HIZ KONTROL SISTEMLERİ ILE POMPA, FAN VE KOMPRESÖRLERDE SAĞLANAN ENERJI TASARRUFLARI

Recep KAZAN, Hüseyin NARSAK

Özet- Bu çalışmada, hiz kontrol cihazları kullanilarak pompa, fan ve kompresörlerde sağlanabilecek enerji tasarruflarıyla ilgili genel bilgilendirme yapilmıstir. Proseslerde kullanilan kompresörlerin çalisma grafikleri günlük olarak hazurlanmıştr.Proseslerde genelde sabit devirli standart kompresörler kullanimaktadir. Bu çalı̧̧mada buna alternatif olarak Atlas Copco VSD Değisken devitli kompresör ile simülasyon yapularak enerji tasarruf miktariars yüzdesel ve euro bazunda ortaya konmuştur.

> Anahtur Kelimeler - Degisken devini motor, enerji tasarrufti

Abstract-inthis study, by being used the speed
control systems, a control systems, a general kowledge about the energy possessions provided with the pumps, fans and compressors, It's prepared compressors using proses working graphics daily. It's used usually constant cycle standart compressors. In this study being alternative compresor Atlas Copco VSD Variety Speed Compresor simulation energy possesion quantity is prepared base percent and Euro.

Key Words - Variety cycle motor, energy possession

[^0]
I. GíRIŞ

Endüstride önemli bir maliyet olarak ortaya çikan errer giderlerinin azaltılması önemli bir unsurdur. Bu komity muhtelif alanlarda çok ceșitli çalışmalar yapilmsştr| yapilmaktadır.
Bu çalışmalardan biri de hız kontrol cihazları kullanlezy pompa,fan, kompresör vb.makinalarda enerji tasarrufunt sağlanmasıdır. Motor devrinin ihtiyaç duyulan basing debi değerlerine göre belirlenmesini sağlayan bu cihaz gereksiz olarak motorun yüksek devirde çalismasi engelier yada makinanun boşta çalışmasını engellevere taizda dizayn edilirler. Program cihaziarında set edile basinç ve debi değgrlerine göre motor devri otomali olarak gereken degerlerde çalişr [1].
Eu çaliṣmada sırasıyla fan,pompa ile ilgili olarak yaplic genel çaisçmaların neticeleri gösterilecek ve denens olarak Atlas Copco Kompresör imalatçı firmasiru yardmlaryyla varilan neticeier açiklanacaktur.

II.FAN VE POMPALARDA HIZ KONTROL CIHAZLARININ SAĞLADIĞI KAZANÇLAR

Fan ve pompa yulkleri değisken moment Hzan karesiyle oranth yuikin moment	ylikleridr
	yukie
Guiç ise hiz ile momentin çarpımıdr.	

$\mathrm{P}=\mathrm{Mxw}$

$$
\begin{aligned}
& \text { P: Güç (} \mathrm{W} \text { att }) \\
& \mathrm{M}: \text { Moment }(\mathrm{Nm}) \\
& \mathrm{w}: \mathrm{Hiz}(\mathrm{rad} / \mathrm{s})
\end{aligned}
$$

Konvansiyonel sistemlerde hız sabittir çünkü tahrik elemanı olarak kullanılan AC asenkron motor sabit frekansla, şebeke frekansıyla beslenmektedir ve hiz yyik değişimlerinden etkilenen kayma faktörǜ de ihmal edilirse sabit dưşunülür . Debiyi düṣürmek için panjur, klape, bypass v.b. kullanılan konvansiyonel sistemler yerine doğrudan fanın veya pompanın devrini düșürerek kontrol yapmak, bu yük karakteristiği de düşünüldüğünde göz ardı edilemez bir enerji tasarrufu konusunu gündeme
getirmektedir. Bunun için basit bir örnek düşünelim havalar biraz daha soğuduğu için soğuk hava üfleyen Fanın devrini yarıya indirmek gerektiğini varsayalım $\mathrm{H} ı z 1 / 2$ kat düșer ise karesel orantıdan dolayı moment $1 / 4$ katına iner. Hız ile momentin çarpımı ise gücü vereceğinden $1 / 2 \times 1 / 4=\% 12,5$ sine inecektir.
100W lık fanın yarı devrinde yaklaşık olarak şebekeden çektiğ́i gücün 12,5 Wattlara düşeceğini hesaplamış oluruz. Elbetteki sistem verimi, kayiplar v.b. etkenlerden dolayı bu değer tam olarak $\% 12,5$ olmayabilir ancak tam devirdeki $\% 100$ kapasite gücüne göre de gözardı edilemeyecek boyutlarda enerji tasarrufu imkanını verir.Aşağıda bir fanın çıkış kontrollü olarak (panjur, damper v.b.) çalıştrrılması ile fanın hız kontrol cihazı kullanarak devir ayarı yöntemiyle proses değişkeninin kontrolü arasındaki fark grafiksel olarak gösterilmiștir.Örneğin \% 50 debiyi fan çıkışının bir hız kontrol cihazı kullanıldığında şebekeden çekilen güç arasındaki fark net bir şekilde görülmektedir ve doğrudan enerji tasarrufu hesabının parametresidir.

Sekil 1. Sabit hızlı ve değişken hızlı fan enerji - debi grafigi
A noktasında klasik yöntemdeki enerji sarfiyatı yaklaşık \% 78 iken B noktasında Siemens Mikromaster hiz kontrol cihazı ile bu oran B noktasında $\% 13$ mertebesindedir [2].

III.DENEYSEL UYGULAMA KLASİK KOMPRESÖRLER İLE DEĞİŞKEN DEVİRLİ KOMPRESÖRLERIN ENERJİ GİDERLERİ KARŞILAŞTIRILMASI

Prosesde kullanılmakta olan Lupamat LKV 610 ve Atlas Copco GA 75 kompresörlerin çalışmaları Atlas Copco firması tarafından temin edilen özel kayıt cihazı ile takip edilmiştir. Günlük olarak çıkarılan grafikler aşağıdadır :

Şekil 3. 21/10/2003 Salı
GA 75 - LKV 610 Hava Tuketim Grafigi

Şekil 6. 24/10/2003 Cuma
GA 75 - LKV 610 Hava Tuketim Grafigi

Şekil 5. 23/10/2003 Perşembe
GA 75 - LKV 610 Hava Tüketim Grafiği

Sekil 8. 26/10/2003 Pazar
GA 75 - LKV 610
Hava Tüketim Grafig̣i
Sistemin 1 haftalık süre içerisinde çalışması neticesinde kayıt cihazından elde edilen değerler ve simülasyonu yapılan Atlas Copco GA 90 VSD ve GA 22 kompresörlerin eșçalışmaları hallerindeki veriler aşağıda ortaya konmu ve neticede enerji kazancı yüzdesel ve euro bazında netleşmiştir.

Tablo 1. Ölçüm ve Simülasyon Tablosu

	GA 75 LKV 610	GA 90 VSD GA 22
DEBİ (LT/SN)	287,2	58
BOŞTAKİ GÜÇ (KW)	47,6	5,3
YÜKTEKI GÜÇ (KW)	141,1	24,2
BOŞTAKI BASINÇ(BAR)	7,4	8,3
YÜKTEKİ BASINÇ(BAR)	6,5	7,6
PROGRAM DURMASI (SAAT)	30	0
PROGRAM START SAYISI	$6 /$ SAATTE	0
YÜKTE KALMA SÜRESİ (SAAT)	230,7	330,5
BOŞTA KALMA SÜRESİ(SAAT)	58,3	5,
DURMA SÜRESİ (SAAT)	47	9,2
BOŞ/YÜK SAYISI	4109	15835

IV. ÖLCÜM SONUCLARININ DEĞERLENDIRILMESi

Klasik konvansiyonel sistemi temsil eden kompresörlerin boş/yük çevrim sayılarının,boşta ve yükte çekilen enerji değerlerinin yüksekliği bu çalışmayla netleșmiştir. Konvansiyonel kompresörlerin boşta çalısma sürelerinin yüksekliği de dikkat çekmektedir.
$(18618-13182) \times 100$
ENERJİ KAZANCI = (haftalık)

18618
ENERJI $\mathrm{KAZANCI}=\mathbf{\%} 29,19$

1 HAFTALIK ENERJİ $\mathrm{KAZANCI}=5436 \mathrm{KW}$

YILLIK ENERJİ KAZANCI $=282672 \mathrm{KW}$
$1 \mathrm{KW}=121,500 \mathrm{TL}$

ENERJİ TASARRUFU $=34.344 .648 .000 \mathrm{TL}$

$1 \mathrm{EURO}=1.730 .000 \mathrm{TL}$

ENERJI TASARRUFU $=19853$ EURO $/$ YIL

\% 29, 19luk enerji tasarruf imkanı işletmelerin enerji tasarruf politikalarmda basınçlı hava temininde henüz yatırım aşamasındayken hava ihtiyaçlarının temininde hız kontrollü kompresör uygulamasının mutlakagöz önünde bulundurulması gereken bir unsur olduğunu göstermektedir. İlk yatırım maliyeti yaklaşık \%50lere kadar ekstra bir fazlalık oluștursada denemeden de anlaşılacağı üzere bunun geri dönüşü yaklaşık 1 yılda mümkün olmaktadır. Günlük grafiklerden , gece çalışmalarında ve öğlen paydoslarında hava tüketimlerinin azaldığı, haftasonlarında sabit ve yüksek oranda bir tüketimin (hava kaçakları dolayısiyla) oluştuğu görülür. Profill grubu hava tüketim tarzı olarak değerlendirilen bu grup sanayide 24 saat üretim yapan işletmelerin genelinde ($\% 65$ oranlarında) ortaya çıkmaktadır. Bu sonuçlar Electrabel elektronik laboratuarı olan Laborelec'teki sonuçları da doğrulamaktadır. Enerji Tasarruf sistemleri incelemesi yapan Abdurrahman Çiçek tarafindan işaret edilen yüksek oranlı kazanç durumu bu çalişmada ortaya konmuştur [3].

KAYNAKLAR

[1]. Atlas Copco ürün kataloğu 2002
[2]. Elk.Müh. Özgür Biliz
Fan,Pompa Yükü ve Enerji Tasarrufu
Siemens San.Tic.A.Ş. A ve D SD 2001
[3]. Abdurrahman Çiçek, Sanayide Enerji Tasarrufu Potansiyeli veÖzenMensucat Fabrikası Enerji Etüdü, Yüksek Lisans Tezi Sakarya Üniversitesi, 2000

[^0]: R.Kazan, Sakarya Üniversitesi Müh.Bölümü H.Narsak, Sakarya Üniversitesi Fen Bilimleri Enstitusu

 Makine Müh.Anabilim Dalı, Mekatronik bilim dalı

