BÜTÜN KENARLARI MAFSALLI MESNETLİ LEVHALARIN TAŞIMA YÜKLERINİN DENEYSEL OLARAK BELIRLENMESI

Ahmet Necati Yelgin* Hüseyin Yelgin**
* Sakarya Üniversitesi Miuhendislik Fakültesi - SAKARYA
** Sakarya Üniversitesi Sapanca M. Y.O - SAKARYA

Abstract

ÖZET : Bir çok mühendislik yapısında dört tarafindan mafsallı mesnetlenmiş dikdörtgen levhalar taşıyıcı sistemlerin önemli elemanları olarak karşımıza çok sıklıkla çıkmaktadır. Bu tür levhalar genellikle kutu kesitli yapma kolonlarda, yapma I kirişlerin gördelerinde, gemi ve uçak endüstrisinde gemi ve uçağın gövdesini örtmede kullanılmaktadır. Bu levhalar karşılıklı iki kenarından düzgün yayılı basıçç yükü ile zorlanırsa, malzeme mukavemetine erişmeden önce narin olmalarından dolayı erken buruşabilmektedirler.

Bu amaçla, $\alpha \geq 1$ kenar oranh levhaların taşıma (buruşma) yükleri deneysel olarak araşırılacak ve sonuçlar öneri olarak verilecektir.

[^0]Bu nedenle böyle elemanların taşıma davranışlarının ve taşıma yüklerinin belirlenmesi büyük önem arzetmektedir.

Bu tür levhaların buruşma yükleri ilk defa 1891 ylinda İngiltere' de G. H. BRYAN tarafindan teorik olarak hesaplanmıştr. Bu konuda teorik çalışmalar günümüze dek yapılagelmektedir. Ancak bu tür levhalar üzerinde deneysel çalışma pek bulunmamaktadir.

Bu amaçla, α levha kenar oranh levhaların taşıma yükleri ve ayrıca bu yükler altında yaptığ 1 şekil değiştirme davranışları deneysel olarak incelenecektir.

Çalışmada, $\mathrm{t}=3 \mathrm{~mm}$ ve $\mathrm{t}=4 \mathrm{~mm}$ kalınlıklı levhalardan deney epruvetleri hazrlanmıştır. Söz konusu deney epruvetleri, farklı kalınlıklı, aynı malzeme özellikli (St 37) ve yekpare levhalardan $400 \times 400,400 \times 350,400 \times 300,400 \times 250$ ve 400×200 ebatlarında kesilerek elde edilmiștir.

II. LEVHALARIN BURUŞMASI

Levhalar, narin yapıda bir malzeme olduğundan dolayı basınç yükü ile yüklendiği zaman belirli bir yük altında kendi yükleme düzlemine dik olarak burkulurlar.

Levhaların buruşma davranışı, çeşitli parametrelere bağldır. Bu parametreler sayesinde ancak güvenli ve ekonomik bir taşyıcı sistem oluşturmak mümkün olabilmektedir. Bu konu başlğ̆ı altında lineer ve lineer olmayan buruşma teorilerinden bilinen yedi adet parametre tanitilacaktır.

- Levha narinliği, levha genişliği b ve levha kalınlığ1 t arasındaki oran olarak tanımlanır (Şekil-2.1). Levha genişliği b, basınç yükü ile yüklenmiş levha kenarının boyutudur.

Çalışmada, b/t oranı, t $=3 \mathrm{~mm}$ kalınlıklı levhalarda 66.67 ila 133.33 arasinda, $\mathrm{t}=4 \mathrm{~mm}$ kalınlıklı levhalarda ise 50 ila 100 arasında değişmektedir.

- Levha kenar oranı, levha uzunluğu a ve levha genişliği b arasındaki oran olarak tanımlanır ve α ile gösterilir. Çalışmada levha kenar oranı α farklı seçilmiş ve bu farklı orana bağlı olarak deney epruvetleri imal edilmiştir.
- Levha kenarlarının mesnetlenmesi, levha kenarlarının mesnetlenmesinin incelenmesinde, konstrüksiyon ve diferansiyel denklemlerin çözümü için gerekli olan matematiksel sınır şartları ve levhanın mesnet davranışı arasında farklılıklar olabilir. Hiçbir zaman teorik hesaplarda kullanılan gerçek mesnet şartlarını elde etmek mümkün olmaz. Bu nedenle hesaplamalar bazi ön kabuller yapılarak gerçekleştirilir. Matematiksel sınır şartları olarak genel anlamda üç sınır şartından bahsetmek mümkündür.
- Boşta (serbest) Kenarlar
- Mafsalli Mesnetlenmiş Kenarlar
- Ankastre Kenarlar
- Enine kenar mesnetlenmesinin k buruşma katsayısına etkisi, dört tarafindan mafsallı mesnetlenmiş levhalarda buruşma katsayısı,

$$
\begin{equation*}
\mathrm{k}=\left(\frac{m}{\alpha}+\frac{n^{2}}{m} \alpha\right)^{2} \tag{2.1}
\end{equation*}
$$

formülüyle hesaplanmaktadır.
Diğer tür mesnetlenmiş levhalarda k buruşma katsayısı mesnetlenme şekline bağlı olarak farklı formüllerle hesap edilmektedir. Bu formülde m ve n her iki doğrultudaki dalga sayısını, α ise levha kenar oranını göstermektedir. k buruşma katsayısının alacağ 1 minimum değer ise 4 dür.

- Malzeme akma sinırı, levhanin malzeme özelliklerinin taşıma yükü üzerine etkisi büyüktür. Dolayısıyla kullanılacak malzemenin fiziksel ve kimyasal özelliklerinin iyi tespit edilmesi gerekmektedir. Şayet malzeme özelliklerinin tespiti hakkında gerekli özen gösterilmez ise yapılacak hesaplamalar sonucu çıkacak değerler yanıltict olacaktır.
- Levha kenarının yüklenmesi, levhaların hesaplanmasında levha kenarlarının yükleme şeklinin önemi büyüktür. Daha doğrusu levhaya ne tür bir yük etki ediyorsa hesaplar ona göre yapılmalıdır. Genelde üç tür yüklemeden bahsetmek mümkündür. Düzgün yayılı yük, trapez yayılı yük ve üçgen yayılı yük.
- Ön şekil değiştirme (ön deformasyon), lineerleştirilmiş buruşma teorisi matematiksel anlamda düzlem olan levhaları incelemektedir. Rijitleştirilen veya kaynaklanan dolu gövdeli konstruksiyonların imali esnasinda, levhalarda ve rijitleştiricilerde istenmeyen çarpılmalar veya deformasyonlar oluşabilir. Bu ön deformasyonlar yönetmeliklerin verdiği sınırlar içinde kalır ise konstruksiyonlar düzlem olarak kabul edilirler ve hesapları şekil değiştirmemiş gibi yapılır. Şayet bu ölçülen ön deformasyon değerleri yönetmeliklerde belirtilen sınırları aşıyor ise bu ön deformasyonlar dikkate alnarak hesap gerçekleştirilir. Aksi taktirde gerçeğe yakın olmayan sonuçlar elde edilmiş olur.

III. LEVHALARDA TAŞIMA YÜKÜ HESABI

Basınç veya kayma kuvvetiyle yüklenmiş ideal düzlem levhalar malzeme mukavemetine erişmeden önce burkulabilirler. Burkulma çubuğunda olduğu gibi levhalarda da levha ince ise (yani narin ise) buruşmanında erken olacağı konumu geçerlidir. Şekil 3.1' de dört kenarından mafsallı mesnetlenmiş bir levhanın genel yüklenme şekli görülmektedir.

Enine yüklenmiş levhalar için aşağıdaki Kirschoff plak denklemi geçerlidir.
$\frac{E \cdot t^{3}}{12\left(1-\mu^{2}\right)}\left(\frac{\partial^{4} w}{\partial x^{4}}+2 \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} w}{\partial y^{4}}\right)=P$

Denge şartından, plak üzerindeki bütün düşey kuvvetlerin toplamı sifirdır. Enine yükleme durumu P, levha durumunda mevcut değildir (Şekil -3.2).

Şekil 3.1 : Levhanın Genel Yüklenme Sekli

Burada, $\quad \sigma_{\mathrm{x}} \cdot \mathrm{t}=\mathrm{N}_{\mathrm{x}}, \quad \sigma_{\mathrm{y}} \cdot \mathrm{t}=\mathrm{N}_{\mathrm{y}}, \quad \tau_{\mathrm{xy}} \cdot \mathrm{t}=\mathrm{N}_{\mathrm{xy}}$, olarak alınmaktadır.
x doğrultusundaki kesitte meydana gelen iç kuvvetler,

$$
\frac{\partial w}{\partial x}+\frac{\partial \frac{\partial w}{\partial x}}{\partial x} d x=\frac{\partial w}{\partial x}+\frac{\partial^{2} w}{\partial x^{2}} d x
$$

Sekil - 3.2 : x Dogrrultusunda Kesitte Oluşan İç Kuvvetler
Küçük açılar kabulü yapılarak,

$$
\begin{gather*}
P_{N_{x}} \cdot d x \cdot d y=N_{x} \frac{\partial w}{\partial x} d y- \\
\left(N_{x} \cdot d y+\frac{\partial N_{x}}{\partial x} d x \cdot d y\right)\left(\frac{\partial w}{\partial x}+\frac{\partial^{2} w}{\partial x^{2}} d x\right) \tag{3.2}
\end{gather*}
$$

$$
\begin{equation*}
P_{N_{x}} \cong-N_{x} \frac{\partial^{2} w}{\partial x^{2}}-\frac{\partial N_{x}}{\partial x} \frac{\partial w}{\partial x} \tag{3.3}
\end{equation*}
$$

Benzer olarak,

$$
\begin{align*}
& P_{N_{y}} \cong-N_{y} \frac{\partial^{2} w}{\partial y^{2}}-\frac{\partial N_{y}}{\partial y} \frac{\partial w}{\partial y} \tag{3.4}\\
& P_{N_{y y}} \cong-N_{x y} \frac{\partial^{2} w}{\partial x \partial y}-\frac{\partial N_{x y}}{\partial x} \frac{\partial v}{\partial y} \tag{3.5}\\
& P_{N_{y x}} \cong-N_{y x} \frac{\partial^{2} w}{\partial x \partial y}-\frac{\partial N_{y x}}{\partial y} \frac{\partial w}{\partial x} \tag{3.6}\\
& P=P_{N_{x}}+P_{N_{y}}+P_{N_{x y}}+P_{N_{y x}} \tag{3.7}
\end{align*}
$$

elde edilir.
$\sum \mathrm{x}=0$ denge şartından ve $\cos \left(\frac{\partial w}{\partial x}\right) \cong 1$ alınarak,

$$
\begin{equation*}
\frac{\partial N_{x}}{\partial x}+\frac{\partial N_{y}}{\partial y}=0 \tag{3.8}
\end{equation*}
$$

$\Sigma y=0$ denge şartından,

$$
\begin{gather*}
\frac{\partial N_{y}}{\partial y}+\frac{\partial N_{x y}}{\partial x}=0 \tag{3.9}\\
P=-\left(N_{x} \frac{\partial^{2} w}{\partial x^{2}}+2 N_{x y} \frac{\partial^{2} w}{\partial x \partial y}+N_{y} \frac{\partial^{2} w}{\partial y^{2}}\right) \tag{3.10}\\
P=-t \cdot\left(\sigma_{x} \frac{\partial^{2} w}{\partial x^{2}}+2 \tau_{x y} \frac{\partial^{2} w}{\partial x \partial y}+\sigma_{y} \frac{\partial^{2} w}{\partial y^{2}}\right) \tag{3.11}
\end{gather*}
$$

(3.11) denklemi (3.1) denkleminde yerine konur ise,

$$
\begin{align*}
& \frac{E \cdot t^{3}}{12\left(1-\mu^{2}\right)}\left(\frac{\partial^{4} w}{\partial x^{4}}+2 \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} w}{\partial y^{4}}\right)= \\
& -t \cdot\left(\sigma_{x} \frac{\partial^{2} w}{\partial x^{2}}+2 \tau_{x y} \frac{\partial^{2} w}{\partial x \partial y}+\sigma_{y} \frac{\partial^{2} w}{\partial y^{2}}\right) \tag{3.12}
\end{align*}
$$

elde edilir.
Plak rijitliğ́ D ile gösterilirse,

$$
\begin{equation*}
D=\frac{E . t^{3}}{12\left(1-\mu^{2}\right)} \tag{3.13}
\end{equation*}
$$

yazlabilir.
Sözkonusu levha denkleminden çubuk denklemine geçilmek istenirse,

$$
\begin{equation*}
\frac{E \cdot t^{3}}{12} \frac{\partial^{4} w}{\partial x^{2}}=-t \cdot \sigma_{x} \frac{\partial^{2} w}{\partial x^{2}} \tag{3.14}
\end{equation*}
$$

olarak yazılabilir veya,

$$
\begin{equation*}
E . I \cdot w^{\prime \prime \prime \prime}+P \cdot w^{\prime \prime}=0 \tag{3.15}
\end{equation*}
$$

olarak elde edilir.
İki tarafindan düzgün yayılı basınç yükü ile yüklenmiş dört kenarı mafsallı dikdörtgen levha için çözüm yapilirsa:

Şekil 3.3 : Düzgün Yayıh Yükle Yüklenmiş Levha
Levha çözümünde kullanılacak dalga (buruşma) denklemi,

$$
\begin{equation*}
w(x, y)=A_{m \cdot} \cdot \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \tag{3.16}
\end{equation*}
$$

olarak tahmin edilir.
Bu denklemde,
m, x doğrultusundaki dalga sayısımı
n , y doğrultusundaki dalga sayısını
göstermektedir.
Tahmini yapılan dalga denklemi, dört kenarundan mafsallı dikdörtgen levhanın diferansiyel denklemini
(3.1) ve bu levhanın sınır şartlarını sağlamas gerekmektedir.

Sinır şartları,
$w=0 \quad$ için $\quad x=0, \quad x=a, \quad y=0, \quad y=b$
$w^{\prime} \neq 0 \quad$ için $\quad x=0, \quad x=a, \quad y=0, \quad y=b$
$w^{\prime}=0 \quad$ için $\quad x=0, \quad x=a, \quad y=0, \quad y=b$
olarak yazlabilir.
Dalga denklemi, levha diferansiyel denkleminde türevleri alınarak yerine konursa,

$$
\begin{gather*}
A_{m n}\left[\left(\frac{m \pi}{a}\right)^{4}+2\left(\frac{m \pi}{a}\right)^{2}\left(\frac{n \pi}{b}\right)^{2}+\left(\frac{n \pi}{b}\right)^{4}\right] x \neg \\
\sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}=\neg \\
\sigma_{x} \frac{t}{D} A_{m n}\left(\frac{m \pi}{a}\right)^{2} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \tag{3.17}
\end{gather*}
$$

elde edilir.
Bu denklemde gereklikisaltmalar yapilırsa,
$A_{m n}\left\{\left[\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}\right]^{2}-\sigma_{x} \frac{t}{D}\left(\frac{m \pi}{a}\right)^{2}\right\}=0 \ldots$
olarak elde edilir.
Bu denklemin çarpanları sıfira eşitlenirse ;
İlk çözüm, $\quad A_{m n}=0$ olur. Bu sehim oluşmamıs (buruşmamış) levha demektir. Dolayisıyla bu bir çözüm değildir.

İkinci çözüm, parantez içindeki ifade ssfira eşitlenir Bu ise sonuç verebilecek bir çözïmdür.

O halde,

$$
\begin{equation*}
\sigma_{K i}=\frac{D}{t} \frac{\pi^{2}\left[\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}\right]^{2}}{\left(\frac{m}{a}\right)^{2}} \tag{3.18}
\end{equation*}
$$

olur.

Bu denklemde $\alpha=\mathrm{a} / \mathrm{b}$ yazılırsa,

$$
\begin{equation*}
\sigma_{K i}=\left(\frac{m}{\alpha}+\frac{n^{2}}{m} \alpha\right)^{2} \frac{\pi^{2} \cdot E \cdot t^{2}}{12\left(1-\mu^{2}\right) \cdot b^{2}} \tag{3.19}
\end{equation*}
$$

olarak bulunur. Bu denklemde parantez içindeki terim k buruşma katsayısını, diğer terim ise σ_{e} Euler burkulma gerilmesini ifade etmektedir. k buruşma katsayısi,

$$
\begin{equation*}
k=\left(\frac{m}{\alpha}+\frac{n^{2}}{m} \alpha\right)^{2} \tag{3.20}
\end{equation*}
$$

sözkonusu levhanın x ve y doğrultularındaki dalga sayısı olan m ve n ' in değişimine bağlıdır.
$n=1$ alınır ve k buruşma katsayısını m' e göre türevi alınıp sıfira eşitlenirse $\left(\frac{\partial k}{\partial m}=0\right)$,

$$
\begin{equation*}
2\left(\frac{m}{\alpha}+\frac{\alpha}{m}\right)\left(\frac{1}{\alpha}-\frac{\alpha}{m^{2}}\right)=0 \tag{3.21}
\end{equation*}
$$

ifadesi elde edilir.

Bu denklemde $\mathrm{m}=\alpha$ yazılırsa,

$$
\begin{equation*}
k_{\min }=\left(\frac{m}{\alpha}+\frac{\alpha}{m}\right)^{2}=4 \tag{3.22}
\end{equation*}
$$

olarak minimum buruşma katsayısının değeri elde edilir.
$\sigma_{\mathrm{e}}, 1 \mathrm{~cm}$ genişliğinde ve b uzunluğunda bir çubuğun basınç yükü altında burkulma gerilmesini ifade etmektedir.

O halde dört kenarından mafsallı mesnetli dikdörtgen bir levhanın kritik buruşma gerilmesi,

$$
\begin{equation*}
\sigma_{k i}=4 \frac{\pi^{2} \cdot E \cdot t^{2}}{12 b^{2}\left(1-\mu^{2}\right)}=k \cdot \sigma_{e} \tag{3.23}
\end{equation*}
$$

olarak elde edilir.

IV. DENEY DÜZENI VE DENEYIN YAPILISI

Deneyler Sakarya Üniversitesi Mühendislik Fakültesi Yapı Laboratuarında gerçekleştirilmiştir. Deneylerin gerçekleştirilmesi için düşey olarak duran TREBEL marka universal basinç deney makinası
kullanılmaktadır. Bu makina hidrolik presle donatılmış ve 600 kN basınç yükü verebilme kapasitesine sahip bulunmaktadır.

Bu çalışmada, Şekil 3.3 'de verilen levhanın karşılıkh iki kenarından üniform basınç yükü altında bulunduğu durum için levha narinlik oranlarına bağlı olarak kullanılabilecek buruşma yükü diyagramlarının deneysel olarak tesbiti amaçlanmaktadır. Söz konusu deney epruvetlerinin kenarları dönmeye karşı serbest mesnetli olarak oturtulmuştur.

Karşılıklı iki kenarından üniform yayılı basınç yükü ile yüklenmiş levhalardan elde edilecek deneysel sonuçlarla, teorik olarak elde edilmiş kritik buruşma yükü değerleri arasında bir karşılaştırma yapmak amacıyla çeşitli boy ve kalınlıktaki levhalar yüklemeye tabi tutulmuştur.

Bunun için iki tür levha kullanılmış ($t=3 \mathrm{~mm}$ kalınlıklı ve $t=4 \mathrm{~mm}$ kalınlıklı levha) ve deneyler her bir tür numune için iki defa tekrarlanmıştır. Deneylerde kullanılan epruvetler 400×400, $4000 \times 350,400 \times 300,400 \times 250$ ve 400×200 boyutlarındadır. Dolayısıyla $\mathrm{t}=3 \mathrm{~mm}$ kalınlık1ı levhadan 10 adet ve $\mathrm{t}=4 \mathrm{~mm}$ kalınlıklı levhadan 10 adet olmak üzere toplam 20 adet deney epruveti hazurlanmış ve deneye tabi tutulmuştur. Tablo 4.1'de epruvet kesit değerleri görülmektedir.

Tablo 4.1: Epruvet Kesit Değerleri

Epr. No	Levha Yük. (mm)	Levha Gen. (mm)	Levha Kal. (mm)	α Ken. Or.	$\mathbf{b / t}$
E1	400	400	3	1.00	133.33
E2	400	400	3	1.00	133.33
E3	400	350	3	1.14	116.67
E4	400	350	3	1.14	116.67
E5	400	300	3	1.33	100.00
E6	400	300	3	1.33	100.00
E7	400	250	3	1.60	83.33
E8	400	250	3	1.60	83.33
E9	400	200	3	2.00	66.67
E10	400	200	3	2.00	66.67
E11	400	400	4	1.00	100.00
E12	400	400	4	1.00	100.00
E13	400	350	4	1.14	87.50
E14	400	350	4	1.14	87.50
E15	400	300	4	1.33	75.00
E16	400	300	4	1.33	75.00
E17	400	250	4	1.60	62.50
E18	400	250	4	1.60	62.50
E19	400	200	4	2.00	50.00
E20	400	200	4	2.00	50.00

Deneylerde kullanılan malzeme St 37 çeliǧidir. Çeliğin deneylerde kullanılacak akma gerilmesi $\sigma_{\mathrm{F}}=24,87 \mathrm{kN} / \mathrm{cm}^{2}$ olarak alnacaktır.

Levhaların buruş̣ma yükleri, levha alanına bölünerek kritik gerilmeler elde edilmiştir. Levhanın dört bir kenarının mafsallı olarak mesnetlenmesi için 3 mm ve 4 mm derinliğinde bir oluk içinde serbestce hareketi sağlanmış olup, bu kısımlar levha alanına dahil edilmiştir. Şekil 4.1^{\prime} de deneylerde kullanılan epruvetlerin deneneceği deney düzeneği görülmektedir.

105

Yükün Verildiği Üst Plaka

Sekil - 4.2 : Deney Epruvetlerinin Mafallı Mesnetlenmesini ve Yük Verilmesini Sağlayan Ilave Parça

V. TEORIK HESAPLAMA VE DENEYSEL SONUÇLAR

Dört kenarında mafsallı mesnetlenmiş levhaların kritik buruşma gerilmesi, $\sigma_{\mathrm{ki}}=\mathrm{k} . \sigma_{\mathrm{e}}$ förmülüyle hesaplanabilmektedir. Daha evvelde bahsedildiği gibi bu formülde k levhanın buruşma katsayısı, σ_{e} ise 1 cm genişlikli bir levhanın Euler burkulma gerilmesidir. k buruşma katsayısı,

$$
\begin{equation*}
k=\left(\frac{m}{\alpha}+\frac{n^{2}}{m} \alpha\right)^{2} \tag{5.1}
\end{equation*}
$$

formulüyle hesaplanmaktadır. Euler burkulma gerilmesi,

$$
\begin{equation*}
\sigma_{e}=\frac{\pi^{2} \cdot E \cdot t^{2}}{12 b^{2}\left(1-\mu^{2}\right)} \tag{5.2}
\end{equation*}
$$

formülüyle hesaplanmaktadır.
Deneylerde kullanılan malzeme çelik olduğu için formülde $\mathrm{E}=21000 \mathrm{kN} / \mathrm{cm}^{2}$ ve Poisson oranı olan $\mu=0.30$ olarak alınırsa,

$$
\begin{equation*}
\sigma_{k i}=k \cdot \sigma_{e}=7,592 \cdot 10^{4}\left(\frac{t}{b}\right)^{2} \tag{5.3}
\end{equation*}
$$

olarak kritik buruşma gerilmesi elde edilir.
Formül incelendiğinde görülecekdir ki, levhanın buruşma gerilmesi b / t narinliğine bağl olmaktadır.

Ayrıca,

$$
\begin{equation*}
\lambda_{v}=\sqrt{\frac{\sigma_{F}}{\sigma_{k i}}} \tag{5.4}
\end{equation*}
$$

levha narinliğine göre hesap yapılabilir.

Tablo 5.1 : Deney sonuçları

Epr No	α Ken Or.	\mathbf{b} / \mathbf{t}	$\lambda_{\mathbf{v}}$ Levha Narinligi i	$\sigma_{\mathbf{D}} / \sigma_{\mathbf{F}}$	$\sigma_{\mathbf{T}} / \sigma_{\mathbf{F}}$
E1	1.00	133.33	2.413	0.236	0,172
E2	1.00	133.33	2.413	0.288	0,172
E3	1.14	116.67	2.112	0.300	0,225
E4	1.14	116.67	2.112	0.254	0,225
E5	1.33	100.00	1.809	0.358	0,306
E6	1.33	100.00	1.809	0.323	0,306
E7	1.60	83.33	1.508	0.417	0,441
E8	1.60	83.33	1.508	0.384	0,441
E9	2.00	66.67	1.207	0.306	0,689
E10	2.00	66.67	1.207	0.346	0,689
E11	1.00	100.00	1.809	0.430	0,305
E12	1.00	100.00	1.809	0.471	0,305
E13	1.14	87.50	1.584	0.432	0,399
E14	1.14	87.50	1.584	0.442	0,399
E15	1.33	75.00	1.357	0.530	0,543
E16	1.33	75.00	1.357	0.485	0,543
E17	1.60	62.50	1.131	0.571	0,782
E18	1.60	62.50	1.131	0.609	0,782
E19	2.00	50.00	0.905	0.525	1,221
E20	2.00	50.00	0.905	0.568	1,221

Aşağıdaki diyagramlarda levhaların taşıma yükleri $\lambda_{v} \quad$ ve b / t levha narinliğine bağlı olarak verilmektedir.

Sekil 5.1 : Taşıma Yükü - λ_{v} Diyagramı $(t=3 \mathrm{~mm}$ Kalınlıkı Levha)

Sekil 5.2 : Taşıma Yükü $-\lambda_{v}$ Diyagramı $(t=4 \mathrm{~mm}$ Kalınlıklı Levha)

Şekil 5.3 : Taşıma Yükü $-b / t$ Narinliğì $(t=3 \mathrm{~mm}$ Kalınlikhı Levha)

Şekil 5.4 : Taşıma Yükü $-\mathrm{b} / \mathrm{t}$ Narinliği ($\mathrm{t}=4 \mathrm{~mm}$ Kalınlıkı Levha)

VI. SONUÇLAR VE ÖNERILER

Yapılan deneylerde sonuçlar birbirine yakın çıkmaktadır. b / t levha narinliğinin yüksek değerlerinde Almanların DIN 4114 standardının verdiğ değerlerden daha düşük bir taşıma yükü, b/t 'nin düşük değerlerinde ise daha yüksek taşıma yükü değeri elde edilmektedir (Şekil 6.1 ve 6.2).

Şekil 6.1 : Deney Sonuçlarının DIN 4114 Standardı ile
Karşilaşturılması

Şekil 6.2 : Deney Sonuçlarmin DIN 4114 Standardi ile
Karşılaştrrılması
Yapılan deney sonuçlarının değerlendirilmesi sonucu aşağıdaki bağıntılar bütün kenarları mafsallı mesnetli dikdörtgen levhalar için önerilmektedir.

Dört kenarı mafsallı mesnetli dikdörtgen levhalarda b/t levha narinliği dikkate alınarak,
$\mathrm{t}=3 \mathrm{~mm}$ kalınlıklı levhalarda :
$\frac{\sigma}{\sigma_{F}}=3,375 \cdot 10^{-4}\left(\frac{b}{t}\right)^{2}-0,105\left(\frac{b}{t}\right)-\frac{327,81}{\left(\frac{b}{t}\right)}+10,731$
$\mathrm{t}=4 \mathrm{~mm}$ kalınlıklı levhalarda :
$\frac{\sigma}{\sigma_{F}}=6,437 \cdot 10^{-4}\left(\frac{b}{t}\right)^{2}-0,198\left(\frac{b}{t}\right)-\frac{247,84}{\left(\frac{b}{t}\right)}+11,277$
Dört kenarı mafsallı mesnetli dikdörtgen levhalarda λ_{v} levha narinliği dikkate alınarak,
$\mathrm{t}=3 \mathrm{~mm}$ kalınlıkh levhalarda :
$\frac{\sigma}{\sigma_{F}}=1,018 \cdot \lambda_{v}^{2}-5,124 \cdot \lambda_{v}-\frac{5,842}{\lambda_{v}}+10,59$
$\mathrm{t}=4 \mathrm{~mm}$ kalınlıklı levhalarda :
$\frac{\sigma}{\sigma_{F}}=-8,113 \cdot \lambda_{v}^{2}-\frac{4,433}{\lambda_{v}}+11,19$

VII. KAYNAKLAR

[1] Deren, H., " Çelik Yapılar ", Teknik Kitaplar Yayınevi, Ocak 1984, İstanbul.
[2] Yelgin, A.N., " Üç Kenarı Mafsallı Diğer Kenarı Boşta Dikdörtgen Levhalarda Narinlik-Taşıma Yükü İlișkisi ", Doktora Tezi, İTÜ Fen Bilimleri Enstitüsü, Mayıs 1990, İstanbul
[3] DIN 1079, " Staehlerne Strassenbrücken Grundsaetze für die Bauliche Durchbiegung.
[4] BS 5950 Part 5, " Code of practice for The Design of Cold Formed Section ", Draft British Standard, 1987
[5] DIN 4114, Blatt I., " Stabilitaetsfaelle (Knicken, Kippung, Beulen) Berechnungsgrundlagen " Juli 1952.
[6] TS 138, " Çekme Deneyleri (Metelik Malzeme İçin) ", Türk Standardları Enstitüsü, 1978, Ankara.
[7] DASt Ri.012, " Beulsicherheitsnachweise für Platten ", Deutscher Ausschuss für Stahlbau, Oktober 1978.
[8] Arda, T.S., " Çelik Yapılarda Yangın ve Yangın Mukavemeti - ÇEYSE ", İTÜ Vakfi,İnşaat Fakültesi, 1987, İstanbul.
[9] Stefen, C.C., Raymond, P.C., " Numerical Methods for Engineers ", McGraww - Hill, 1989.
[10] Yelgin, A. N., Sümer, M., " Boyuna Doğrultuda Rijitleştiricili Dört Kenarından Mafsallı Dikdörtgen Çelik Levhaların Karşılıklı İki Kenarından Düzgün Yayılı Yükle Yüklenmesi Durumunda Taşıma Yükünün Belirlenmesi ", VII. Ulusal Mekanik Kongresi, 1993, Antalya.
[11] Pflüger, A., Elastostatiğin Stabilite Problemleri, Çeviri: Prof.Dr.Sacit Tameroğlu Doç.Dr.Vural Cinemre, Ass.Dr. Tekin Özbk, 1970, İstanbul.
[12] Girkmann, K., Yüzeysel Taşıyıcı Sistemler, Çeviren : Doç.Dr.Sacit Tameroğlu, Cilt I, 1984, İstanbul.

[^0]: ABSTRACT : Rectangular plates with hinged supports on four edges often constitute an important part of structural systems. Such plates find application in shipbulding and aircraft industries in the form of box - section columns and I - beams. If those plates are forced on two opposite edges with uniform load, they tend to crease before the material fails.

 The bearing loads of plates with side ratio of $\alpha \geq 1$ will be experimentally investigated and results presented to form.

 ## I.GiRiş

 Dört tarafindan mafsallı mesnetli dikdörtgen çelik levhalar, çelik yapıda taşıyıcı sistemlerin önemli elemanları olarak çok kullanılmaktadır.

 Bu tür levhalar basınç yükü altında belirli bir değere ulaştukları anda birden lokal burkulma (buruşma) yaparlar.

