS 

Missed detection, and causing generation of FPR of Full-Trail (less 

than 10L), Missing Trails and MLS 

 

Table 8 Defining False Positive Rate for Each Test Phase 

Test  Patterns Used  FPR 

Test 

I 

Single MLS,  

Pair MLS,  

Full-Trail 

Not possible as MLS is either detected or missed, as there is no noise 

Not possible as MLS pair is either detected or missed, in no-noise data 

Full-Trail is not captured, instead MLS pairs, MLS triple, or shorter 

Full-Trails are captured in lieu of the Full-Trail 

Test 

II 

Entities, 

Transactions, 

Single MLS  

Detect MLS with different participants (Associate and/or Boss) 

Detect MLS with different participants (Associate and/or Boss) 

Missed detection of the actual Full-Trail. Instead of that MLS, Missing-

Trails and shorter Full-Trails  that form the actual Full-Trail captured  

Test 

III 

30LDeep  

20LDeep  

10LDeep  

Full-Trail of desired depth (10L, 20L, 30 L) is not captured, instead a 

combination of Full-Trail of less depth, Missing-Trail, and MLS are 

captured in lieu of the actual Full-Trail 
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4.3.1 Test without Noise 

This is designed to test every module of MLEDF, including detection 

algorithms and trail analysis modules. These tests evaluate the FPR and FNR 

by comparing the results of the test with the data feed that contains the patterns 

of single MLS, pair of MLSs, and Full-Trails. The desired result is to have a 

list of the validation result identical to the list in the data feed. We test the 

efficiency to keep up with the speed of the data feed by using the time window 

feature in the StreamBase (StreamBase 2012, 2014). By setting the time 

window to glide over only one event at a time tick in the StreamBase system, 

we required the detection algorithms to be fast at normal speed of one event at 

one time tick of the CEP system. By design, algorithm that cannot attain the 

speed of event production will not be able to capture MLS events or the Full-

Trail, thereby generating false negatives.  

Each of the six detection algorithms are tested with its own dataset feeds in 

order to verify that we detect without FPR and FPR. The algorithm-specific 

dataset feed is generated using the built in feed generator working with our 

pattern specific event generator. Afterwards, we tested the “Missing-Trail” by 

feeding linked pairs of MLSs into the MLEDF. The linked/related pairs are 

randomly selected from the set of six types of MLS. As mentioned, any pair of 

linked MLS will make it to “Missing-Trail” and not into “Full-Trail”, due to 

the required depth. Moreover, we finally tested the detection and evolution of 

“Full-Trail”s by feeding trails generated using the various laundering strategies 

of the real-life cases.  

The process of creating the “Full-Trail” will start with creating an MLS type 

out of the six MLS types of Smurfing, Trading, DirtyEFT, Stock, Derivative, 

E-Money. Once the selection of first MLS is made, we create the linked MLS 

series based on considerations such as geography, money-amount, time, 

complexity, difficulty of tracking. The trails were created considering different 

levels of criteria, the randomization of the criteria is uniformly distributed. The 

Full-Trail feeds were created by the generator that does not exceed 10 levels of 

depth of linked MLSs. The trails are either a variant or a subsection of one of 

the real-life cases that are similar in terms of complexity and people involved 

to the case explained previously.  

At the normal speed, of one event at one time tick of the CEP system, the test 

result is zero for the false positive rates and false negative rates. It is highly 

improbable to get a false positive trail due to the business rules that define 

them, and due to the accuracy and granular level of linking transactions. We 

did not get any false positive schema in the MLS tests, due to the synthetic 

nature of the data. When we increased the speed of the feed of data generated 

to 10 times and 100 times the normal speed, we observed a FPR and FNR in 

the objects detected (Full-Trail). Increasing the speed of data-feed processing 

did not produce FPR and NFR for single MLS, but it produced FPR and FNR 
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for pair MLS at speed 100X. The term “object” in the graph refers to the three 

different patterns of single MLS, pair MLS, and Full-Trail in the proprietary 

test of the specific object (Object in the first pattern test refers to the first 

pattern single MLS, in the second to MLS pair, in the third to Full-Trail). The 

values of FRP and FNR reflect the number of falsely detected objects. 

 

 

Figure 6 Details and False Detection Results of Test I 

4.3.2 Test with Subtle Noise 

This is the most relevant test of the accuracy of our detection algorithms. The 

goal is to mislead the detection algorithms to generate both a false positive and 

false negative, with the use of subtle synthetic data. The test has three separate 

phases: injecting the scheme participants, injecting subtle transactions, and 

inserting similar MLS. A subtle transaction means an identical transaction with 

±5% of an actual transaction amount in a MLS. A similar MLS means an 

identical MLS with the same set of participants but with the MLS value is 

±10% of the laundered amount of the MLS. The injection speed was performed 

at normal processing speed, 10 times faster speed, and 100 times faster speed. 

The test of injecting transactions and MLS is setup considering each MLS type. 

For example, in the test of smurfing we create only smurfing MLS and 

smurfing transactions that can extend vertically up to 20 levels of depth and 

horizontally to 30 levels of depth. When generating the MLSs, our measures 

vary based on the MLS. We do not use artificially created none-real life cases. 

For example, we did not use a smurfing MLS with 100 levels deep, as that is 

uncommon and impractical to launder money using such MLS. We do not 

inject other MLSs into the injection testing of specific MLS. However, in the 
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Full-Trail testing we inject all the types of MLS. By design of full-Trail it is 

required that we related different types of MLS under the same Full-Trail.  

As it can be seen from Figures 7-9, the test produced low FNR and low FPR 

for transaction and MLS injection when the phases were executed at normal 

processing speed.  Those rates increased in the phases when tests were 

executed at faster processing speed. One way to imitate the data feed pace of 

real production environment is to run the CEP tests at faster pace, which means 

overloading the system with processing and analytics while attempting to keep 

pace with the data feed. The goal was to evaluate the effectiveness of “Full-

Trail” detection when the system absorbs data at a higher rate while 

performing the analysis. Due to the design methodology of detection 

algorithms and the complexity of the business rules of MLS detection, their 

false detection rates stayed at low levels even with injection similar 

transactions and MLSs, at a higher data-feed speed.  

Meeting the design principles, the “Full-Trail” and “Suspicious-Trail” results 

remained at low rates for both false positive and false negative. Therefore, all 

the subtle single MLS created with our injected data ended in the “Missing-

Trail”s, where they do not exceed the depth of 3 consecutive MLSs. Among 

the reasons for such success in trail analysis and avoiding any negative impact 

are the following: (1) Designing MLEDF in such a strict and granular method, 

especially for matching the MLSs within the trails; (2) Using the SNA in the 

trail analysis algorithms; and (3) Adopting the criterion of following the 

direction of the money flow. MLS is not expected to terminate with funds 

remaining in the account. The money must flow in some direction in order to 

be laundered, or must be withdrawn by the launderer.  

 

 
 

Figure 7 Details and False Detection Results of Test II-Entity Injection 
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Figure 8 Details and False Detection Results of Test II-Transaction Injection 

 

 

Figure 9 Details and False Detection Results of Test II- Similar MLS Injection 

 

4.3.3 Test with Longer Synthetic Full-Trails  

This is the hardest level of performance-testing of the system and accuracy-

testing of the detection algorithms. The dataset is permutated over a repository 

of the different real-life cases. Afterwards, the dataset is combined with 

randomized MLS to generate deep vertical levels of “Full-Trail” and 

“Suspicious-Trail”. The randomization follows the same principles we used in 

Test II, the injection testing. The test is designed to assess the performance of 

MLEDF in capturing real-life data and analyzing them on the fly. The desired 

test result is to generate low FPR and FNR. The test module generates all 

synthetic data from real-life cases. The test is as similar as it can be to real-life 
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scenarios, considering that there are limited ways to manipulate a MLS. The 

test program functions as follows: (1) Set a trail depth. The program enters a 

loop and builds a trail by choosing a first scheme from of each MLS type at 

random, as it was described in Test I in building the Full-Trails; (2) The loop 

continues by creating an MLS that can be linked by funds, time, location and 

complexity wise to the current MLS. We repeat the step above with the 

exception of not creating any Smurfing MLS for the rest of the levels; (3) The 

permutation continues until we reach the last level, where we always choose an 

MLS of type DirtyEFT with withdrawal, in order to generate the trail 

termination point, as by definition a trail will end with withdrawal; (4) The test 

repeats the process of trail generation forever, and at the maximum possible 

speed; and (5) The testing module saves the arrival time of the last DirtyEFT 

and subtracts that from the build time of the trail. Thereby, we obtain the 

difference in Milliseconds, which represents the time duration for trail 

processing. 

The data was generated for worst-case scenarios. By doing so we ensure that 

the generated data is more complex and that the performance is evaluated only 

in most resource consuming cases. Displayed results represent the performance 

of data generated without any repetitive bosses or associates. Hence, the 

dataset is consumes a significant number of resource.  

 

Figure 10 False Detection Results and Details of Test III 

4.4 Data Characteristics 

We introduced six MLS types with different subtypes for each sector. The 

combination of schemes is novel in its entirety as they were driven from real-

life cases. The novelty lies in: (1) creating patterns from real life cases using 

CEP system; (2) developing a software that can read patterns from real-life or 

synthetic cases and evolve it based on criteria we implemented; and (3) 

attempting to link the networks of from those cases to produce different MLS 

variations that involve all well-known MLS. 
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In the first test, we used the StreamBase (SB) simulator (StreamBase 2012, 

2013) and MLS DB to feed data into the application. In the tests of the MLS 

pair and “Full-Trail”, the simulator retrieves the DB data and generates 

samples. In the single MLS test, we feed the DB data into the simulator to 

generate samples from a pool of a specific set of MLS. The “Full-Trail” dataset 

contains variants and subsections from five real-life cases. The dataset was in 

CVS format, and contained 292,000 MLS records that constituted a total of 

12,000 “Full-Trail” records. The dataset contained 1.4 million transactions. In 

the second test, we used a modified version of the dataset that contains subtle 

transactions and identical MLSs. We injected 20,000 identical MLS and 95,000 

subtle transactions using the simulator. In the third test, we implemented a Java 

program to stream the generated data into the MLEDF.  

4.5 Testing Performance 

In order to test performance using the environment described above, we 

executed three major tests over three different data sets. The third simulation 

test was the most crucial test, as the data feed resembles the data feed seen on a 

daily basis in a bank or in a brokerage house.  

The processing ratio is ideal, obviously workable to be faster. The trail 

processing time decreases with the deeper trails because there are less MLS per 

object in this case. However, it is a good indicator because it means that in 

more healthy situations, the system will be faster in responding to troubles. The 

processing time both for objects and MLSs is set to be ideal on 20-depth trails. 

This implies that the system is more suitable to trails of that particular depth. 

With our assessed speed to get ~0.5 objects/millisecond processing, and for 

such a system, this is significant. While the processing ratio can be very 

subjective to the number of markets, for banks and other feeds connected to the 

system, a productive version of a system like this will need to be scaled in 

order to meet that ratio. 

  

Figure 11 Performance Test Results 
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4.6 The Validation Statement 

We used the SB Studio Feed Simulation platform for performing our tests 

during the validation: (1) to connect it to module generator of Test III to 

retrieve the deep Full-Trails; (2) to connect it to the data-feed we used in Test 

II; and (3) to create noise-free pure data in Test I. Although there are higher 

performance opportunities promised by vendors, SB in particular, we observed 

that our queries reveal reasonable outcomes in terms of performance tests, even 

using this none-enterprise test environment. We also observed that the queries 

result in reasonable accuracy values given the specially crafted synthetic data 

sets. Given the data set, we successfully determined a reasonable window size 

for window-based queries. Using attributes, we could also successfully 

converge the evidence outcomes by tuning the force of time, property, and key-

based patterns directing those queries. 

5.  RELATED WORK 

The system created by FINCEN AI System (FAIS) (Senator et al., 1995, 1998) 

is a similar system in terms of the concept of detecting MLS. The drawback of 

the system is that it does not capture live data (i.e., running data connected to 

banking systems) and requires the involvement of an expert in the link 

analysis, and tying MLS and transactions. Whereas our system does not need 

the involvement of an expert and captures live, as well as feeds the data into 

the SB engine. The KDPrevent system (Jacobs et al., 2003; Kuns et al., 2004) 

is the most private product that is similar to our product in terms of the logic of 

including the background of the transactions of individual and groups. The 

KDPrevent system is also based on data mining techniques that is not real-time 

and necessitates the involvement of experts. Gunestas, et al. (2010) conducted 

a similar study in the financial transaction forensics, with a focus only on Ponzi 

schemes. The framework only captures one form of transaction only from the 

web services transactions. Our framework can be accepted as a continuance to 

(Gunestas et al., 2010) for MLS and accepting all forms of transactions, 

including the banking transactions.  

6.  CONCLUSION 

We have created a framework to detect the evolution of MLS and implemented 

a system to include SNA for detecting and linking related ML networks. The 

linkage will function properly even when all evidence is unavailable. We 

defined the choreographies that could be used to detect the evolution of the 

sophisticated MLS. We have shown how to detect and capture the evolving and 

complex trails of MLS using SB. Although our choreographies only specify 

well-known money laundering schemes, the framework can be updated with 

business rules to capture any form of other MLS that can be mined from 

repositories of financial transactions. Our ongoing work addresses the 

extension of our method in developing an online warning system that detects 
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MLS that appear legitimate from an abstract view, but are illegitimate from the 

detailed view. Currently, we are working to produce algorithms to prevent 

transactions from a sequence of financial transactions, based on our detection 

system and proprietary scoring system. 
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