ON IDEMPOTENCY OF LINEAR COMBINATIONS OF TWO COMMUTE IDEMPOTENT MATRICES

Halim ÖZDEMİR, Aydın ÍNCi, Murat SARDUVAN

Özet - \mathbf{P}_{1} ve \mathbf{P}_{2} komutatif idempotent matrislerinin lineer kombinasyonunun da bir idempotent matris olduğu tüm durumları karakterize etme probleminin tam bir çözümü ortaya konulmaktadır. Ayrıca, bu çalışmada ele alman idempotentlik probleminin bir istatistiksel yorumu da verilmektedir.

Antahtar kelimeler- Köşgenleştirme, Minimal polinom, Eğik izdüşũn, Ortogonal izdüşüm, Kuadratik form, Ki-kare dağolıms

Abstract - A complete solution is established to the problem of characterizing all situations, where a linear combination of two commute idempotent matrices P_{1} and P_{2} is also an idempotent matrix. A statistical interpretation of the idempotency problem considered in this note is also pointed out.

Keywords- Diagonalization, Minimal polynomial, Oblique projector, Orthogonal projector, Quadratic form, Chi-square distribution

I.INTRODUCTION

It is assumed throughout that c_{1}, c_{2} are any nonzero elements of a field \boldsymbol{J} and $\mathbf{P}_{1}, \mathbf{P}_{2}$ are two different nonzero commute idempotent matrices over \mathfrak{J}. The symbols γ_{1}, γ_{2} and
$\mathbf{Q}_{1}, \mathbf{Q}_{2}$ are used instead of c_{1}, c_{2} and \mathbf{P}_{1}, \boldsymbol{P}_{2} when considerations are concemed with complex scalars and matrices.
H.Özdemir. A. Inci, M.Sarduvan; Depanment of Mathematics, Sakarya University, 54040 Sakarya, Turkey.

In fact, the main aim of this paper is to establish an alternative proof of one part of theorem recently obtained by Baksalary and Baksalary in [6], which deals with the operation of combaning linearly \mathbf{P}_{1} and \mathbf{P}_{2} preserves the idempotency property. However, the proof given should be of interest because of the fact that characteristics roots and vectors, and polynomials are useful in statistics. Three such situations are known in the literature, viz., if the combination is either the sum $\mathbf{P}_{1}+\mathbf{P}_{2}$ or one of the differences $\mathbf{P}_{1}-\mathbf{P}_{\mathbf{2}}$, $\mathbf{P}_{2}-\mathbf{P}_{1}$, and appropriate additional conditions are fulfilled; cf. Theorem 5.1.2 and 5.1.3 in [4]. The solution obtained asserts that these three situations exhaust the list of all possibilities when attention is restricted to commute idempotent matrices, or complex idempotent matrices \mathbf{Q}_{1} and \mathbf{Q}_{2}, and γ_{1} and γ_{2} complex numbers such that $\mathbf{Q}_{1}-\mathbf{Q}_{2}$ is Hermitian.

Quadratic forms with idempotent matrices are used extensively in statistical theory. For this reason, the idempotency problem considered in this note admits a statistical interpretation due to the fact that it a random n.xl vector y has a multivariate normal density with covariance matrix equal to I, where \boldsymbol{I} stands for the identity matrix, then the quadratic form $\mathbf{y}^{\prime} \mathbf{A y}$ has a noncentral chi-square density if and only if \mathbf{A} is an idempotent matrix; this is an important result in the analysis of variance; cf. Theorem 5.1.1 in [3] or Lemma 9.1 .2 in [4]. (Also see in [8] for details.)

H.MAIN RESULT

As alraedy pointed out the main result deals with the alternative proof of the one part of the theorem in [6] using diagonalization of matrices. Before giving the main result we note that every idempotent matrix is diagonalizable, and has only the eigenvalues 1 and 0 .

Let us first give the following lemma.

Lemma. Let \mathbf{P}_{1} and \mathbf{P}_{2} be two conmute $n x n$ idempotent matrices and \mathbf{P} be their linear combination of the form

$$
\mathbf{P}=c_{1} \mathbf{P}_{1}+c_{2} \mathbf{P}_{2}
$$

with nonzero scalars c_{1} and c_{2}. Then \mathbf{P} is diagonalizable.

Proof. First of all, note that an idempotent matrix is diagonalizable. Since P_{1} and P_{2} are idempotent and conmmute, they are simultaneously diagonalizable (see, e.g., [7], pp.52). Hence there is a single similarity matrix S such that $\Lambda=\mathbf{S}^{-1} \mathbf{P}_{1} \mathbf{S}$ and $\mathbf{M}=\mathbf{S}^{-1} \mathbf{P}_{2} \mathbf{S}$ are diagonal matices. In addition, their diagonal entries are the eigenvalues of \mathbf{P}_{1} and \mathbf{P}_{2} with proper multiplicities. Thus we get
$\mathbf{P}_{1}=\mathbf{S} \Lambda \mathbf{S}^{-1}$ and $\mathbf{P}_{2}=\mathbf{S M S}^{-1}$
and hence

$$
\mathbf{P}=\mathbf{S}\left[c_{1} \mathbf{\Lambda}+c_{2} \mathbf{M}\right] \mathbf{S}^{-1}
$$

This completes the proof.

Now let us give the thoerem.
Theoren. Given two different nonzero commute idempotent matrices \mathbf{P}_{1} and \mathbf{P}_{2}, let \mathbf{P} be their linear combination of the form

$$
\begin{equation*}
\mathbf{P}=c_{1} \mathbf{P}_{1}+c_{2} \mathbf{P}_{2} \tag{2}
\end{equation*}
$$

with nonzero scalars c_{1} and c_{2}. Then there are exactly three situations, where \mathbf{P} is an idempotent matrix:
(a) $c_{1}=1, c_{2}=1, \quad \mathbf{P}_{1} \mathbf{P}_{2}=\mathbf{0}$;
(b) $c_{1}=1, c_{2}=-1, \quad \mathbf{P}_{1} \mathbf{P}_{2}=\mathbf{P}_{2}$;
(c) $c_{1}=-1, c_{2}=1, \quad \mathbf{P}_{1} \mathbf{P}_{2}=\mathbf{P}_{1}$.

Proof. Since \mathbf{P}_{1} and \mathbf{P}_{2} commute, they are simultaneously diagonaziable. Assume that \mathbf{S} is invertible matrix, which simultaneously
diagonalizes \mathbf{P}_{1} and \mathbf{P}_{2}. Thus, we may write \mathbf{P}_{1} and \mathbf{P}_{2} as in (1). So, we have

$$
\begin{aligned}
\mathbf{P} & =c_{1} \mathbf{P}_{1}+c_{2} \mathbf{P}_{2}=c_{1} \mathbf{S} \Lambda \mathbf{S}^{-1}+c_{2} \mathbf{S M S}^{-1} \\
& =\mathbf{S} \mathbf{S}^{-1}
\end{aligned}
$$

where $\boldsymbol{\Sigma}=c_{1} \mathbf{\Lambda}+c_{2} \mathbf{M}$. Hence, direct calculations show that \mathbf{P} of the form (2) is idempotent if and only if

$$
\Sigma^{2}=\Sigma
$$

or, clearly

$$
\begin{equation*}
\left(c_{1} \lambda_{i}+c_{2} \mu_{i}\right)\left(c_{1} \lambda_{i}+c_{2} \mu_{i}-1\right)=0 \tag{3}
\end{equation*}
$$

$i=1,2, \ldots, n$.
where λ_{i} and μ_{i} are the diagonal entries of $\boldsymbol{\Lambda}$ and M , respectively. On the other hand, both \mathbf{P}_{1} and \mathbf{P}_{2} have only the eigenvalues 1 and 0 since \mathbf{P}_{1} and \mathbf{P}_{2} are idempotent. Taking into account Lemma and assumtions of the theorem, it is seen from equations (1) that if $\mathbf{P}_{1} \mathbf{P}_{2}=0$, then $\left(\lambda_{i}, \mu_{i}\right)$ attains each of the pairs $(0,0),(0,1)$ and $(1,0)$ at least once for at least one value of i. Hence, equations (3) are commonly fulfilled if and only if $c_{1}=1$ (implying $c_{2}=1$), which is the situations (a). Furthermore, in wiew of the assumption that $\mathbf{P}_{1} \neq \mathbf{P}_{2}$, The equalities $\mathbf{P}_{1} \mathbf{P}_{2}=\mathbf{P}_{1}$ and $\quad \mathbf{P}_{1} \mathbf{P}_{2}=\mathbf{P}_{2}$ cannot hold simultaneously. Consequently, under the last assumptions, it is again seen from equations (1) that $\left(\lambda_{i}, \mu_{i}\right)$ attains each of the pairs $(0,0),(1,0)$ and $(1,1)$ at least once for at least one value of i if $\mathbf{P}_{1} \mathbf{P}_{2}=\mathbf{P}_{2}$, and each of the pairs $(0,0),(0,1)$ and $(1,1)$ at least once for at least one value of i if $\mathbf{P}_{1} \mathbf{P}_{2}=\mathbf{P}_{1}$. And therefore, it can be shown simply that equations (3) are commonly fulfilled if and only if $c_{1}=1$ (implying $c_{2}=-1$) for we former case, which is the situations (b), and $c_{1}=-1$ (implying $c_{2}=1$) for the latter case, which is the situation (c).

The proof is completed.
Remark. As pointed out at Section 1, it is establishec an alternative proof (having practical value in statistics) of one part of the theorem recently obtained by Baksalary and Baksalary in [6]. In that paper, a complete solution was established to the problern of characterizing all situations (including noncommute case). Morever, it was given two cofollaries:
(1) Under the assumptions (including noncommute case) of the theorem, a necessary condition for $\mathbf{P}=c_{1} \mathbf{P}_{1}+c_{2} \mathbf{P}_{2}$ to be an idempotent matrix is that each of the products $\mathbf{P}_{1} \mathbf{P}_{2}$ and $\mathbf{P}_{2} \mathbf{P}_{1}$ is an idempotent matrix; cf. Corollary 1.
(2) Given two different nonzero complex idempotent matrices \mathbf{Q}_{1} and \mathbf{Q}_{2} such that the difference $\mathbf{Q}_{1}-\mathbf{Q}_{2}$ is Hermitian, let \mathbf{Q} be their linear combination of the form $\mathbf{Q}=\gamma_{1} \mathbf{Q}_{1}+\gamma_{2} \mathbf{Q}_{2}$ with nonzero complex numbers γ_{1} and γ_{2}. Then there are exactly three situations, where \mathbf{Q} is also idempotent;
(i) $\mathbf{Q}=\mathbf{Q}_{1}+\mathbf{Q}_{2}$ and $\mathbf{Q}_{1} \mathbf{Q}_{2}=\mathbf{0}=\mathbf{Q}_{2} \mathbf{Q}_{1}$,
(ii) $\mathbf{Q}=\mathbf{Q}_{1}-\mathbf{Q}_{2}$ and $\mathbf{Q}_{1} \mathbf{Q}_{2}=\mathbf{Q}_{2}=\mathbf{Q}_{2} \mathbf{Q}_{1}$, (iii) $\mathbf{Q}=\mathbf{Q}_{2}-\mathbf{Q}_{1}$ and $\mathbf{Q}_{1} \mathbf{Q}_{2}=\mathbf{Q}_{1}=\mathbf{Q}_{2} \mathbf{Q}_{1}$;
cf. Corollary 2.
Other functions of idempotent matrices \mathbf{P}_{1} and \mathbf{P}_{2} studied (quite intensively) in the literature; cf. Ref. [1,2,4,5,8].

The main theorem is now supplemented by showing that for the cases (a)-(c) there exist matrices satisfying the required conditions:

Example for the case (a) is provided by
$\mathbf{P}_{1}=\left(\begin{array}{rrr}-1 & -1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right), \mathbf{P}_{2}=\left(\begin{array}{rrr}1 & 0 & 1 \\ -1 & 0 & -1 \\ 0 & 0 & 0\end{array}\right)$.

Example for the case (b) is provided by

$$
\mathbf{P}_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \mathbf{P}_{2}=\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 0 & -1 \\
0 & 0 & 1
\end{array}\right)
$$

Example for the case (c) is provided by
$\mathbf{P}_{1}=\left(\begin{array}{rrr}-1 & -1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right), \mathbf{P}_{2}=\left(\begin{array}{ccc}0 & 0 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$

REFERENCES

[1] J.K. Baksalar'y, Algebraic characterizations and statistical implications of the commutativity of orthogonal projectors, in: T. Pukkila, S. Puntanen (Eds.), Proceedings of the Second International Tampere Conference in Statistics, University of Tampere, Tampere, Finland, 1987, pp. 113-142.
[2] J. Groß, G. Trenkler, On the product of oblique projectors, Linear and Multilinear Algebra 44(1998) 247-259.
[3] A.M. Mathai, S.B. Provost, Quadratic Forms in Random Variables: Theory and Applications, Dekker, New York, 1992.
[4] C.R. Rao, S.K. Mitra, Generalized Inverse of Matrices and Its Applications, Willey, New York, 1971.
[5] Y. Takane, H. Yanai, On oblique projectors, Linear Algebra Appl., 289(1999) 297-310.
[6] J.K. Baksalary, O.M. Baksalary, Idenpotency of linear combinations of two idempotent matrices, Linear Algebra Appl., 321 (2000) 3-7.
[7] R.A.Hom, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[8] F.A. Graybill, Introduction to Matrices with Applications in Statistics, Wadsworth Publishing Company, Inc.,California, 1969.

